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Abstract
In this paper, we study consensus-based optimisation (CBO), a versatile, flexible and customisable optimisation
method suitable for performing nonconvex and nonsmooth global optimisations in high dimensions. CBO is a
multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical
analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate
different mechanisms widely used in evolutionary computation and machine learning, as we show by analysing
a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this
dynamics converges to a global minimiser of the objective function in mean-field law for a vast class of functions
under minimal assumptions on the initialisation of the method. The proof in particular reveals how to leverage
further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To
demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications,
we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and
compressed sensing, which en passant widen the scope of applications of CBO.

1. Introduction

Interacting multi-particle systems are ubiquitous in a wide variety of scientific disciplines with applica-
tion areas reaching from atomic scales over the human scale to the astronomical scale. For instance,
large-scale multi-agent models are used to understand the coordinated movement of animal groups
[19, 51] or crowds of people [1, 20]. Especially fascinating in this context is that such complex and
often intelligent behaviour – phenomena known as self-organisation and swarm intelligence – emerge
from seemingly simple rules of interaction [56]. This intriguing capabilities have drawn researchers’
attention towards designing interacting particle systems for specific purposes in various disciplines. In
applied mathematics in particular, agent-based optimisation algorithms look back on a long and success-
ful history of empirically achieving state-of-the-art performance on challenging global unconstrained
problems of the form

x∗ = arg min
x∈Rd

E(x).

Here, E : Rd →R denotes a possibly nonconvex and nonsmooth high-dimensional objective function,
whose global minimiser x∗ is assumed to exist and be unique for the remainder of this work. Well-known
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representatives of this family are Evolutionary Programming [24], Genetic Algorithms [38], Particle
Swarm Optimisation [43] and Ant Colony Optimisation [23]. They belong to the broad class of so-
called metaheuristics [4, 6], which are methods orchestrating an interaction between local improvement
procedures and global strategies, deterministic and stochastic processes, to eventually design an efficient
and robust procedure for searching the solution space of the objective function E .

Motivated by both the substantiated success of metaheuristics in applications and the lack of rig-
orous theoretical guarantees about their convergence and performance, the authors of [52] proposed
consensus-based optimisation (CBO), which follows the spirit of metaheuristics but allows for a rig-
orous theoretical analysis [12, 14, 28, 29, 33, 34]. By taking inspiration from consensus formation in
opinion dynamics [36], CBO methods use N particles X1, . . . , XN to explore the energy landscape of
the objective E and to eventually form a consensus about the location of the global minimiser x∗. In its
original form [52], the dynamics of each particle Xi, which is governed by a stochastic differential equa-
tion (SDE), is subject to two competing forces. A deterministic drift term pulls the particles towards a
so-called consensus point, which is an instantaneously computed weighted average of the positions of
all particles and approximates the global minimiser x∗ the best possible given the currently available
information. The resulting contractive behaviour is counteracted by the second term which is stochas-
tic in nature and thereby features the exploration of the energy landscape of the objective function. Its
magnitude and therefore its explorative power scales with the distance of the individual particle from
the consensus point, which encourages particles far away to explore larger regions of the domain, while
particles already close advance their position only locally.

In this work, motivated by the numerical evidence presented below as well as other recent papers such
as [32, 54, 55], we consider a more elaborate variant of this dynamics which exhibits the two following
additional drift terms.

• The first is a drift towards the historical best position of the particular particle. To store such infor-
mation, we follow the work [32], where the authors introduce for each particle an additional state
variable Yi, which can be regarded as the memory of the respective particle Xi. In contrast to the
original dynamics, an individual particle is therefore described by the tuple (Xi, Yi). Moreover, the
consensus point is no longer computed from the instantaneous positions Xi, but the historical best
positions Yi.

• The second term is a drift in the direction of the negative gradient of E evaluated at the current
position of the respective particle Xi.

Both terms are accompanied by associated noise terms. We now make the CBO dynamics with memory
effects and gradient information rigorous by providing a formal description of the interacting particle
system. A visualisation of the dynamics with all relevant quantities and forces is provided in Figure 1.
Given a finite time horizon T > 0, and user-specified parameters α, β, θ , κ , λ1, σ1 > 0 and λ2, λ3, σ2, σ3 ≥
0, the dynamics is given by the system of SDEs

dXi
t = − λ1

(
Xi

t − yα(ρ̂N
Y ,t)
)

dt − λ2

(
Xi

t − Yi
t

)
dt − λ3∇E(Xi

t) dt

+ σ1D
(
Xi

t − yα(ρ̂N
Y ,t)
)

dB1,i
t + σ2D

(
Xi

t − Yi
t

)
dB2,i

t + σ3D
(∇E(Xi

t)
)

dB3,i
t ,

(1.1a)

dYi
t = κ

(
Xi

t − Yi
t

)
Sβ,θ
(
Xi

t , Yi
t

)
dt (1.1b)

for i = 1, . . . , N and where ((Bm,i
t )t≥0)i=1,...,N are independent standard Brownian motions in R

d for m ∈
{1, 2, 3}. The system is complemented with independent initial data (Xi

0, Yi
0)i=1,...,N , typically such that

Xi
0 = Yi

0 for all i = 1, . . . , N. A numerical implementation of the scheme usually originates from an Euler-
Maruyama time discretisation of equation (1.1). The first term appearing in the SDE for the position Xi

t ,
i.e., in the first line of equation (1.1a), is the drift towards the consensus point

yα(ρ̂N
Y ,t) :=

∫
y

ωα(y)

‖ωα‖L1(ρ̂N
Y ,t)

dρ̂N
Y ,t(y), with ωα(y) := exp (−αE(y)). (1.2)

Here, ρ̂N
Y ,t denotes the random empirical measure of the particles’ historical best positions, i.e., ρ̂N

Y ,t :=
1
N

∑N
i=1 δYi

t
. Definition (1.2) is motivated by the fact that yα(ρ̂N

Y ,t) ≈ arg mini∈{1,...,N} E(Yi
t ) as α → ∞ under
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Figure 1. A visualisation of the CBO dynamics (1.1) with memory effects and gradient information.
Particles with positions X1, . . . , XN (yellow dots with their trajectories) explore the energy landscape
of the objective E in search of the global minimiser x∗ (green star). Each particle stores its local his-
torical best position Yi

t (yellow circles). The dynamics of the position Xi
t of each particle is governed

by three deterministic terms with associated random noise terms (visualised by depicting eight possible
realisations with differently shaded green arrows). A global drift term (dark blue arrow) drags the par-
ticle towards the consensus point yα(ρ̂N

Y ,t) (orange circle), which is computed as a weighted (visualised
through colour opacity) average of the particles’ historical best positions. A local drift term (light blue
arrow) imposes movement towards the respective local best position Yi

t . A gradient drift term (purple
arrow) exerts a force in the direction −∇E(Xi

t).

reasonable assumptions. The first term in the second line of equation (1.1a) is with the consensus drift
associated diffusion term, which injects randomness into the dynamics and thereby features the explo-
rative nature of the algorithm. The two commonly studied diffusion types are isotropic [12, 28, 52] and
anisotropic [14, 29] diffusion with

D( · ) =
{

‖ · ‖2 Id, for isotropic diffusion,
diag ( · ), for anisotropic diffusion,

(1.3)

where Id ∈R
d×d is the identity matrix and diag : Rd →R

d×d the operator mapping a vector onto a diago-
nal matrix with the vector as its diagonal. Despite the potential of the dynamics getting trapped in affine
subspaces, the coordinate-dependent scaling of anisotropic diffusion has proven to be beneficial for the
performance of the method in high-dimensional applications by allowing for dimension-independent
convergence rates [14, 29]. For this reason, we restrict our attention to the case of anisotropic noise
in what follows. Nevertheless, theoretically similar results as the ones presented in this work can be
obtained also for the isotropic case. The second term in the first line of equation (1.1a) is the drift
towards the historical best position of the respective particle. In contrast to the global nature of the con-
sensus drift, which incorporates information from all N particles, this term depends only on the past of
the specific particle. To store such information about the history of each particle [32], an additional state
variable Yi is introduced for every particle, which evolves according to equation (1.1b), where

Sβ,θ (x, y) = 1

2

(
1 + θ + tanh

(
β (E(y) − E(x))

))
(1.4)

is chosen throughout this article, which is an approximation to the Heaviside function H(x, y) = 1E(x)<E(y)

as θ → 0 and β → ∞. The variable Yi
t can therefore be regarded as the memory of the ith particle, i.e.,

as the location of the in-time best-seen position of Xi up to time t. This can be understood most easily
when discretising (1.1b) as

Yi
k+1 = Yi

k + �tκ
(
Xi

k+1 − Yi
k

)
Sβ,θ
(
Xi

k+1, Yi
k

)
and noting that with parameter choices κ = 1/�t, θ = 0 and β � 1 it holds Yi

k+1 = Xi
k+1 if E(Xi

k+1) <

E(Yi
k) and Yi

k+1 = Yi
k else. The third term in the first line of equation (1.1a) is the drift in the direction
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of the negative gradient of E , which is a local and instantaneous contribution. The remaining two terms
are noise terms, which are associated with the formerly described memory and gradient drifts.

A theoretical convergence analysis of CBO can be carried out either by directly investigating the
microscopic system (1.1) or its numerical time discretisation, as promoted for instance in a simplified
setting in the works [33, 34], or alternatively, as done for example in [12, 14, 26, 28, 29], by analysing the
macroscopic behaviour of the particle density through a mean-field limit associated with (1.1). Formally,
such mean-field limit is given by the self-consistent nonlinear and nonlocal SDE

dXt = −λ1

(
Xt − yα(ρY ,t)

)
dt − λ2

(
Xt − Yt

)
dt − λ3∇E(Xt) dt

+ σ1D
(
Xt − yα(ρY ,t)

)
dB1

t + σ2D
(
Xt − Yt

)
dB2

t + σ3D
(∇E(Xt)

)
dB3

t ,
(1.5a)

dYt = κ
(
Xt − Yt

)
Sβ,θ
(
Xt, Yt

)
dt, (1.5b)

which is complemented with initial datum (X0, Y0) ∼ ρ0, and where ρt = ρ(t) = Law
(
Xt, Yt

)
with

marginal law ρY ,t of Yt given by ρY ,t = ρY(t, · ) = ∫ dρt( · , y). The measure ρ ∈ C([0, T], P(Rd ×R
d))

in particular weakly satisfies the Fokker-Planck equation
∂tρt = divx

((
λ1

(
x − yα(ρY ,t)

)+ λ2(x − y) + λ3∇E(x)
)
ρt

)+ divy

((
κ(y − x)Sβ,θ (x, y)

)
ρt

)
+ 1

2

d∑
k=1

∂2
xkxk

((
σ 2

1 D
(
x − yα(ρY ,t)

)2
kk

+ σ 2
2 D(x − y)2

kk + σ 2
3 D(∇E(x))2

kk

)
ρt

)
,

(1.6)

see Definition 2.1. Working with the partial differential equation (PDE) (1.6) instead of the interacting
particle system (1.1) typically permits to employ more powerful technical tools, which result in stronger
and deterministic statements about the long-time behaviour of the average agent density ρ. This analysis
approach is rigorously justified by the mean-field approximation, i.e., the fact that the empirical particle
measure ρ̂N

t := 1
N

∑N
i=1 δ(Xi

t ,Y
i
t ) converges in some sense to the mean-field law ρt as the number of particles

N tends to infinity. For the original CBO dynamics, a qualitative result about convergence in distribution
is provided in [39], which is based on a tightness argument in the path space. More precisely, the authors
of that work show that the sequence {ρ̂N}N≥2 of C([0, T], P(Rd))-valued random variables is tight, which
permits to employ Prokhorov’s theorem to obtain, up to a subsequence, some limiting measure, which
turns out to be deterministic and at the same time satisfy the associated mean-field PDE. A more desir-
able quantitative approximation result, on the other hand, can be established by proving propagation of
chaos, i.e., by establishing for instance

max
i=1,...,N

sup
t∈[0,T]

E

∥∥∥(Xi
t , Yi

t ) − (X
i

t, Y
i

t)
∥∥∥2

2
≤ CN−1 as N → ∞,

where (X
i

t, Y
i

t) denote N i.i.d. copies of the mean-field dynamics (1.5). For the original variant of uncon-
strained CBO, this was first done in [28, Section 3.3]. To keep the focus of this work on the long-time
behaviour of the CBO variant (1.6), a rigorous analysis of the mean-field approximation is left for future
considerations.

Before summarising the contributions of the present paper, let us put our work into context by
providing a comprehensive literature overview about the history, developments and achievements of
CBO.

Versatility and flexibility of CBO: a literature overview

Since its introduction in the work [52], CBO has gained a significant amount of attention from various
research groups. This has led to a vast variety of different developments, of both theoretical and applied
nature, as well as what concerns the mathematical modelling and numerical analysis of the method. By
interpreting CBO as a stochastic relaxation of gradient descent, the recent work [53] even establishes a
connection between the worlds of derivative-free and gradient-based optimisation.

