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Abstract
Accurate assessment of adverse event (AE) incidence is critical in clinical research for drug safety. While
meta-analysis serves as an essential tool to comprehensively synthesize the evidence across multiple studies,
incomplete AE reporting in clinical trials remains a persistent challenge. In particular, AEs occurring below study-
specific reporting thresholds are often omitted from publications, leading to left-censored data. Failure to account
for these censored AE counts can result in biased AE incidence estimates. We present an R Shiny application
that implements a Bayesian meta-analysis model specifically designed to incorporate censored AE data into the
estimation process. This interactive tool provides a user-friendly interface for researchers to conduct AE meta-
analyses and estimate the AE incidence probability using an unbiased approach. It also enables direct comparisons
between models that either incorporate or ignore censoring, highlighting the biases introduced by conventional
approaches. This tutorial demonstrates the Shiny application’s functionality through an illustrative example on
meta-analysis of PD-1/PD-L1 inhibitor safety and highlights the importance of this tool in improving AE risk
assessment. Ultimately, the new Shiny app facilitates more accurate and transparent drug safety evaluations. The
Shiny-MAGEC app is available at: https://zihanzhou98.shinyapps.io/Shiny-MAGEC/.

Highlights

• What is already known?
– Meta-analysis is a critical tool to synthesize clinical safety data and evaluate the harms of new

interventions.
– Adverse event (AE) data in clinical trials are often incompletely reported, particularly for rare events.
– Conventional approaches, such as complete-case analysis, can lead to biased estimates of AE incidence

by ignoring or mishandling missing data.

• What is new?
– We present Shiny-MAGEC, an R Shiny application that implements a Bayesian meta-analysis model

designed for censored AE data.
– This interactive, user-friendly app enables automated input of study-level data with reporting cutoffs,

facilitates bias-corrected safety meta-analyses, and compares results with conventional methods without
bias correction.
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• Potential impact for RSM readers
– To our knowledge, Shiny-MAGEC is the first software designed for the meta-analysis of drug safety AE

data.
– By addressing the limitations of conventional AE reporting, it improves transparency, accuracy, and

methodological rigor in safety evidence synthesis, supporting better-informed clinical and regulatory
decisions.

1. Introduction

Meta-analysis plays a crucial role in assessing drug safety (or equivalently, quantifying drug-related
harms).1,2 By synthesizing evidence from multiple studies, it enhances the precision of risk estimates
for adverse events (AEs), which is essential for a comprehensive understanding of a drug’s safety
profile. Since individual clinical studies are often underpowered for detecting rare harm signals, meta-
analysis serves as a valuable tool to combine data across studies, increase sample size, and improve
power, enabling a more robust evaluation of drug-related risks.3,4

However, a major challenge in safety meta-analysis is the incomplete reporting of AEs in cancer
clinical trials, which can lead to biased estimates if not properly addressed.5,6 While the NCI Common
Terminology Criteria for Adverse Events (CTCAE) v5.0 catalogs over 800 unique AEs,7 trial publica-
tions typically report only the most common or severe ones, while rare or less frequent events may be
omitted due to space constraints or study-specific reporting thresholds. For instance, when extracting
AE count data for grade 3 or higher pneumonitis for PD-1 and PD-L1 inhibitors, researchers may not
find explicit AE frequency reporting, but instead may see a footnote in the main text or supplementary
materials stating that AE counts were only included and reported if they exceeded a certain proportion
of the study sample size.8,9 In many oncology trials, AEs may only be listed if they occur in more than
5% of patients, resulting in left-censored AE data. Indeed, left-censoring is a common incomplete AE
reporting phenomenon, as demonstrated by discrepancies between published articles and unpublished
trial documents.10 Moreover, reporting cutoffs are sometimes defined separately for different severity
grades (e.g., a non-reporting threshold for all-grade AEs and a separate threshold for grade 3–5
AEs).11 This variability in reporting practices highlights the difficulty of harmonizing AE data in
meta-analysis.

Failure to account for left-censored AE data can markedly bias meta-analysis results. One naïve
approach is to treat an unreported AE as if it did not occur in that study, which effectively imputes
a zero count for missing categories. This approach allows the inclusion of all relevant studies in the
meta-analysis and is straightforward to implement. However, the assumption can be problematic since
the absence of an AE in a report doesn’t always mean it didn’t occur. If an AE was unreported only
because it fell below the reporting threshold, assuming it to be zero underestimates the true event rate
and can paint an overly safe picture of the drug.