A first rigorous but local convergence proof of the mean-field limit of CBO to global minimisers
is provided for the cases of isotropic and anisotropic diffusion in [12, 14], respectively. By analysing
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the time-evolution of the variance of the law of the mean-field dynamics ρt and proving its exponen-
tial decay towards zero, the authors first establish consensus formation at some stationary point before
they ensure that this consensus is actually close to the global minimiser. A similarly flavoured approach
is pursued in [33, 34], however, directly for the fully in-time discrete microscopic system and in the
simplified setting, where the same Brownian motion is used for all agents, which limits the exploration
capabilities of the method. In contrast, in the recent works [28, 29], the authors, again for the isotropic
and anisotropic CBO variant, respectively, investigate the time-evolution of the Wasserstein-2 distance
between the law ρt and a Dirac delta at the global minimiser. This is also the strategy which we pursue
in this paper. By proving the exponential decay of W2(ρt, δx∗) to zero, consensus at the desired location
follows immediately. Moreover, by providing a probabilistic quantitative result about the mean-field
approximation, the authors give a first, and so far unique, holistic global convergence proof for the
implementable, i.e., discretised numerical CBO algorithm in the unconstrained case. The results about
the mean-field approximation of the latter papers were partially inspired by the series of works [25–27],
in which the authors constrain the particle dynamics of CBO to compact hypersurfaces and prove local
convergence of the numerical scheme to minimisers by adapting the technique of [12, 14]. This ensures
a beneficial compactness of the stochastic processes, which simplifies the convergence of the interacting
particle dynamics to the mean-field dynamics. In the unconstrained case, such intrinsic compactness is
replaced by the fact that the dynamics are bounded with high probability, which is sufficient to estab-
lish convergence in probability. Further related works about CBO for optimisations with constraints
include the papers [35, 44], where a problem on the Stiefel manifold is approached, and the works [9,
15], where the constrained optimisation is recast into a penalised problem. The philosophy of using an
interacting swarm of particles to approach various relevant problems in science and engineering has
promoted several variations of the original CBO algorithm for minimisation. Amongst them are meth-
ods based on consensus dynamics to tackle multi-objective optimisation problems [7, 8, 45], saddle
point problems [40], the search for several minimisers simultaneously [10] or the sampling from certain
distributions [13].

In the same vein and also in the spirit of this work, the original CBO method itself has undergone
several modifications allowing for a more complex dynamics. This includes the use of particles with
memory [31, 55], the integration of momentum [17], the usage of jump-diffusion processes [42] and
the exploitation of on-the-fly extracted higher-order differential information through inferred gradients
based on point evaluations of the objective function [54]. It moreover turned out that the renowned
particle swarm optimisation method (PSO) [43] can be formulated and regarded as a second-order gen-
eralisation of CBO [18, 32]. This insight has enabled to adapt the for CBO-developed analysis techniques
to rigorously prove the convergence of PSO [41].

In the collection of formerly referenced works and beyond, CBO has demonstrated to be a valuable
method for a wide scope of applications reaching from the phase retrieval or robust subspace detection
problem in signal processing [26, 27], over the training of neural networks for image classification in
machine learning [14, 29] as well as in the setting of clustered federated learning [16], to asset allocation
in finance [5]. It has been furthermore employed to approximate low-frequency functions in the presence
of high-frequency noise and to the task of solving PDEs with low-regularity solutions [17].

Contributions

In view of the various developments and the wide scope of applications, a theoretical understanding of
the long-time behaviour of the in practical applications employed CBO methods is of paramount interest.
In this work, we analyse a variant of CBO which incorporates memory effects as well as gradient infor-
mation from a theoretical and numerical perspective. As demonstrated concisely in Figure 2 and more
comprehensively in Section 4, the herein investigated dynamics, which is more involved than standard
CBO, proves to be beneficial in applications in machine learning and compressed sensing. Despite this
additional complexity, by employing the analysis technique devised in [28, 29], we are able to provide
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(a) Memory effects and an additional drift
towards the historical best position of each
individual particle improve the success prob-
ability of CBO.

(b) Gradient information and a drift in the
direction of the negative gradient can be in-
dispensable in certain applications such as
compressed sensing.

Figure 2. A demonstration of the benefits of memory effects and gradient information in CBO methods.
In both settings (a) and (b) the depicted success probabilities are averaged over 100 runs of CBO and the
implemented scheme is given by a Euler-Maruyama discretisation of equation (1.1) with time horizon
T = 20, discrete time step size �t = 0.01, α = 100, β = ∞, θ = 0, κ = 1/�t, λ1 = 1 and σ1 = √

1.6. In
(a) we plot the success probability of CBO without (left separate column) and with (right phase dia-
gram) memory effects for different values of the parameter λ2, i.e., for different strengths of the memory
drift, when optimising the Rastrigin function E(x) =∑d

k=1 x2
k + 5

2
(1 − cos (2πxk)) in dimension d = 4. As

remaining parameters we choose σ2 = λ1σ1 and λ3 = σ3 = 0, i.e., no gradient information is involved.
We observe that an increasing amount of memory drift improves the success probability significantly,
even in the case where, theoretically, there are no convergence guarantees anymore, see Theorem 2.5
and Corollary 2.6. Section 4.2 provides further details. In (b) we depict the success probability of CBO
without (left separate column) and with (right phase diagram) gradient information for different values
of the parameter λ3, i.e., for different strengths of the gradient drift, when solving a compressed sensing
problem in dimension d = 200 with sparsity s = 8. On the vertical axis we depict the number of measure-
ments m, from which we try to recover the sparse signal by solving the associated �1-regularised problem
(LASSO). As remaining parameters we use merely N = 10 particles, choose σ3 = 0 and λ2 = σ2 = 0, i.e.,
no memory drift is involved. We observe that gradient information is required to be able to identify the
correct sparse solution and standard CBO would fail in such task. Section 4.4 provides more details.

rigorous mean-field-type convergence guarantees to the global minimiser, which describe the behaviour
of the method in the large-particle limit and allow to draw conclusions about the typically observed
performance in the practicable regime. Our results for CBO with memory effects and gradient informa-
tion hold for a vast class of objective functions under minimal assumptions on the initialisation of the
method. Moreover, the proof reveals how to leverage further, in other applications advantageous, forces
in the dynamics while still being amenable to theory and allowing for provable global convergence.

1.1. Organisation

In Section 2, after providing details about the existence of solutions to the macroscopic SDE (1.5) and
the associated PDE (1.6), we present and discuss our main theoretical contribution. It is about the con-
vergence of CBO with memory effects and gradient information, as given in equation (1.1), to the global
minimiser of the objective function in mean-field law, see [28, Definition 1]. More precisely, we show
that the mean-field dynamics (1.5) and (1.6) converge with exponential rate to the global minimiser.
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Section 3 contains the proof details of this result. In Section 4, we numerically demonstrate the bene-
fits of the additional memory effects and gradient information of the previously analysed CBO variant.
We in particular present applications of CBO in machine learning and compressed sensing, before we
conclude the paper in Section 5.

For the sake of reproducible research, in the GitHub repository https://github.com/
KonstantinRiedl/CBOGlobalConvergenceAnalysis we provide the Matlab code implementing the
CBO algorithm with memory effects and gradient information analysed in this work.

1.2. Notation

Given a set A ⊂R
d, we write (A)c to denote its complement, i.e., (A)c := {z ∈R

d:z �∈ A}. For �∞ balls in
R

d with centre z and radius r, we write B∞
r (z). The space of continuous functions f :X → Y is denoted

by C(X, Y), with X ⊂R
n and a suitable topological space Y . For X ⊂R

n open and for Y =R
m, the func-

tion space Ck
c (X, Y) contains functions f ∈ C(X, Y) that are k-times continuously differentiable and have

compact support. Y is omitted in the case of real-valued functions. The operator ∇ denotes the standard
gradient of a function on R

d.
In this paper, we mostly study laws of stochastic processes, ρ ∈ C([0, T], P(Rd)), and we refer to a

snapshot of such law at time t by writing ρt ∈P(Rd). Here, P(Rd) denotes the set of all Borel probability
measures � over Rd. In Pp(Rd) we moreover collect measures � ∈P(Rd) with finite pth moment. For
any 1 ≤ p < ∞, Wp denotes the Wasserstein-p distance between two Borel probability measures �1, �2 ∈
Pp(Rd), see, e.g., [2]. E(�) denotes the expectation of a probability measure �.

2. Global convergence in mean-field law

In the first part of this section, we provide an existence result about solutions of the nonlinear macro-
scopic SDE (1.5), respectively, the associated Fokker-Planck equation (1.6). Thereafter we specify the
class of studied objective functions and present the main theoretical result about the convergence of the
dynamics (1.5) and (1.6) to the global minimiser.

Throughout this work, we consider the – in typical applications beneficial – case of CBO with
anisotropic diffusion, i.e., D( · ) = diag ( · ) in equations (1.1), (1.5) and (1.6), and also equation (2.1)
below. However, up to minor modifications, analogous results can be obtained for isotropic diffusion.

2.1. Definition and existence of weak solutions

Let us begin by rigorously defining weak solutions of the Fokker-Planck equation (1.6).

Definition 2.1. Let ρ0 ∈P(Rd ×R
d), T > 0. We say ρ ∈ C([0, T], P(Rd ×R

d)) satisfies the Fokker-
Planck equation (1.6) with initial condition ρ0 in the weak sense in the time interval [0, T], if we have
for all φ ∈ C2

c (Rd ×R
d) and all t ∈ (0, T)

d

dt

∫∫
φ(x, y) dρt(x, y) = −

∫∫
κSβ,θ (x, y)

〈
y − x, ∇yφ(x, y)

〉
dρt(x, y)

−
∫∫

λ1

〈
x−yα(ρY ,t),∇xφ(x, y)

〉+λ2〈x−y,∇xφ(x, y)〉+λ3〈∇E(x),∇xφ(x, y)〉 dρt(x, y)

+ 1

2

∫∫ d∑
k=1

(
σ 2

1 D
(
x−yα(ρY ,t)

)2
kk
+σ 2

2 D(x−y)2
kk+σ 2

3 D(∇E(x))2
kk

)
∂2

xkxk
φ(x, y) dρt(x, y)

(2.1)

and limt→0 ρt = ρ0 (in the sense of weak convergence of measures).

For solutions of the mean-field dynamics (1.5) and (1.6), we have the following existence result.
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Theorem 2.2. Let T > 0, ρ0 ∈P4(Rd ×R
d). Let E : Rd →R with E > −∞ satisfy for some constants

C1, C2 > 0 the conditions

|E(x) − E(x′)| ≤ C1 (‖x‖2 + ‖x′‖2) ‖x − x′‖2, for all x, x′ ∈R
d, (2.2)

E(x) − E ≤ C2

(
1 + ‖x‖2

2

)
, for all x ∈R

d, (2.3)

and either supx∈Rd E(x) < ∞ or

E(x) − E ≥ C3 ‖x‖2
2 , for all ‖x‖2 ≥ C4 (2.4)

for some C3, C4 > 0. Furthermore, in the case of an active gradient drift in the CBO dynamcis (1.5), i.e.,
if λ3 �= 0, let E ∈ C1(Rd) and obey additionally

‖∇E(x) − ∇E(x′)‖2 ≤ L̃∇E‖x − x′‖2, for all x, x′ ∈R
d (2.5)

for some L̃∇E > 0. Then, if (X0, Y0) is distributed according to ρ0, there exists a nonlinear process
(X, Y) ∈ C([0, T], Rd ×R

d) satisfying (1.5) with associated law ρ = Law
(
(X, Y)

)
having regularity ρ ∈

C([0, T], P4(Rd ×R
d)) and being a weak solution to the Fokker-Planck equation (1.6) with ρ(0) = ρ0.

Assumption (2.2) requires that E is locally Lipschitz continuous with the Lipschitz constant being
allowed to have linear growth. This entails in particular that the objective has at most quadratic growth
at infinity as formulated explicitly in Assumption (2.3), which can be seen when choosing x′ = x∗ and
C2 = 2C1 max{1, ‖x∗‖2

2} in (2.2). Assumption (2.4), on the other hand, assumes that E also has at least
quadratic growth in the farfield, i.e., overall it grows quadratically far away from x∗. Alternatively, E may
be bounded from above. Since the objective E can be usually modified for the purpose of analysis out-
side a sufficiently large region, these growth conditions are not really restrictive. In case of an additional
gradient drift term in the dynamics, i.e., λ3 �= 0, the objective naturally needs to be continuously dif-
ferentiable. Furthermore, Assumption (2.5) imposes E to be L̃∇E-smooth, i.e., having an L̃∇E-Lipschitz
continuous gradient.

Remark 2.3. The regularity ρ ∈ C([0, T], P4(Rd ×R
d)) obtained in Theorem 2.2 above is an immedi-

ate consequence of the regularity of the initial condition ρ0 ∈P4(Rd ×R
d). It allows to extend the test

function space C∞
c (Rd ×R

d) in Definition 2.1 to the larger space

C2
∗(Rd ×R

d) := {φ ∈ C2(Rd ×R
d):
∣∣∂xkφ(x, y)

∣∣≤ Cφ(1+‖x‖2+‖y‖2) for some Cφ>0

and sup
(x,y)∈Rd×Rd

max
k=1,...,d

|∂2
xkxk

φ(x, y)| < ∞}, (2.6)

as can be seen from the proof of Theorem 2.2, which we sketch in what follows.

Proof sketch of Theorem 2.2. The proof is based on the Leray-Schauder fixed point theorem and
follows the steps taken in [12, Theorems 3.1, 3.2].
Step 1: For a given function u ∈ C([0, T], Rd) and an initial measure ρ0 ∈P4(Rd), according to standard
SDE theory [3, Chapters 6], we can uniquely solve the auxiliary SDE

dX̃t = − λ1

(
X̃t − ut

)
dt − λ2

(
X̃t − Ỹt

)
dt − λ3∇E(X̃t) dt

+ σ1D
(
X̃t − ut

)
dB1

t + σ2D
(
X̃t − Ỹt

)
dB2

t + σ3D
(∇E(X̃t)

)
dB3

t

dỸt = κ
(
X̃t − Ỹt

)
Sβ,θ
(
X̃t, Ỹt

)
dt

with (X̃0, Ỹ0) ∼ ρ0. This is due to the fact that the coefficients of the drift and diffusion terms are locally
Lipschitz continuous and have at most linear growth, which, in turn, is a consequence of the assumptions
on E as well as the smoothness of Sβ,θ as defined in (1.4). This induces ρ̃t = Law

(
(X̃t, Ỹt)

)
. Moreover, the

assumed regularity of the initial distribution ρ0 ∈P4(Rd ×R
d) allows to obtain a fourth-order moment

estimate of the form E
[‖X̃t‖4

2 + ‖Ỹt‖4
2

]
�
(
1 + 2E

[‖X̃0‖4
2 + ‖Ỹ0‖4

2

])
ect, see, e.g. [3, Chapter 7]. So, in

particular, ρ̃ ∈ C([0, T], P4(Rd ×R
d)).
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Step 2: For some test function φ ∈ C2
∗(Rd ×R

d) as defined in (2.6), by Itô’s formula, we derive

dφ(X̃t, Ỹt) = ∇xφ(X̃t, Ỹt) · (−λ1

(
X̃t − ut

)− λ2

(
X̃t − Ỹt

)− λ3∇E(X̃t)
)

dt

+ ∇yφ(X̃t, Ỹt) · (κ(X̃t − Ỹt

)
Sβ,θ
(
X̃t, Ỹt

))
dt

+ 1

2

d∑
k=1

∂2
xkxk

φ(X̃t, Ỹt)
(
σ 2

1 D
(
X̃t − ut

)2
kk
+σ 2

2 D
(
X̃t − Ỹt

)2
kk
+σ 2

3 D
(∇E(X̃t)

)2
kk

)
dt

+ ∇xφ(X̃t, Ỹt) · (σ1D
(
X̃t − ut

)
dB1

t + σ2D
(
X̃t − Ỹt

)
dB2

t + σ3D
(∇E(X̃t)

)
dB3

t

)
After taking the expectation, applying Fubini’s theorem and observing that the stochastic integrals of
the form E

∫ t

0
∇xφ(X̃t, Ỹt) · D( · ) dBt vanish as a consequence of [50, Theorem 3.2.1(iii)] due to the

established regularity ρ̃ ∈ C([0, T], P4(Rd ×R
d)) and φ ∈ C2

∗(Rd ×R
d), we obtain

d

dt
Eφ(X̃t, Ỹt) = −E∇xφ(X̃t, Ỹt) · (λ1

(
X̃t − ut

)+ λ2

(
X̃t − Ỹt

)+ λ3∇E(X̃t)
)

+E∇yφ(X̃t, Ỹt) · (κ(X̃t − Ỹt

)
Sβ,θ
(
X̃t, Ỹt

))
+ 1

2

d∑
k=1

∂2
xkxk

φ(X̃t, Ỹt)
(
σ 2

1 D
(
X̃t − ut

)2
kk
+σ 2

2 D
(
X̃t − Ỹt

)2
kk
+σ 2

3 D
(∇E(X̃t)

)2
kk

)
according to the fundamental theorem of calculus. This shows that ρ̃ ∈ C([0, T], P4(Rd ×R

d)) satisfies
the Fokker-Planck equation

d

dt

∫∫
φ(x, y) dρ̃t(x, y) = −

∫∫
κSβ,θ (x, y)

〈
y − x, ∇yφ(x, y)

〉
dρ̃t(x, y)

−
∫∫

λ1 〈x − ut, ∇xφ(x, y)〉 + λ2 〈x − y, ∇xφ(x, y)〉 + λ3 〈∇E(x), ∇xφ(x, y)〉 dρ̃t(x, y)

+ 1

2

∫∫ d∑
k=1

(
σ 2

1 D(x − ut)
2
kk + σ 2

2 D(x − y)2
kk + σ 2

3 D(∇E(x))2
kk

)
∂2

xkxk
φ(x, y) dρ̃t(x, y)

(2.7)

The remainder is identical to the cited reference and is summarised below for completeness.
Step 3: Setting T u := yα(ρ̃Y) ∈ C([0, T], Rd) provides the self-mapping property of the map

T : C([0, T], Rd) → C([0, T], Rd), u �→ T u = yα(ρ̃Y),

which is compact as a consequence of a stability estimate for the consensus point [12, Lemma 3.2]. More
precisely, as shown in the cited result, it holds ‖yα(ρ̃Y ,t) − yα(ρ̃Y ,s)‖2 � W2(ρ̃Y ,t, ρ̃Y ,s) for ρ̃Y ,t, ρ̃Y ,s ∈P4(Rd).
Together with the Hölder-1/2 continuity of the Wasserstein-2 distance W2(ρ̃Y ,t, ρ̃Y ,s), this ensures the
claimed compactness of T .
Step 4: Then, for u = ϑT u with ϑ ∈ [0, 1], there exists ρ ∈ C([0, T], P4(Rd ×R

d)) satisfying (2.7)
with marginal ρY such that u = ϑyα(ρY). For such u, a uniform bound can be obtained either thanks
to the boundedness or the growth condition of E required in the statement. An application of the
Leray-Schauder fixed point theorem concludes the proof by providing a solution to (1.5).

2.2. Main result

We now present the main theoretical result about global mean-field law convergence of CBO with
memory effects and gradient information for objectives that satisfy the following conditions.

Definition 2.4 (Assumptions). Throughout, we are interested in functions E ∈ C(Rd), for which
A1 there exists a unique x∗ ∈R

d such that E(x∗) = infx∈Rd E(x) =: E , and
A2 there exist E∞, R0, η > 0, and ν ∈ (0, ∞) such that

‖x − x∗‖∞ ≤ 1

η
(E(x) − E)ν for all x ∈ B∞

R0
(x∗), (2.8)

E∞ < E(x) − E for all x ∈ (B∞
R0

(x∗)
)c

. (2.9)
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Furthermore, for the case of an additional gradient drift component, i.e., if λ3 �= 0, we additionally
require that E ∈ C1(Rd) and that
A3 there exist C∇E > 0 such that

‖∇E(x)‖2 ≤ C∇E ‖x − x∗‖2 for all x ∈R
d. (2.10)

In the case, where no gradient drift is present, i.e., λ3 = 0 in equations (1.1), (1.5) and (1.6), the
objective function E is only required to be continuous and satisfy Assumptions A1 and A2. While the
former merely imposes that the infimum is attained at x∗, the latter can be regarded as a tractability
condition of the energy landscape of E [26, 28]. More precisely, the inverse continuity condition (2.8)
ensures that E is locally coercive in some neighbourhood of the global minimiser x∗. Condition (2.9), on
the other hand, guarantees that in the farfield E is bounded away from the minimal value by at least E∞.
This in particular excludes objectives for which E(x) ≈ E far away from x∗. Note that A2 actually already
implies the uniqueness of x∗ requested in A1. In case of an additional gradient drift term in the dynamics,
i.e., λ3 �= 0, the objective naturally needs to be continuously differentiable. Furthermore, in Assumption
A3 we impose that the gradient ∇E grows at most linearly. This is a significantly weaker assumption
compared to typical smoothness assumptions about E in the optimisation literature (in particular in the
analysis of stochastic gradient descent), where Lipschitz-continuity of the gradient of E is required [49].

We are now ready to state the main theoretical result. Its proof is deferred to Section 3. For the reader’s
convenience let us recall that

W2
2

(
ρt, δ(x∗ ,x∗)

)= ∫∫ (‖x − x∗‖2
2 + ‖y − x∗‖2

2

)
dρt(x, y),

which motivates to investigate the behaviour of the Lyapunov functional V(ρt) as introduced in (2.11)
below.

Theorem 2.5. Let E ∈ C(Rd) satisfy A1 and A2. Furthermore, in the case of an active gradient drift in the
CBO dynamcis (1.5), i.e., if λ3 �= 0, let E ∈ C1(Rd) obey in addition A3. Moreover, let ρ0 ∈P4(Rd ×R

d)
be such that (x∗, x∗) ∈ supp (ρ0). Let us define the functional

V(ρt) := 1

2

∫∫ (‖x − x∗‖2
2 + ‖y − x‖2

2

)
dρt(x, y), (2.11)

and the rates

χ1 := min
{
λ1−λ2−3λ3C∇E−2σ 2

1 −2σ 2
3 C2

∇E , 2κθ+λ2−λ1−λ3C∇E−2σ 2
2

}
, (2.12a)

χ2 := max
{
3λ1+λ2+3λ3C∇E−2σ 2

1 +2σ 2
3 C2

∇E , 2κθ+3λ2+λ1+λ3C∇E−2σ 2
2

}
, (2.12b)

which we assume to be strictly positive through a sufficient choice of the parameters of the CBO dynam-
ics. Furthermore, provided that V(ρ0) > 0, fix any ε ∈ (0, V(ρ0)), ϑ ∈ (0, 1) and define the time horizon

T∗ := 1

(1 − ϑ)χ1

log

(V(ρ0)

ε

)
. (2.13)

Then, there exists α0 > 0, depending (among problem-dependent quantities) also on ε and ϑ , such that
for all α > α0, if ρ ∈ C([0, T∗], P4(Rd ×R

d)) is a weak solution to the Fokker-Planck equation (1.6) on
the time interval [0, T∗] with initial condition ρ0, we have

V(ρT) = ε with T ∈
[

(1 − ϑ)χ1

(1 + ϑ/2)χ2

T∗, T∗
]

. (2.14)

Furthermore, on the time interval [0, T], V(ρt) decays at least exponentially fast, i.e., for all t ∈ [0, T] it
holds

W2
2 (ρt, δ(x∗ ,x∗)) ≤ 6V(ρt) ≤ 6V(ρ0) exp (−(1 − ϑ)χ1t) . (2.15)
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Theorem 2.5 proves the exponentially fast convergence of the law ρ of the dynamics (1.5) to the
global minimiser x∗ of E under a minimal assumption about the initial distribution ρ0. The result in par-
ticular allows to devise a strategy for the parameter choices of the method. Namely, fixing the parameters
λ2, λ3, σ1, σ2, σ3 and θ , choosing λ1 and consecutively κ such that

λ1 > λ2 + 3λ3C∇E + 2σ 2
1 + 2σ 2

3 C2
∇E and κ >

1

2θ

(−λ2 + λ1 + λ3C∇E + 2σ 2
2

)
ensures that the convergence rate χ1 is strictly positive. Since χ2 ≥ χ1, χ2 > 0 as well. Given a desired
accuracy ε, by consulting the proof in Section 3.4, we can further derive an estimate on the lower bound
of α, namely

α0 ∼ d + log 16d + log

(V(ρ0)

ε

)
− log c (ϑ , χ1, λ1, σ1) − log ρ0

(
B∞

r (x∗) × B∞
r (x∗)

)
for some suitably small r ∈ (0, R0), which, like the hidden constant, may depend on ε. The choice of the
first set of parameters, in particular what concerns the drift towards the historical best and in the direction
of the negative gradient, requires some manual hyperparameter tuning and depends on the problem at
hand. We will see this also in Section 4, where we conduct numerical experiments in different application
areas.

Eventually, with (2.13) one can determine the maximal time horizon T∗, until which the Lyapunov
functionalV(ρt) is guaranteed to have reached the prescribed ε. The exact time point T , whereV(ρT) = ε,
is characterised more concretely in equation (2.14). Due to the presence of memory effects and gradient
information, which might counteract the consensus drift of CBO, it seems challenging to specify T more
closely. However, in the case of standard CBO, T turns out to be equal to T∗ up to a factor depending
merely on ϑ , see, e.g., [28].

In fact, this result can be retrieved as a special case of the subsequent Corollary 2.6, where we state
an analogous convergence result for the CBO dynamics with gradient information but without memory
effect. Its respective proof follows the lines of the one of the richer dynamics in Section 3, cf. also [28,
Theorem 12] and [29, Theorem 2], and it is left as an exercise to the reader interested in the technical
details of the proof technique. More precisely, for the instantaneous CBO model with gradient drift,

dX̃i
t = −λ1

(
X̃i

t − yα (̂ρ̃ t
N)
)

dt − λ3∇E(X̃i
t) dt

+ σ1D
(
X̃i

t − yα (̂ρ̃ t
N)
)

dB̃1,i
t + σ3D

(∇E(X̃i
t)
)

dB̃3,i
t ,

(2.16)

where ̂̃ρ t
N := 1

N

∑N
i=1 δX̃i

t
and to which the associated mean-field Fokker-Planck equation reads

∂tρ̃t = div
((

λ1 (x − yα(ρ̃t)) + λ3∇E(x)
)
ρ̃t

)
+ 1

2

d∑
k=1

∂2
xkxk

((
σ 2

1 D(x − yα(ρ̃t))
2
kk + σ 2

3 D(∇E(x))2
kk

)
ρ̃t

)
,

(2.17)

we have the following convergence result.

Corollary 2.6. Let E ∈ C(Rd) satisfy A1 and A2. Furthermore, in the case of an active gradient drift,
i.e., if λ3 �= 0, let E ∈ C1(Rd) obey in addition A3. Moreover, let ρ̃0 ∈P4(Rd) be such that x∗ ∈ supp (ρ̃0).
Let us define the functional

Ṽ(ρ̃t) := 1

2

∫
‖x − x∗‖2

2 dρ̃t(x), (2.18)

and the rates

χ̃1 := 2λ1 − 2λ3C∇E − σ 2
1 − σ 2

3 C2
∇E , (2.19a)

χ̃2 := 2λ1 + 2λ3C∇E − σ 2
1 + σ 2

3 C2
∇E , (2.19b)
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which we assume to be strictly positive through a sufficient choice of the parameters of the CBO dynam-
ics. Furthermore, provided that Ṽ(ρ̃0) > 0, fix any ε ∈ (0, Ṽ(ρ̃0)), ϑ ∈ (0, 1) and define the time horizon

T̃∗ := 1

(1 − ϑ)χ̃1

log

( Ṽ(ρ̃0)

ε

)
. (2.20)

Then, there exists α̃0 > 0, depending (among problem-dependent quantities) also on ε and ϑ , such that
for all α > α̃0, if ρ̃ ∈ C([0, T∗], P4(Rd)) is a weak solution to the Fokker-Planck equation (2.17) on the
time interval [0, T̃∗] with initial condition ρ̃0, we have

Ṽ(ρ̃T̃) = ε with T̃ ∈
[

(1 − ϑ)χ̃1

(1 + ϑ/2)χ̃2

T̃∗, T̃∗
]

. (2.21)

Furthermore, on the time interval [0, T̃], Ṽ(ρ̃t) decays at least exponentially fast, i.e., for all t ∈ [0, T̃]
it holds

W2
2 (ρ̃t, δx∗ ) = 2Ṽ(ρ̃t) ≤ 2Ṽ(ρ̃0) exp (−(1 − ϑ)χ̃1t) . (2.22)

3. Proof details for Section 2.2

In what follows, we provide the proof details for the global mean-field law convergence result of CBO
with memory effects and gradient information, Theorem 2.5. The entire section can be read as a proof
sketch with Corollaries 3.3 and 3.5, Propositions 3.6 and 3.8 containing the key individual statements.
How to combine these results rigorously to complete the proof of Theorem 2.5 is then covered in detail
in Section 3.4.

Remark 3.1. Without loss of generality, we assume E = 0 throughout this section.

3.1. Evolution of the mean-field limit

Recall that our overall goal is to establish the convergence of the dynamics (1.6) to a Dirac delta at the
global minimiser x∗ with respect to the Wasserstein-2 distance, i.e.,

W2

(
ρt, δ(x∗ ,x∗)

)→ 0 as t → ∞.

To this end, we analyse the decay behaviour of the functional V(ρt) as defined in (2.11), i.e., V(ρt) =
1
2

∫∫ (‖x − x∗‖2
2 + ‖y − x‖2

2

)
dρt(x, y). More precisely, we will show its exponential decay with a rate

controllable through the parameters of the CBO method.
Let us start below with deriving the evolution inequalities for the functionals

X (ρt) = 1

2

∫∫
‖x − x∗‖2

2 dρt(x, y) and Y(ρt) = 1

2

∫∫
‖y − x‖2

2 dρt(x, y).

Lemma 3.2. Let E : Rd →R, and fix α, λ1, σ1 > 0 and λ2, σ2, λ3, σ3, β, κ , θ ≥ 0. Moreover, let T > 0
and let ρ ∈ C([0, T], P4(Rd ×R

d)) be a weak solution to the Fokker-Planck equation (1.6). Then, the
functionals X (ρt) and Y(ρt) satisfy

d

dt

(
X (ρt)
Y(ρt)

)
≤ −
(

2λ1−λ2−2λ3C∇E−σ 2
1 −σ 2

3 C2
∇E −λ2−σ 2

2

−λ1−λ3C∇E−σ 2
1 −σ 2

3 C2
∇E 2κθ+2λ2−λ1−λ3C∇E − σ 2

2

)(
X (ρt)
Y(ρt)

)
+ √

2

( (
λ1+σ 2

1

)√
X (ρt)

λ1

√
Y(ρt)+σ 2

1

√
X (ρt)

)∥∥yα(ρY ,t)−x∗∥∥
2
+σ 2

1

2

(
1
1

)∥∥yα(ρY ,t)−x∗∥∥2

2
,

where the inequality has to be understood component-wise.
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Proof. We note that the functions φX (x, y) = 1/2 ‖x − x∗‖2
2 and φY (x, y) = 1/2 ‖y − x‖2

2 are in C2
∗(Rd ×

R
d) and recall that ρ satisfies the weak solution identity (2.1) for such test functions. Hence, by applying

(2.1) with φX and φY as above, we obtain for the evolution of X (ρt)

d

dt
X (ρt) = −

∫∫
λ1

〈
x−yα(ρY ,t), x−x∗〉+ λ2〈x−y, x−x∗〉 + λ3〈∇E(x), x−x∗〉 dρt(x, y)

+ 1

2

∫∫
σ 2

1

∥∥x−yα(ρY ,t)
∥∥2

2
+ σ 2

2 ‖x−y‖2
2 + σ 2

3 ‖∇E(x)‖2
2 dρt(x, y)

(3.1)

and for the evolution of Y(ρt)

d

dt
Y(ρt) = −

∫∫
κSβ,θ (x, y) ‖x − y‖2

2 dρt(x, y)

−
∫∫

λ1

〈
x − yα(ρY ,t), x − y

〉+ λ2 ‖x − y‖2
2 + λ3 〈∇E(x), x − y〉 dρt(x, y)

+ 1

2

∫∫
σ 2

1

∥∥x − yα(ρY ,t)
∥∥2

2
+ σ 2

2 ‖x − y‖2
2 + σ 2

3 ‖∇E(x)‖2
2 dρt(x, y).

(3.2)

Here we used ∇xφX (x, y) = x − x∗, ∇yφX (x, y) = 0, ∂2
xkxk

φX (x, y) = 1, ∇xφY (x, y) = x − y, ∇yφY (x, y) =
y − x and ∂2

xkxk
φY (x, y) = 1. Let us now collect auxiliary estimates in (3.3a)–(3.3g), which turn out to be

useful in establishing upper bounds for (3.1) and (3.2). Using standard tools such as Cauchy-Schwarz
and Young’s inequality we have

− 〈x − y, x − x∗〉 ≤ ‖x − y‖2 ‖x − x∗‖2 ≤ 1

2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.3a)

− 〈x − yα(ρY ,t), x − x∗〉= − ‖x − x∗‖2
2 − 〈x∗ − yα(ρY ,t), x − x∗〉

≤ − ‖x − x∗‖2
2 + ∥∥yα(ρY ,t) − x∗∥∥

2
‖x − x∗‖2 , (3.3b)

− 〈x − yα(ρY ,t), x − y
〉= − 〈x − x∗, x − y〉 − 〈x∗ − yα(ρY ,t), x − y

〉
≤ 1

2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)+ ∥∥yα(ρY ,t) − x∗∥∥
2
‖x − y‖2 , (3.3c)∥∥x − yα(ρY ,t)

∥∥2

2
= ‖x − x∗‖2

2 − 2
〈
yα(ρY ,t) − x∗, x − x∗〉+ ∥∥yα(ρY ,t) − x∗∥∥2

2

≤ ‖x − x∗‖2
2 + 2

∥∥yα(ρY ,t) − x∗∥∥
2
‖x − x∗‖2 + ∥∥yα(ρY ,t) − x∗∥∥2

2
, (3.3d)

where in (3.3b)–(3.3d) we expanded the left-hand side of the scalar product and the norm by subtracting
and adding x∗. Furthermore, by means of A3 we obtain

− 〈∇E(x), x − x∗〉 ≤ ‖∇E(x)‖2 ‖x − x∗‖2 ≤ C∇E ‖x − x∗‖2
2 , (3.3e)

− 〈∇E(x), x − y〉 ≤ ‖∇E(x)‖2 ‖x − y‖2 ≤ C∇E ‖x − x∗‖2 ‖x − y‖2

≤ C∇E
2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.3f)

‖∇E(x)‖2
2 ≤ C2

∇E ‖x − x∗‖2
2 . (3.3g)

Integrating the bounds (3.3a), (3.3b), (3.3d), (3.3e) and (3.3g) into equation (3.1) results in the upper
bound

d

dt
X (ρt) ≤ − (2λ1 − λ2 − 2λ3C∇E − σ 2

1 − σ 2
3 C2

∇E
)
X (ρt) + (λ2 + σ 2

2

)
Y(ρt)

+ √
2
(
λ1 + σ 2

1

) √
X (ρt)

∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

2

∥∥yα(ρY ,t) − x∗∥∥2

2
,

where we furthermore used that by Jensen’s inequality∫∫
‖x − x∗‖2 dρt(x, y) ≤

√∫∫
‖x − x∗‖2

2 dρt(x, y) =√2X (ρt). (3.4)
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For equation (3.2), we first note that, by definition, Sβ,θ ≥ θ uniformly. This combined with the bounds
(3.3c), (3.3d), (3.3f) and (3.3g) allows to derive

d

dt
Y(ρt) ≤ − (2κθ + 2λ2 − λ1 − λ3C∇E − σ 2

2

)
Y(ρt) + (λ1 + λ3C∇E + σ 2

1 + σ 2
3 C2

∇E
)
X (ρt)

+ √
2
(
λ1

√
Y(ρt) + σ 2

1

√
X (ρt)

) ∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

2

∥∥yα(ρY ,t) − x∗∥∥2

2
,

where we used (3.4) together with an analogous bound for
∫∫ ‖x − y‖2 dρt(x, y).

Recalling that V(ρt) =X (ρt) +Y(ρt) immediately allows to obtain an evolution inequality for V(ρt)
of the following form.

Corollary 3.3. Under the assumptions of Lemma 3.2, the functional V(ρt) satisfies
d

dt
V(ρt) ≤ −χ1V(ρt) + 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

∥∥yα(ρY ,t) − x∗∥∥2

2
, (3.5)

with χ1 as specified in (2.12a).

Analogously to the upper bounds on the time evolutions of the functionals X (ρt), Y(ρt) and V(ρt),
we can derive bounds from below as follows.

Lemma 3.4. Under the assumptions of Lemma 3.2, the functionals X (ρt) and Y(ρt) satisfy
d

dt

(
X (ρt)
Y(ρt)

)
≥ −
(

2λ1+λ2+2λ3C∇E−σ 2
1 +σ 2

3 C2
∇E λ2−σ 2

2

λ1+λ3C∇E−σ 2
1 +σ 2

3 C2
∇E 2κθ+2λ2+λ1+λ3C∇E − σ 2

2

)(
X (ρt)
Y(ρt)

)
− √

2

( (
λ1+σ 2

1

)√
X (ρt)

λ1

√
Y(ρt)+σ 2

1

√
X (ρt)

)∥∥yα(ρY ,t)−x∗∥∥
2

,

where the inequality has to be understood component-wise.

Proof. By following the lines of the proof of Lemma 3.2 and noticing that in analogy to the estimates
(3.3), it hold

− 〈x − y, x − x∗〉 ≥ − ‖x − y‖2 ‖x − x∗‖2 ≥ −1

2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.6a)

− 〈x − yα(ρY ,t), x − x∗〉= − ‖x − x∗‖2
2 − 〈x∗ − yα(ρY ,t), x − x∗〉

≥ − ‖x − x∗‖2
2 − ∥∥yα(ρY ,t) − x∗∥∥

2
‖x − x∗‖2 , (3.6b)

− 〈x − yα(ρY ,t), x − y
〉= − 〈x − x∗, x − y〉 − 〈x∗ − yα(ρY ,t), x − y

〉
≥ −1

2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)− ∥∥yα(ρY ,t) − x∗∥∥
2
‖x − y‖2 , (3.6c)∥∥x − yα(ρY ,t)

∥∥2

2
= ‖x − x∗‖2

2 − 2
〈
yα(ρY ,t) − x∗, x − x∗〉+ ∥∥yα(ρY ,t) − x∗∥∥2

2

≥ ‖x − x∗‖2
2 − 2

∥∥yα(ρY ,t) − x∗∥∥
2
‖x − x∗‖2 , (3.6d)

as well as

− 〈∇E(x), x − x∗〉 ≥ − ‖∇E(x)‖2 ‖x − x∗‖2 ≥ −C∇E ‖x − x∗‖2
2 , (3.6e)

− 〈∇E(x), x − y〉 ≥ − ‖∇E(x)‖2 ‖x − y‖2 ≥ −C∇E ‖x − x∗‖2 ‖x − y‖2

≥ −C∇E
2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.6f)

‖∇E(x)‖2
2 ≥ −C2

∇E ‖x − x∗‖2
2 . (3.6g)

we obtain the statement by integrating the bounds into equations (3.1) and (3.2).

Corollary 3.5. Under the assumptions of Lemma 3.2, the functional V(ρt) satisfies
d

dt
V(ρt) ≥ −χ2V(ρt) − 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2

, (3.7)

with χ2 as specified in (2.12b).
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In order to be able to apply Grönwall’s inequality to (3.5) and (3.7) with the aim of obtaining estimates
of the form V(ρt) ≤ V(ρ0)e−(1−ϑ)χ1t and V(ρt) ≥ V(ρ0)e−(1−ϑ/2)χ2 t for some χ1, χ2 > 0 and a suitable ϑ ∈
(0, 1), it remains to control the quantity

∥∥yα(ρY ,t) − x∗∥∥
2

through the choice of the parameter α. This is
the content of the next section.

3.2. Quantitative Laplace principle

The well-known Laplace principle [21, 48, 52] asserts that for any absolutely continuous probability
distribution � ∈P(Rd) with x∗ ∈ supp (�) it holds

lim
α→∞

(
− 1

α
log ‖ωα‖L1(�)

)
= E(x∗) = E , (3.8)

which allows to infer that the α-weighted measure ωα/ ‖ωα‖L1(�) � is concentrated in a small region
around the minimiser x∗, provided that E attains its minimum at a single point, which is however
guaranteed by the inverse continuity property A2.

The asymptotic nature of the result (3.8), however, does not permit to obtain the required quantitative
estimates, which is the reason why the authors of [28] proposed a quantitative nonasymptotic variant of
the Laplace principle. In the following proposition, cf. [29, Proposition 1], we state this result for the
setting of anisotropic noise considered throughout the paper.

Proposition 3.6 ([29, Proposition 1]). Let E = 0, � ∈P(Rd) and fix α > 0. For any r > 0 we define
Er := supy∈B∞

r (x∗) E(y). Then, under the inverse continuity property A2, for any r ∈ (0, R0] and q > 0 such
that q + Er ≤ E∞, we have

‖yα(�) − x∗‖2 ≤
√

d(q + Er)ν

η
+

√
d exp (−αq)

�(B∞
r (x∗))

∫
‖y − x∗‖2 d�(y).

Proof. The proof is a mere reformulation of the one of [29, Proposition 1], which is presented in what
follows for the sake of completeness.

For any a > 0, Markov’s inequality gives ‖ωα‖L1(�) ≥ a�({y : exp (−αE(y)) ≥ a}). By choosing a =
exp (−αEr) and noting that

�
({

y ∈R
d: exp (−αE(y)) ≥ exp (−αEr)

})= �
({

y ∈R
d:E(y) ≤ Er

})≥ �(B∞
r (x∗)),

we get ‖ωα‖L1(�) ≥ exp (−αEr)�(B∞
r (x∗)). Now let r̃ ≥ r > 0. With the definition of the consensus point

yα(�) = ∫ yωα(y)/‖ωα‖L1(�) d�(y) and Jensen’s inequality, we can decompose

‖yα(�) − x∗‖∞ ≤
∫

B∞̃
r (x∗)

‖y − x∗‖∞
ωα(y)

‖ωα‖L1(�)

d�(y)

+
∫
(B∞̃

r (x∗))
c
‖y − x∗‖∞

ωα(y)

‖ωα‖L1(�)

d�(y).

After noticing that the first term is bounded by r̃ since ‖y − x∗‖∞ ≤ r̃ for all y ∈ B∞
r̃ (x∗), we can continue

the former with

‖yα(�) − x∗‖∞ ≤ r̃ + 1

exp (−αEr)�(B∞
r (x∗))

∫
(B∞̃

r (x∗))c

‖y − x∗‖∞ ωα(y) d�(y)

≤ r̃ + exp
(−α infy∈(B∞̃

r (x∗))c E(y)
)

exp
(−αEr)�(B∞

r (x∗)
) ∫

(B∞̃
r (x∗))c

‖y − x∗‖∞ d�(y)

= r̃ + exp
(−α

(
infy∈(B∞̃

r (x∗))c E(y) − Er

))
�(B∞

r (x∗))

∫
‖y − x∗‖∞ d�(y), (3.9)
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where for the second term we used ‖ωα‖L1(�) ≥ exp (−αEr)�(B∞
r (x∗)) from above. Let us now choose

r̃ = (q + Er)ν/η, which satisfies r̃ ≥ r, since A2 with E = 0 and r ≤ R0 implies

r̃ = (q + Er)ν

η
≥ E ν

r

η
=
(
supy∈B∞

r (x∗) E(y)
)ν

η
≥ sup

y∈B∞
r (x∗)

‖y − x∗‖∞ = r.

Furthermore, due to the assumption q + Er ≤ E∞ in the statement we have r̃ ≤ E ν
∞/η, which together

with the two cases of A2 with E = 0 allows to bound the infimum in (3.9) as follows

inf
y∈(B∞̃

r (x∗))c
E(y) − Er ≥ min

{
E∞, (η̃r)

1
ν

}
− Er = (η̃r)

1
ν − Er = (q + Er) − Er = q.

Inserting this and the definition of r̃ into (3.9), we get the result as a consequence of the norm equivalence
‖ · ‖∞ ≤ ‖ · ‖2 ≤ √

d ‖ · ‖∞.

To eventually apply Proposition 3.6 in the setting of Corollary 3.3, i.e., to upper bound the distance of
the consensus point yα(ρY ,t) to the global minimiser x∗, it remains to ensure that ρY ,t(B∞

r (x∗)) is bounded
away from 0 for a finite time horizon. We ensure that this is indeed the case in what follows.

3.3. A lower bound for the probability mass ρY ,t(B∞
r (x∗))

In this section, for any small radius r > 0, we provide a lower bound on the probability mass of
ρY ,t(B∞

r (x∗)) by defining a mollifier φr : Rd ×R
d →R so that

ρY ,t(B
∞
r (x∗)) = ρt(R

d × B∞
r (x∗)) =

∫∫
Rd×B∞

r (x∗)

1 dρt(x, y) ≥
∫∫

φr(x, y) dρt(x, y)

and studying the evolution of the right-hand side.

Lemma 3.7. For r > 0 let �r := {(x, y) ∈R
d ×R

d: max{‖x − x∗‖∞ , ‖x − y‖∞} < r/2} and define the
mollifier φr : Rd ×R

d →R by

φr(x, y) :=
⎧⎨⎩
∏d

k=1 exp

(
1 − ( r

2 )
2

( r
2 )

2−(x−x∗)2
k

)
exp

(
1 − ( r

2 )
2

( r
2 )

2−(x−y)2
k

)
, if (x, y) ∈ �r,

0, else.

We have that Im(φr) = [0, 1], supp (φr) = �r ⊂ B∞
r/2(x∗) × B∞

r (x∗) ⊂R
d × B∞

r (x∗), φr ∈ C∞
c (Rd ×R

d) and

∂xkφr(x, y) = − r2

2

⎛⎜⎝ (x − x∗)k((
r
2

)2 − (x − x∗)2
k

)2 + (x − y)k((
r
2

)2 − (x − y)2
k

)2

⎞⎟⎠ φr(x, y),

∂ykφr(x, y) = − r2

2

(y − x)k((
r
2

)2 − (x − y)2
k

)2 φr(x, y),

∂2
xkxk

φr(x, y) = r2

2

⎛⎜⎝
⎛⎜⎝2
(

2 (x − x∗)2
k − ( r

2

)2)
(x − x∗)2

k −
((

r
2

)2 − (x − x∗)2
k

)2

((
r
2

)2 − (x − x∗)2
k

)4

⎞⎟⎠
+
⎛⎜⎝2
(

2 (x − y)2
k − ( r

2

)2)
(x − y)2

k −
((

r
2

)2 − (x − y)2
k

)2

((
r
2

)2 − (x − y)2
k

)4

⎞⎟⎠
⎞⎟⎠ φr(x, y).

Proof. It is straightforward to check the properties of φr as it is a tensor product of classical well-studied
mollifiers.
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To keep the notation as concise as possible in what follows, let us introduce the decomposition

∂xkφr = δ∗
xk
φr + δY

xk
φr and ∂2

xkxk
φr = δ2,∗

xkxk
φr + δ2,Y

xkxk
φr, (3.10)

where

δ∗
xk
φr(x, y)= − r2

2
(x−x∗)k((

r
2

)2−(x−x∗)2
k

)2 φr(x, y) and δY
xk
φr(x, y)= − r2

2
(x−y)k((

r
2

)2−(x−y)2
k

)2 φr(x, y)

and analogously for δ2,∗
xkxk

φr and δ2,Y
xkxk

φr.

Proposition 3.8. Let T > 0, r > 0, and fix parameters α, λ1, σ1 > 0 as well as parameters
λ2, σ2, λ3, σ3, β, κ , θ ≥ 0 such that σ2 > 0 iff λ2 �= 0 and σ3 > 0 iff λ3 �= 0. Moreover, assume the valid-
ity of Assumption A3 if λ3 �= 0. Let ρ ∈ C([0, T], P(Rd ×R

d)) weakly solve the Fokker-Planck equation
(1.6) in the sense of Definition 2.1 with initial condition ρ0 ∈P(Rd ×R

d) and for t ∈ [0, T]. Then, for
all t ∈ [0, T] we have

ρY ,t(B
∞
r (x∗)) ≥

(∫∫
φr(x, y) dρ0(x, y)

)
exp (−pt) (3.11)

with

p := d
3∑

i=1

ωi

((
1+1i∈{1,3}

) (2λiCϒ

√
c

(1−c)2 r
2

+ σ 2
i C2

ϒ

(1−c)4
(

r
2

)2 + 4λ2
i

c̃σ 2
i

)
+1i=2

σ 2
2 c

(1−c)4

)
, (3.12)

where, for any B < ∞ with supt∈[0,T]

∥∥yα(ρY ,t) − x∗∥∥
2
≤ B, Cϒ = Cϒ (r, B, d, C∇E) is as defined in

(3.20). Moreover, ωi = 1λi>0 for i ∈ {1, 2, 3} and c ∈ (1/2, 1) can be any constant that satisfies
(1 − c)2 ≤ (2c − 1)c.

Remark 3.9. In order to ensure a finite decay rate p < ∞ in Proposition 3.8, it is crucial to have non-
vanishing diffusions σ1 > 0, σ2 > 0 if λ2 �= 0 and σ3 > 0 if λ3 �= 0. As apparent from the formulation of
the statement as well as the proof below, σ2 or σ3 may be 0 if the corresponding drift parameter, λ2 or
λ3, respectively, vanishes.

Proof of Proposition 3.8. By the definition of the marginal ρY and the properties of the mollifier φr

defined in Lemma 3.7, we have

ρY ,t(B
∞
r (x∗)) = ρt

(
R

d × B∞
r (x∗)

)≥ ρt(�r) ≥
∫∫

φr(x, y) dρt(x, y).

Our strategy is to derive a lower bound for the right-hand side of this inequality. Using the weak solution
property of ρ as in Definition 2.1 and the fact that φr ∈ C∞

c (Rd ×R
d), we obtain

d

dt

∫∫
φr(x, y) dρt(x, y) =

d∑
k=1

∫∫
Ts

k(x, y) dρt(x, y)

+
d∑

k=1

∫∫ (
Tc

1k(x, y)+Tc
2k(x, y)+T�

1k(x, y)+T�

2k(x, y)+Tg
1k(x, y)+Tg

2k(x, y)
)

dρt(x, y), (3.13)

where Ts
k(x, y) := −κSβ,θ (x, y) (y − x)k ∂ykφr(x, y) and

Tc
1k(x, y):= −λ1

(
x−yα(ρY ,t)

)
k
∂xkφr(x, y), Tc

2k(x, y):= σ 2
1

2

(
x−yα(ρY ,t)

)2
k
∂2

xkxk
φr(x, y),

T�

1k(x, y):= −λ2 (x−y)k ∂xkφr(x, y), T�

2k(x, y):= σ 2
2

2
(x−y)2

k ∂2
xkxk

φr(x, y),

Tg
1k(x, y):= −λ3∂xkE(x)∂xkφr(x, y), Tg

2k(x, y):= σ 2
3

2

(
∂xkE(x)

)2
∂2

xkxk
φr(x, y)

for k ∈ {1, . . . , d}. Since the mollifier φr and its derivatives vanish outside of �r, we restrict our attention
to �r and aim for showing for all k ∈ {1, . . . , d} that
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• Ts
k(x, y) ≥ 0,

• Tc
1k(x, y) + Tc

2k(x, y) ≥ −pcφr(x, y),
• T�

1k(x, y) + T�
2k(x, y) ≥ −p�φr(x, y),

• Tg
1k(x, y) + Tg

2k(x, y) ≥ −pgφr(x, y)

pointwise for all (x, y) ∈ �r with suitable constants 0 ≤ p�, pc, pg < ∞.
Term Ts

k: Using the expression for ∂ykφr from Lemma 3.7 and the fact that Sβ,θ ≥ θ/2 ≥ 0, it is easy to
see that

Ts
k(x, y) = r2κ

2
Sβ,θ (x, y)

(y − x)2
k((

r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ 0. (3.14)

Terms Tc
1k + Tc

2k, T�
1k + T�

2k and Tg
1k + Tg

2k: We first note that the third inequality from above holds with
p� = 0 if λ2 = σ2 = 0 and the fourth with pg = 0 if λ3 = σ3 = 0.

Therefore, in what follows we assume that λ2, σ2, λ3, σ3 > 0. In order to lower bound the three terms
from above, we arrange the summands by using the abbreviations introduced in (3.10) as follows. For
Tc

1k + Tc
2k, we have

Tc
1k(x, y) + Tc

2k(x, y)

= −λ1

(
x − yα(ρY ,t)

)
k
δ∗

xk
φr(x, y) + σ 2

1

2

(
x − yα(ρY ,t)

)2
k
δ2,∗

xkxk
φr(x, y) (3.15a)

− λ1

(
x − yα(ρY ,t)

)
k
δY

xk
φr(x, y) + σ 2

1

2

(
x − yα(ρY ,t)

)2
k
δ2,Y

xkxk
φr(x, y), (3.15b)

for T�
1k + T�

2k we have

T�

1k(x, y) + T�

2k(x, y)

= −λ2 (x − y)k δ∗
xk
φr(x, y) + σ 2

2

2
(x − y)2

k δ2,∗
xkxk

φr(x, y) (3.16a)

− λ2 (x − y)k δY
xk
φr(x, y) + σ 2

2

2
(x − y)2

k δ2,Y
xkxk

φr(x, y) (3.16b)

and for Tg
1k + Tg

2k we have

Tg
1k(x, y) + Tg

2k(x, y)

= −λ3∂xkE(x)δ∗
xk
φr(x, y) + σ 2

3

2
(∂xkE(x))2δ2,∗

xkxk
φr(x, y) (3.17a)

− λ3∂xkE(x)δY
xk
φr(x, y) + σ 2

3

2
(∂xkE(x))2δ2,Y

xkxk
φr(x, y). (3.17b)

We now treat each of the two-part sums in (3.15a), (3.15b), (3.16a), (3.16b), (3.17a) and (3.17b) sepa-
rately by employing a technique similar to the one used in the proof of [29, Proposition 2], which was
developed originally to prove [28, Proposition 20].
Terms (3.15a), (3.16a) and (3.17a): Owed to their similar structure (in particular with respect to the
denominator of the derivatives δ∗

xk
φr and δ2,∗

xkxk
φr), we can treat the three sums (3.15a), (3.16a) and (3.17a)

simultaneously. Therefore, we consider the general formulation

−λϒk(x, y)δ∗
xk
φr(x, y) + σ 2

2
ϒ 2

k (x, y)δ2,∗
xkxk

φr(x, y) =: T∗
1k(x, y) + T∗

2k(x, y), (3.18)

which matches (3.15a) when ϒk(x, y) = (x − yα(ρY ,t))k, λ = λ1 and σ = σ1, (3.16a) when ϒk(x, y) = (x −
y)k, λ = λ2 and σ = σ2, and (3.17a) when ϒk(x, y) = ∂xkE(x), λ = λ3 and σ = σ3.

To achieve the desired lower bound over �r, we introduce the subsets

K∗
1k :=

{
(x, y) ∈R

d ×R
d : |(x − x∗)k| >

√
c

2
r

}
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and

K∗
2k :=

{
(x, y) ∈R

d ×R
d : − λϒk(x, y) (x − x∗)k

(( r

2

)2 − (x − x∗)2
k

)2

> c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k

}
,

where c̃ := 2c − 1 ∈ (0, 1). For fixed k, we now decompose �r according to

�r = ((K∗
1k)

c ∩ �r

)∪ (K∗
1k ∩ (K∗

2k)
c ∩ �r

)∪ (K∗
1k ∩ K∗

2k ∩ �r

)
.

In the following, we treat each of these three subsets separately.
Subset (K∗

1k)
c ∩ �r: We have |(x − x∗)k| ≤

√
c

2
r for each (x, y) ∈ (K∗

1k)
c, which can be used to independently

derive lower bounds for both summands in (3.18). For the first, we insert the expression for δ∗
xk
φr(x, y)

to get

T∗
1k(x, y) = r2

2
λϒk(x, y)

(x − x∗)k((
r
2

)2 − (x − x∗)2
k

)2 φr(x, y)

≥ − r2

2
λ

|ϒk(x, y)||(x − x∗)k|((
r
2

)2 − (x − x∗)2
k

)2 φr(x, y) ≥ − 2λCϒ

√
c

(1 − c)2 r
2

φr(x, y)

=: − p∗,ϒ
1 φr(x, y),

(3.19)

where, in the last inequality, we used that (x, y) ∈ �r, the definition of B and Assumption A3 to get the
bound

|ϒk(x, y)| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣(x − yα(ρY ,t))k

∣∣≤ r
2
+ B, if ϒk(x, y) = (x − yα(ρY ,t))k,

|(x − y)k| ≤ r
2
, if ϒk(x, y) = (x − y)k,∣∣∂xkE(x)

∣∣≤ ‖∇E(x)‖2 ≤ C∇E ‖x − x∗‖2

≤ C∇Ed ‖x − x∗‖∞ ≤ C∇Ed r
2

if ϒk(x, y) = ∂xkE(x).

≤ max
{ r

2
+ B, C∇Ed

r

2

}
=: Cϒ (r, B, d, C∇E). (3.20)

For the second summand, we insert the expression for δ2,∗
xkxk

φr(x, y) to obtain

T∗
2k(x, y) = σ 2

2
ϒ 2

k (x, y)δ2,∗
xkxk

φr(x, y)

= σ 2
( r

2

)2

ϒ 2
k (x, y)

2
(

2 (x−x∗)2
k−
(

r
2

)2)
(x−x∗)2

k−
((

r
2

)2−(x−x∗)2
k

)2

((
r
2

)2 − (x−x∗)2
k

)4 φr(x, y)

≥ − σ 2C2
ϒ

(1 − c)4
(

r
2

)2 φr(x, y) =: − p∗,ϒ
2 φr(x, y),

(3.21)

where the last inequality uses ϒ2
k (x, y) ≤ C2

ϒ
.

Subset K∗
1k ∩ (K∗

2k)
c ∩ �r: As (x, y) ∈ K∗

1k, we have |(x − x∗)k| >
√

c
2

r. We observe that the sum in (3.18)
is nonnegative for all (x, y) in this subset whenever(

−λϒk(x, y) (x − x∗)k + σ 2

2
ϒ 2

k (x, y)

)(( r

2

)2 − (x − x∗)2
k

)2

≤ σ 2ϒ 2
k (x, y)

(
2 (x − x∗)2

k −
( r

2

)2
)

(x − x∗)2
k .

(3.22)
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The first term on the left-hand side in (3.22) can be bounded from above by exploiting that v ∈ (K∗
2k)

c

and by using the relation c̃ = 2c − 1. More precisely, we have

− λϒk(x, y) (x − x∗)k

(( r

2

)2 − (x − x∗)2
k

)2

≤ c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k

= (2c−1)
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k ≤
(

2 (x − x∗)2
k −
( r

2

)2
)

σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k ,

where the last inequality follows since v ∈ K∗
1k. For the second term on the left-hand side in (3.22), we

can use (1 − c)2 ≤ (2c − 1)c as per assumption, to get

σ 2

2
ϒ 2

k (x, y)

(( r

2

)2 − (x − x∗)2
k

)2

≤ σ 2

2
ϒ 2

k (x, y)(1 − c)2
( r

2

)4

≤ σ 2

2
ϒ 2

k (x, y)(2c − 1)
( r

2

)2

c
( r

2

)2 ≤ σ 2

2
ϒ 2

k (x, y)

(
2 (x − x∗)2

k −
( r

2

)2
)

(x − x∗)2
k .

Hence, (3.22) holds and we have that (3.18) is uniformly nonnegative on this subset.
Subset K∗

1k ∩ K∗
2k ∩ �r: As (x, y) ∈ K∗

1k, we have |(x − x∗)k| >
√

c
2

r. To start with we note that the first
summand of (3.18) vanishes whenever σ 2ϒ 2

k (x, y) = 0, provided σ > 0, so nothing needs to be done if
ϒk(x, y) = 0. Otherwise, if σ 2ϒ 2

k (x, y) > 0, we exploit (x, y) ∈ K∗
2k to get

ϒk(x, y) (x − x∗)k((
r
2

)2 − (x − x∗)2
k

)2 ≥ − |ϒk(x, y)| |(x − x∗)k|((
r
2

)2 − (x − x∗)2
k

)2

>
2λϒk(x, y) (x − x∗)k

c̃
(

r
2

)2
σ 2 |ϒk(x, y)| |(x − x∗)k|

≥ − 8λ

c̃r2σ 2
.

Using this, the first summand of (3.18) can be bounded from below by

T∗
1k(x, y) = λ

r2

2

ϒk(x, y) (x − x∗)k((
r
2

)2 − (x − x∗)2
k

)2 φr(x, y) ≥ − 4λ2

c̃σ 2
φr(x, y) =: − p∗,ϒ

3 φr(x, y). (3.23)

For the second summand, the nonnegativity of σ 2ϒ 2
k (x, y) implies the nonnegativity, whenever

2

(
2 (x − x∗)2

k −
( r

2

)2
)

(x − x∗)2
k ≥
(( r

2

)2 − (x − x∗)2
k

)2

.

This holds for v ∈ K∗
1k, if 2(2c − 1)c ≥ (1 − c)2 as implied by the assumption.

Term (3.16b): Recall that this term has the structure

−λ2 (x − y)k δY
xk
φr(x, y) + σ 2

2

2
(x − y)2

k δ2,Y
xkxk

φr(x, y) =: TY ,1
1k (x, y) + TY ,1

2k (x, y). (3.24)

We first note that the first summand of (3.24) is always nonnegative since

TY ,1
1k (x, y) = λ2

r2

2

(x − y)2
k((

r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ 0. (3.25)

For the second summand of (3.24), a direct computation shows

TY ,1
2k (x, y) = σ 2

2

( r

2

)2

(x − y)2
k

3 (x − y)4
k − ( r

2

)4((
r
2

)2 − (x − y)2
k

)4 φr(x, y),

which is nonnegative on the set

KY
k :=

{
(x, y) ∈R

d ×R
d :
∣∣(x − y)k

∣∣> √
c

2
r

}
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for any c ≥ 1/
√

3, as ensured by (1 − c)2 ≤ (2c − 1)c. On the complement (KY
k )c, we have

∣∣(x − y)k

∣∣≤√
c

2
r, which can be used to bound

TY ,1
2k (x, y) = σ 2

2

( r

2

)2

(x−y)2
k

3 (x−y)4
k−
(

r
2

)4((
r
2

)2−(x−y)2
k

)4 φr(x, y)

≥ − σ 2
2 c

(1−c)4 φr(x, y) =: − pY ,ϒ�φr(x, y).

(3.26)

Terms (3.15b) and (3.17b): The final two terms to be controlled have again a similar structure of the
form

−λϒk(x, y)δY
xk
φr(x, y) + σ 2

2
ϒ 2

k (x, y)δ2,Y
xkxk

φr(x, y) =: TY ,2
1k (x, y) + TY ,2

2k (x, y), (3.27)

where we recycle the notation introduced after (3.18), i.e., ϒk(x, y) = (x − yα(ρY ,t))k, λ = λ1 and σ = σ1

in the case of (3.15b) and ϒk(x, y) = ∂xkE(x), λ = λ3 and σ = σ3 in the case of (3.17b).
The procedure for deriving lower bounds is similar to the one at the beginning with the exception

that the denominator of the derivatives δY
xk
φr and δ2,Y

xkxk
φr requires to introduce an adapted decomposition

of �r. To be more specific, we define the subsets

KY
1k :=

{
(x, y) ∈R

d ×R
d :
∣∣(x − y)k

∣∣> √
c

2
r

}
and

KY
2k :=

{
(x, y) ∈R

d ×R
d : − λϒk(x, y) (x − y)k

(( r

2

)2 − (x − y)2
k

)2

> c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − y)2
k

}
,

where c̃ := 2c − 1 ∈ (0, 1). For fixed k, we now decompose �r according to
�r = ((KY

1k)
c ∩ �r

)∪ (KY
1k ∩ (KY

2k)
c ∩ �r

)∪ (KY
1k ∩ KY

2k ∩ �r

)
.

In the following, we treat again each of these three subsets separately.
Subset (KY

1k)
c ∩ �r: We have

∣∣(x − y)k

∣∣≤ √
c

2
r for each (x, y) ∈ (KY

1k)
c, which can be used to independently

derive lower bounds for both summands in (3.27). For the first summand, we insert the expression for
δY

xk
φr(x, y) to get

TY ,2
1k (x, y) = r2

2
λϒk(x, y)

(x − y)k((
r
2

)2 − (x − y)2
k

)2 φr(x, y)

≥ − r2

2
λ

|ϒk(x, y)|∣∣(x − y)k

∣∣((
r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ − 2λCϒ

√
c

(1 − c)2 r
2

φr(x, y)

=: − pY ,ϒ
1 φr(x, y),

(3.28)

where we recall from above that ϒk(x, y) ≤ Cϒ , which was used in the last inequality. For the second
summand, we insert the expression for δ2,Y

xkxk
φr(x, y) to obtain

TY ,2
2k (x, y) = σ 2

( r

2

)2

ϒ 2
k (x, y)

2
(

2 (x−y)2
k−
(

r
2

)2)
(x−y)2

k−
((

r
2

)2−(x−y)2
k

)2

((
r
2

)2−(x−y)2
k

)4 φr(x, y)

≥ − σ 2C2
ϒ

(1 − c)4
(

r
2

)2 φr(x, y) =: − pY ,ϒ
2 φr(x, y),

(3.29)

where the last inequality uses ϒ2
k (x, y) ≤ C2

ϒ
.

https://doi.org/10.1017/S0956792523000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000293


504 K. Riedl

Subset KY
1k ∩ (KY

2k)
c ∩ �r: As (x, y) ∈ KY

1k, we have
∣∣(x − y)k

∣∣> √
c

2
r. We observe that the sum in (3.27) is

nonnegative for all (x, y) in this subset whenever(
−λϒk(x, y) (x − y)k + σ 2

2
ϒ 2

k (x, y)

)(( r

2

)2 − (x − y)2
k

)2

≤ σ 2ϒ 2
k (x, y)

(
2 (x − y)2

k −
( r

2

)2
)

(x − y)2
k .

(3.30)

The first term on the left-hand side in (3.30) can be bounded from above exploiting that v ∈ (KY
2k)

c and
by using the relation c̃ = 2c − 1. More precisely, we have

− λϒk(x, y) (x − y)k

(( r

2

)2 − (x − y)2
k

)2

≤ c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − y)2
k

= (2c − 1)
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − y)2
k ≤
(

2 (x − y)2
k −
( r

2

)2
)

σ 2

2
ϒ 2

k (x, y) (x − y)2
k ,

where the last inequality follows since v ∈ KY
1k. For the second term on the left-hand side in (3.30), we

can use (1 − c)2 ≤ (2c − 1)c as per assumption, to get

σ 2

2
ϒ 2

k (x, y)

(( r

2

)2 − (x − y)2
k

)2

≤ σ 2

2
ϒ 2

k (x, y)(1 − c)2
( r

2

)4

≤ σ 2

2
ϒ 2

k (x, y)(2c − 1)
( r

2

)2

c
( r

2

)2 ≤ σ 2

2
ϒ 2

k (x, y)

(
2 (x − y)2

k −
( r

2

)2
)

(x − y)2
k .

Hence, (3.30) holds and we have that (3.27) is uniformly nonnegative on this subset.
Subset KY

1k ∩ KY
2k ∩ �r: As (x, y) ∈ KY

1k, we have
∣∣(x − y)k

∣∣> √
c

2
r. To start with we note that the first

summand of (3.27) vanishes whenever σ 2ϒ 2
k (x, y) = 0, provided σ > 0, so nothing needs to be done

if ϒk(x, y) = 0. Otherwise, if σ 2ϒ 2
k (x, y) > 0, we exploit (x, y) ∈ KY

2k to get

ϒk(x, y) (x − y)k((
r
2

)2 − (x − y)2
k

)2 ≥ − |ϒk(x, y)| ∣∣(x − y)k

∣∣((
r
2

)2 − (x − y)2
k

)2

>
2λϒk(x, y) (x − y)k

c̃
(

r
2

)2
σ 2 |ϒk(x, y)| ∣∣(x − y)k

∣∣ ≥ − 8λ

c̃r2σ 2
.

Using this, the first summand of (3.27) can be bounded from below by

TY ,2
1k (x, y) = λ

r2

2

ϒk(x, y) (x − y)k((
r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ − 4λ2

c̃σ 2
φr(x, y) =: − pY ,ϒ

3 φr(x, y). (3.31)

For the second summand, the nonnegativity of σ 2ϒ 2
k (x, y) implies the nonnegativity, whenever

2

(
2 (x − y)2

k −
( r

2

)2
)

(x − y)2
k ≥
(( r

2

)2 − (x − y)2
k

)2

.

This holds for v ∈ KY
1k, if 2(2c − 1)c ≥ (1 − c)2 as implied by the assumption.

Concluding the proof: Combining the formerly established lower bounds (3.19), (3.21), (3.23), (3.25),
(3.26), (3.28), (3.29) and (3.31), we obtain for the constants pc, p� and pg defined at the beginning of the
proof
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pc = p∗,ϒc
1 + p∗,ϒc

2 + p∗,ϒc
3 + pY ,ϒc

1 + pY ,ϒc
2 + pY ,ϒc

3 = 2

(
2λ1Cϒ

√
c

(1 − c)2 r
2

+ σ 2
1 C2

ϒ

(1 − c)4
(

r
2

)2 + 4λ2
1

c̃σ 2
1

)

p� = p∗,ϒ�

1 + p∗,ϒ�

2 + p∗,ϒ�

3 + pY ,ϒ� = 2λ2Cϒ

√
c

(1 − c)2 r
2

+ σ 2
2 C2

ϒ

(1 − c)4
(

r
2

)2 + 4λ2
2

c̃σ 2
2

+ σ 2
2 c

(1 − c)4

pg = p
∗,ϒg

1 + p
∗,ϒg

2 + p
∗,ϒg

3 + p
Y ,ϒg

1 + p
Y ,ϒg

2 + p
Y ,ϒg

3 = 2

(
2λ3Cϒ

√
c

(1 − c)2 r
2

+ σ 2
3 C2

ϒ

(1 − c)4
(

r
2

)2 + 4λ2
3

c̃σ 2
3

)
.

(3.32)

Together with (3.14) and by using the evolution of φr as in (3.13), we eventually obtain
d

dt

∫∫
φr dρt ≥ −d

(
pc + p� + pg

) ∫ ∫
φr dρt

≥ −d
3∑

i=1

ωi

((
1+1i �=2

)(2λiCϒ

√
c

(1−c)2 r
2

+ σ 2
i C2

ϒ

(1−c)4
(

r
2

)2 + 4λ2
i

c̃σ 2
i

)
+1i=2

σ 2
2 c

(1−c)4

)∫∫
φr dρt

= −q
∫∫

φr dρt,

where q is defined implicitly and where ωi = 1λi>0 for i ∈ {1, 2, 3}. Notice that ω1 = 1 since λ1 > 0 by
assumption. An application of Grönwall’s inequality concludes the proof.

3.4. Proof of Theorem 2.5

We now have all necessary tools at hand to prove the global mean-field law convergence result for
CBO with memory effects and gradient information by rigorously combining the formerly discussed
statements.

Proof of Theorem 2.5. If V(ρ0) = 0, there is nothing to be shown since in this case ρ0 = δ(x∗ ,x∗). Thus,
let V(ρ0) > 0 in what follows.

Let us first choose the parameter α such that

α > α0 := 1

qε

(
log

(
2d+2

√
d

c (ϑ , χ1, λ1, σ1)

)
+ max

{
1

2
,

p

(1 − ϑ)χ1

}
log

(V(ρ0)

ε

)
− log ρ0

(
�rε/2

))
,

(3.33)

where we introduce the definitions

c (ϑ , χ1, λ1, σ1) := min

{
ϑ

2

χ1

2
√

2
(
λ1 + σ 2

1

) ,√ϑ

2

χ1

σ 2
1

}
(3.34)

as well as

qε := 1

2
min

{ (
η

c (ϑ , χ1, λ1, σ1)
√

ε

2
√

d

)1/ν

, E∞

}
and rε := max

s∈[0,R0]

{
max

v∈B∞
s (x∗)

E(v) ≤ qε

}
. (3.35)

Moreover, p is as given in (3.12) in Proposition 3.8 with B = c (ϑ , χ1, λ1, σ1)
√
V(ρ0) in Cϒ and with

r = rε. By construction, qε > 0 and rε ≤ R0. Furthermore, recalling the notation Er = supv∈B∞
r (x∗) E(v)

from Proposition 3.6, we have qε + Erε ≤ 2qε ≤ E∞ according to the definition of rε. Since qε > 0, the
continuity of E ensures that there exists sqε

> 0 such that E(v) ≤ qε for all v ∈ B∞
sqε

(x∗), yielding also
rε > 0.

Let us now define the time horizon Tα ≥ 0 by

Tα := sup
{
t ≥ 0:V(ρt

′ ) > ε and
∥∥yα(ρY ,t

′ ) − x∗∥∥
2
< C(t′) for all t′ ∈ [0, t]

}
(3.36)

with C(t) := c (ϑ , χ1, λ1, σ1)
√
V(ρt). Notice for later use that C(0) = B.
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Our aim now is to show that V(ρTα
) = ε with Tα ∈ [ (1−ϑ)χ1

(1+ϑ/2)χ2
T∗, T∗] and that we have at least

exponential decay of V(ρt) until time Tα, i.e., until the accuracy ε is reached.
First, however, we verify that Tα > 0, which is due to the continuity of t �→ V(ρt) and t �→∥∥yα(ρY ,t) − x∗∥∥

2
since V(ρ0) > ε and

∥∥yα(ρY ,0) − x∗∥∥
2
< C(0) at time 0. While the former is a conse-

quence of the assumption, the latter follows from Proposition 3.6 with qε and rε as defined in (3.35),
which allows to show that∥∥yα(ρY ,0) − x∗∥∥

2
≤

√
d
(
qε+Erε

)ν
η

+
√

d exp (−αqε)

ρY ,0

(
B∞

rε
(x∗)
) ∫ ‖y − x∗‖2 dρY ,0(y)

≤
√

d
(
qε+Erε

)ν
η

+
√

d exp (−αqε)

ρY ,0

(
B∞

rε
(x∗)
) ∫ ∫ ‖y − x‖2+‖x − x∗‖2 dρ0(x, y)

≤ c (ϑ , χ1, λ1, σ1)
√

ε

2
+2

√
d exp (−αqε)

ρY ,0

(
B∞

rε
(x∗)
) √V(ρ0)

≤ c (ϑ , χ1, λ1, σ1)
√

ε < c (ϑ , χ1, λ1, σ1)
√
V(ρ0) = C(0).

The first inequality in the last line holds by the choice of α in (3.33) and by noticing that �rε/2 ⊂R
d ×

B∞
rε

(x∗) and thus ρ0(�rε/2) ≤ ρY ,0

(
B∞

rε
(x∗)
)
.

Next, we show that the functional V(ρt) is sandwiched between two exponentially decaying functions
with rates (1 − ϑ)χ1 and (1 + ϑ/2)χ2, respectively. More precisely, we prove that, up to time Tα, V(ρt)
decays

(i) at least exponentially fast (with rate (1 − ϑ)χ1), and
(ii) at most exponentially fast (with rate (1 + ϑ/2)χ2).

To obtain (i), recall that Corollary 3.3 provides an upper bound on the time derivative of V(ρt) given
by

d

dt
V(ρt) ≤ −χ1V(ρt) + 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

∥∥yα(ρY ,t) − x∗∥∥2

2
(3.37)

with χ1 as in (2.12a) being strictly positive by assumption. By combining (3.37) and the definition of
Tα in (3.36), we have by construction

d

dt
V(ρt) ≤ −(1 − ϑ)χ1V(ρt) for all t ∈ (0, Tα).

Analogously, for (ii), by Corollary 3.5, we obtain a lower bound on the time derivative of V(ρt) given
by

d

dt
V(ρt) ≥ −χ2V(ρt) − 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2

≥ −(1 + ϑ/2)χ2V(ρt) for all t ∈ (0, Tα),
(3.38)

where the second inequality again exploits the definition of Tα. Grönwall’s inequality now implies for
all t ∈ [0, Tα] the upper and lower estimates

V(ρt) ≤ V(ρ0) exp (−(1 − ϑ)χ1t) , (3.39a)
V(ρt) ≥ V(ρ0) exp (−(1 + ϑ/2)χ2t) , (3.39b)

thereby proving (i) and (ii). The definition of Tα together with the one of C(t) permits to control

max
t∈[0,Tα ]

∥∥yα(ρY ,t) − x∗∥∥
2
≤ max

t∈[0,Tα ]
C(t) ≤ C(0). (3.40)

To conclude, it remains to prove V(ρTα
) = ε with Tα ∈ [ (1−ϑ)χ1

(1+ϑ/2)χ2
T∗, T∗]. To this end, we consider the

following three cases separately.
Case Tα ≥ T∗: If Tα ≥ T∗, the time-evolution bound of V(ρt) from (3.39a) combined with the definition
of T∗ in (2.13) allows to immediately infer V(ρT∗ ) ≤ ε. Therefore, with V(ρt) being continuous, V(ρTα

) =
ε and Tα = T∗ according to the definition of Tα in (3.36).
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Case Tα < T∗ and V(ρTα
) ≤ ε: By continuity of V(ρt), it holds for Tα as defined in (3.36), V(ρTα

) = ε.
Thus, ε = V(ρTα

) ≥ V(ρ0) exp (−(1 + ϑ/2)χ2Tα) as a consequence of the time-evolution bound (3.39b).
The latter can be reordered as

(1 − ϑ)χ1

(1 + ϑ/2)χ2

T∗ = 1

(1 + ϑ/2)χ2

log

(V(ρ0)

ε

)
≤ Tα < T∗.

Case Tα < T∗ and V(ρTα
) > ε: We will prove that this case can actually not occur by showing that∥∥yα(ρY ,Tα

) − x∗∥∥
2
< C(Tα) for the α chosen in (3.33). In fact, if both V(ρTα

) > ε and
∥∥yα(ρY ,Tα

) − x∗∥∥
2
<

C(Tα) held true simultaneously, this would contradict the definition of Tα in (3.36). To obtain this
contradiction, we apply again Proposition 3.6 with qε and rε as before to get

∥∥yα(ρY ,Tα
) − x∗∥∥

2
≤

√
d
(
qε+Erε

)ν
η

+
√

d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)
) ∫ ‖y − x∗‖2 dρY ,Tα

(y)

≤
√

d
(
qε+Erε

)ν
η

+
√

d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)
) ∫ ∫ ‖y − x‖2+‖x − x∗‖2 dρTα

(x, y)

≤ c (ϑ , χ1, λ1, σ1)
√

ε

2
+2

√
d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)
) √V(ρTα

)

<
c (ϑ , χ1, λ1, σ1)

√
V(ρTα

)

2
+2

√
d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)
) √V(ρTα

). (3.41)

Since, thanks to (3.40), we have maxt∈[0,Tα ] ‖yα(ρY ,t) − x∗‖2 ≤ B for B = C(0), which in particular does
not depend on α, Proposition 3.8 guarantees the existence of p > 0 independent of α (but dependent on
B and rε) with

ρY ,Tα
(B∞

rε
(x∗)) ≥

(∫∫
φrε (x, y) dρ0(x, y)

)
exp (−pTα)

≥ 1

2d
ρ0

(
�rε/2

)
exp (−pT∗) > 0.

Here we use that (x∗, x∗) ∈ supp (ρ0) to bound the initial mass ρ0 and the fact that φr from Lemma 3.7 is
bounded from below on �r/2 by 1/2d. With this, we can continue the chain of inequalities in (3.41)3 to
obtain

∥∥yα(ρY ,Tα
) − x∗∥∥

2
<

c (ϑ , χ1, λ1, σ1)
√
V(ρTα

)

2
+ 2d+1

√
d exp (−αqε)

ρ0

(
�rε/2

)
exp (−pT∗)

√
V(ρTα

)

≤ c (ϑ , χ1, λ1, σ1)
√
V(ρTα

) = C(Tα),

with the first inequality in the last line holding due to the choice of α in (3.33). This gives the desired
contradiction, again thanks to the continuity of t �→ V(ρt) and t �→ ∥∥yα(ρY ,t) − x∗∥∥

2
.

4. Numerical experiments

In the first part of this section, we comment on how to efficiently implement a numerical scheme for
the CBO dynamics (1.1) which allows to integrate memory mechanisms without additional computa-
tional complexity. Afterwards, we numerically demonstrate the benefit of memory effects and gradient
information at the example of interesting real-world inspired applications.
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4.1. Implementational aspects

Discretising the interacting particle system (1.1) in time by means of the Euler-Maruyama method [37]
with prescribed time step size �t results in the implementable numerical scheme

Xi
k+1 = Xi

k − �tλ1

(
Xi

k − yα(ρ̂N
Y ,k)
)− �tλ2

(
Xi

k − Yi
k

)− �tλ3∇E(Xi
k)

+ σ1D
(
Xi

k − yα(ρ̂N
Y ,k)
)

B1,i
k + σ2D

(
Xi

k − Yi
k

)
B2,i

k + σ3D
(∇E(Xi

k)
)

B3,i
k ,

(4.1a)

Yi
k+1 = Yi

k + �tκ
(
Xi

k+1 − Yi
k

)
Sβ,θ
(
Xi

k+1, Yi
k

)
, (4.1b)

where ((Bm,i
k )k=0,...,K−1)i=1,...,N are independent, identically distributed Gaussian random vectors in R

d with
zero mean and covariance matrix �tId for m ∈ {1, 2, 3}.

We notice that, compared to standard CBO, see, e.g., [28, Equation (2)], the way the historical best
position is updated in (4.1b) (recall the definition of Sβ,θ from equation (1.4)) requires one additional
evaluation of the objective function per particle in each time step, which raises the computational com-
plexity of the numerical scheme substantially if computing E is costly and the dominating part. However,
for the parameter choices κ = 1/�t, θ = 0 and β = ∞, in place of (4.1b), we obtain the update rule

Yi
k+1 =

{
Xi

k+1, if E(Xi
k+1) < E(Yi

k),

Yi
k, else,

(4.2)

which is how one expects a memory mechanism to be implemented. This way allows to recycle in time
step k the computations made in the previous step and thus leads to no additional computational cost as
consequence of using memory effects. The memory consumption, on the other hand, is approximately
twice as high as in standard CBO.

4.2. A benchmark problem in optimisation: the Rastrigin function

Let us validate in this section the numerical observation made in Figure 2a in the introduction about the
benefit of memory effects. Namely, it has been observed in several prior works that a higher noise level
can enhance the success of CBO. To rule out that the improved performance for λ2 > 0 in Figure 2a
originates solely from the larger present noise as consequence of the additional noise term associated
with the memory drift, we replicate in Figure 3 the experiments with the exception of setting σ2 = 0.
The obtained results confirm that already the usage of memory effects together with a memory drift
improves the performance. However, we also notice that an additional noise term further increases the
success probability.

4.3. A machine learning example

As a first real-world inspired application, we now investigate the influence of memory mechanisms in a
high-dimensional benchmark problem in machine learning, which is well-understood in the literature,
namely the training of a shallow and a convolutional NN (CNN) classifier for the MNIST dataset of
handwritten digits [47].

The experimental setting is the one of [29, Section 4] with tested architectures as described in
Figure 4. While it is not our aim to challenge the state of the art at this task by employing very sophisti-
cated architectures, we demonstrate that CBO is on par with stochastic gradient descent without requiring
time-consuming hyperparameter tuning.

To train the learnable parameters θ of the NNs, we minimise the empirical risk E(θ ) =
1
M

∑M
j=1 �(fθ (xj), yj), where fθ denotes the forward pass of the NN and (xj, y j)M

j=1 the M training sam-
ples consisting of image and label. As loss � we choose the categorical crossentropy loss �(̂y, y) =
−∑9

k=0 yk log (̂yk) with ŷ = fθ (x) denoting the output of the NN for a sample (x, y).
Our implementation is the one of [29, Section 4], which includes concepts from [14] and [26, Section

2.2]. Firstly, mini-batching is employed when evaluating E and when computing the consensus point yα,
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Figure 3. Success probability of CBO without (left separate column) and with memory effects for dif-
ferent values of the parameter λ2 ∈ [0, 4] (right phase diagram) when optimising the Rastrigin function
in dimension d = 4 in the setting of Figure 2a with the exception of setting σ2 = 0. In this way we validate
that the presence of memory effects is responsible for the improved performance and not just a higher
noise level.

(b) CNN (LeNet-1), cf. [    , Section III.C.7], with two convolu-46
tional and two pooling layers, and one dense layer

(a) Shallow NN with
one dense layer

Figure 4. NN architectures used in the experiments of Section 4.3. Images are represented as 28 × 28
matrices with entries in [0, 1]. For the shallow NN in (a) the input is reshaped into a vector x ∈R

728 which
is then passed through a dense layer of the form ReLU(Wx + b) with trainable weights W ∈R

10×728 and
bias b ∈R

10. The learnable parameters of the CNN in (b) are the kernels and the final dense layer.
Both networks include a batch normalisation step after each ReLU activation function and a softmax
activation in the last layer in order to be able to interpret the output as a probability distribution over
the digits. We denote the trainable parameters of the NN by θ . The shallow NN has 7850 and the CNN
2112. (Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Applications of Evolutionary Computation, Convergence of Anisotropic Consensus-Based Optimization
in Mean-Field Law, M. Fornasier, T. Klock, K. Riedl, c© 2022.)

which means that E is evaluated on a random subset of size nE = 60 of the training dataset and yα is
computed from a random subset of size nN = 10 of all N = 100 particles. Secondly, a cooling strategy
for α and the noise parameters is used. More precisely, α is doubled each epoch, while σ1 and σ2 follow
the schedule σi,epoch = σi,0/ log2 (epoch + 2) for i = 1, 2.

In Figure 5, we report the testing accuracies and the training risks evaluated at the consensus point
based on a random sample of the training set of size 10,000 for both the shallow NN and the CNN
when trained with one of three algorithms: standard CBO without memory effects as obtained when
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(a) Testing accuracy and empirical risk plots
for the shallow NN and the CNN when
trained with CBO without memory effects
(lightest lines), with memory effects but with-
out memory drift (line with intermediate
opacity) and with memory effects and mem-
ory drift (darkest lines)

(b) Zooming into the testing accuracies
(right column) and the empirical risks (left
column) during the final 5 epochs (high-
lighted with green boxes in (a) ) fortheshal-
low NN (bottom row) and the CNN (top
row)

Figure 5. Comparison of the performances (testing accuracy and training loss) of a shallow NN (dashed
lines) and a CNN (solid lines) with architectures as described in Figure 4, when trained with CBO with-
out memory effects (lightest lines), with memory effects but without memory drift (line with intermediate
opacity) and with memory effects and memory drift (darkest lines). Depicted are the accuracies on a
test dataset (orange lines) and the values of the objective function E evaluated on a random sample of
the training set of size 10,000 (blue lines). We observe that memory effects slightly improve the final
accuracies while slowing down the training process initially.

discretising [29, Equation (1)], CBO with memory effects but without memory drift as in equation (4.1)
with λ2 = σ2 = 0, and CBO with memory effects and memory drift as in equation (4.1) with λ2 = 0.4 and
σ2 = λ2σ1. The remaining parameters are λ1 = 1, σ1,0 = √

0.4, αinitial = 50, β = ∞, θ = 0, κ = 1/�t, and
discrete time step size �t = 0.1. We train for 100 epochs and use N = 100 particles, which are initialised
according to N

(
(0, . . . , 0)T , Id

)
. All results are averaged over 5 training runs.

As concluded already in [29, Section 4], we obtain accuracies comparable to SGD, cf. [46, Figure 9].
Moreover, we see slightly improved results when exploiting memory effects. However, we also notice
that memory mechanisms slow down the training process initially.

4.4. A compressed sensing example

In the final numerical section of this paper, we showcase an application where gradient information turns
out to be indispensable for the success of CBO methods, namely an experiment in compressed sensing
[30], which has become a very active and profitable field of research since the seminal works [11, 22]
about two decades ago.

One of the most common problems encountered in engineering and technology is concerned with the
inference of information about an unknown signal x∗ ∈R

d from (linear) measurements b ∈R
m. While

classical linear algebra suggests that the number of measurements m must be at least as large as the
dimensionality d of the signal, in many applications measurements are costly, time-consuming or both,
making it desirable to reduce their number to the absolute minimum. Very often one aims at m � d,
since real-world signals usually live in high-dimensional spaces. In general, this would be an impossible
task. However, in typical practical scenarios additional information about the quantity of interest x∗ is
available, which indeed allows to reconstruct signals from few measurements b. An empirically observed
assumption about real-world signals is compressibility, meaning that they can be well-approximated by
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sparse vectors, i.e., vectors whose components are for the most part zero. Exploiting sparsity enables us
to solve the underdetermined system Ax∗ = b efficiently in both theory and practice. Compressed sensing
is concerned with the task of designing a measurement process A ∈R

m×d together with a reconstruction
algorithm capable of recovering the sparse solution x∗ from the set of solutions consistent with the
measurements. This can be formulated as the nonconvex combinatorial optimisation

min ‖x‖0 subject to Ax = b,

where ‖x‖0 is colloquially referred to as �0-‘norm’ and denotes the number of non-zero elements of x.
Solving �0-minimisation is however NP-hard in general, which lead researchers to consider the convex
relaxation

min ‖x‖1 subject to Ax = b. (4.3)

�1-minimisation is easy to solve by means of established methods from convex optimisation and provably
recovers the correct solution for a suitable measurement matrix A. The remaining question is about the
correct way of inferring information about the signal through measurements. Remarkably and responsi-
ble for the wide success of compressed sensing is that random matrices enjoy properties such as the null
space or restricted isometry property, which guarantee successful recovery, for m � s log (d/s), where s
denotes the sparsity of the signal x∗, i.e., s = ‖x∗‖0. Up to the logarithmic factor in the ambient dimen-
sion d, this is optimal, since in theory m = 2s measurements are necessary and sufficient to reconstruct
every s-sparse vector.

In the numerical experiments following, we resort to the regularised variant of the sparse recovery
problem

min E(x) with E(x) = 1

2
‖Ax − b‖2

2 + μ ‖x‖p
p (4.4)

for a suitable regularisation parameter μ > 0. For p = 1 we obtain the regularisation of (4.3), whereas
for p < 1 the optimisation (4.4) becomes nonconvex. Our results in Figures 2b and 6 show that CBO
with gradient information is capable of solving the convex but also the nonconvex optimisation problem
(4.4) with p = 1/2 with already very few measurements. As parameters of the CBO algorithm, which is
obtained as a Euler-Maruyama discretisation of equation (1.1), we choose in both cases the time horizon
T = 20, time step size �t = 0.01, α = 100, β = ∞, θ = 0, κ = 1/�t, λ1 = 1, λ2 = 0 and σ1 = σ2 = σ3 =
0. We use either N = 10 or N = 100 particles, which is specified in the respective caption. After running
the CBO algorithm, a post-processing step is performed, in which the support of the suspected sparse
vector is identified by checking which entries are not smaller than 0.01 before the final sparse solution
is then obtained by solving the linear system constrained to this support.

The depicted success probabilities are averaged over 100 runs of CBO. In Figure 2b, we solve the
sparse recovery problem in the convex setting for an 8-sparse 200-dimensional signal with p = 1 using
CBO without and with gradient information with merely 10 particles. We observe that gradient informa-
tion is indispensable to be able to identify the correct sparse solution and standard CBO would fail in such
task. In Figure 6, we conduct a slightly lower-dimensional experiment with a 2-sparse 50-dimensional
signal. Here our focus is to enter the nonconvex recovery regime by comparing the convex �1-regularised
with the nonconvex �1/2-regularised problem. We discover that in either case reconstruction is feasible
from already very few measurements. Increasing the number of optimising particles has almost no effect
for the convex optimisation problem, in the nonconvex setting recovery benefits from more particles.
Furthermore, the nonconvex problem demands a more moderate choice of the strength of the gradient.

5. Conclusions

In this paper, we investigate a variant of consensus-based optimisation (CBO) which incorporates mem-
ory effects and gradient information. By developing further and generalising the proof technique devised
in [28, 29], we establish the global convergence of the underlying dynamics to the global minimiser x∗ of
the objective function E in mean-field law. To this end, we analyse the time-evolution of the Wasserstein
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(a) Convex sparse recovery using CBO with-
out and with gradients with N = 10 particles
to solve (4.4) with p = 1 from m measure-
ments

(b) Convex sparse recovery using CBO with-
out and with gradients with N = 100 parti-
cles to solve (4.4) with p = 1 from m mea-
surements

(c) Nonconvex sparse recovery using CBO
without and with gradients with N = 10
particles to solve (4.4) with p = 0.5 from m
measurements

(d) Nonconvex sparse recovery using CBO
without and with gradients with N = 100 
particles to solve (4.4) with p = 0.5 from m
measurements

Figure 6. Comparison between the success probabilities of CBO without (left separate columns)
and with gradient information for different values of the parameter λ3 ∈ [0, 4] (right phase diagrams)
with N = 10 ((a) and (c)) or N = 100 particles ((b) and (d)) when solving the convex or nonconvex
�p-regularised least squares problem (4.4) with p = 1 and μ = ((a) and (b)) or p = 0.5 and μ = ((c)
and (d)), respectively. On the vertical axis we depict the number of measurements m, from which we
try to recover the 2-sparse and 50-dimensional sparse signal. As further parameters we choose the time
horizon T = 20, discrete time step size �t = 0.01, α = 100, β = ∞, θ = 0, κ = 1/�t, λ1 = 1, λ2 = 0 and
σ1 = σ2 = σ3 = 0. We discover that in both the convex and nonconvex setting reconstruction is feasible
from already very few measurements. While increasing the number of optimising particles has almost
no effect for the convex optimisation problem, in the nonconvex setting recovery benefits from more par-
ticles. Note that the separate columns and the left most column of the phase diagrams coincide, and are
only depicted in this way to highlight that we compare also CBO.

distance between the law of the mean-field CBO dynamics and a Dirac delta at the minimiser and show
its exponential decay in time. Our result holds under minimal assumptions about the initial measure ρ0

and for a vast class of objective functions. The numerical benefit of such additional terms, specifically
the employed memory effects and gradient information, is demonstrated at the example of a benchmark
function in optimisation as well as at real-world applications such as compressed sensing and the training
of neural networks for image classification.
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By these means, we demonstrate the versatility, flexibility and customisability of the class of CBO
methods, both with respect to potential application areas in practice and modifications to the underlying
optimisation principles, while still being amenable to theoretical analysis.
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