Another common naïve approach is to omit data from studies for an AE outcome if that AE wasn’t
reported, equivalent to performing a complete-case analysis for data with missingness. Essentially, the
meta-analysis is run only on the subset of studies that provided data for that outcome. While this avoids
making false zero assumptions, it introduces its own bias. If unreported AEs are ignored in a meta-
analysis and only the studies with higher observed AE counts are included, the estimated incidence rates
will be skewed upward, since only studies with higher event occurrences contribute.12–14 Additionally,
complete-case analysis wastes the important partial information in those omitted studies where the
event count was rare enough to not be reported, and it reduces the overall sample size and power of the
meta-analysis.

Subsequently, both of these naïve strategies distort the true safety profile of treatments. If AEs
are under-estimated, patients might be unknowingly exposed to risks; conversely, overestimating
AEs could deter the use of an effective treatment, emphasizing the need for appropriate statistical
approaches tailored to handle censored AE data. Notably, standard methods for missing data in
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meta-analyses15–17 are not designed or suitable to address this specific form of missing-not-at-random
data arising from incomplete AE reporting.

To address this pervasive gap in the meta-analysis of safety data, a Bayesian meta-analytic model,
named MAGEC (meta-analysis of adverse drug effects with censored data), was developed.6 This
model correctly handles the censored AE data and provides exact inferences for a balanced, evidence-
based understanding of drug harms. Specifically, the censoring cutoff information is incorporated into
the likelihood function to enhance the estimation of AE incidence probabilities. Rather than imputing
missing counts externally, their work treats unreported AEs as latent variables; the Bayesian model then
elegantly integrates over the uncertainty of unreported AEs and draws inference on those hidden counts
as part of the Markov Chain Monte Carlo (MCMC) estimation while simultaneously accounting for
model between-study variability. As a result, this approach was shown to effectively produce unbiased
estimates of AE incidence.

In this work, we develop an R Shiny application that implements the Bayesian MAGEC model in a
user-friendly, interactive platform. This tool provides applied researchers and clinicians with a practical
means to conduct meta-analyses of AEs in the presence of incomplete reporting. With the app, users can
input aggregated AE data (including the information on reporting cutoffs) and obtain posterior estimates
of AE incidence under the Bayesian model. Additionally, the application allows result comparison
between models that account for censoring versus those that ignore it, thereby directly illustrating
the bias that can arise from naïve complete-case analysis. By packaging advanced methodology into
an accessible Shiny interface, our tool lowers the barrier to broader adoption of these statistical best
practices in routine safety evidence synthesis.

This article is organized as follows. Section 2 provides a brief overview of the Bayesian MAGEC
model.6 Section 3 presents the functionalities of the R Shiny application. Section 4 offers an illustrative
example using clinical trial data on PD-1/PD-L1 inhibitors to demonstrate the app in practice. Finally,
Section 5 concludes with a discussion of key takeaways, the potential impact of this tool on drug safety
evaluation, and future directions for research and practice.

2. A brief review of the Bayesian MAGEC model

To address the challenge of left-censored AE data in meta-analysis, a Bayesian MAGEC random-
effects meta-analytic model was developed to account for censored AE outcomes.6 It explicitly
accounts for censoring by incorporating study-specific reporting thresholds into the likelihood function,
enabling more accurate estimation of AE incidence rates while appropriately reflecting the uncertainty
introduced by missing data.

Let 𝑌𝑖 denote the count of AEs under a target severity interval (e.g., all-grade or grade 3 and above)
in study i, and 𝑁𝑖 represent the number of patients treated in that study. 𝑌𝑖 is assumed to follow a
binomial distribution:

𝑌𝑖 ∼ Binomial(𝑁𝑖 , 𝜃𝑖),

where 𝜃𝑖 represents the study-specific incidence probability. To account for left-censored AE data, the
full likelihood function integrates both completely observed and censored data:

L =
𝑂∏

𝑜=1
𝑓𝑌 (𝑦𝑜)

𝐿∏

𝑙=1
𝐹𝑌 (𝑐𝑙) =

𝑂∏

𝑜=1
𝑓𝑌 (𝑦𝑜)

𝐿∏

𝑙=1

𝑐𝑙∑

𝑘𝑙=0
𝑓𝑌 (𝑘𝑙),

where O represents the set of studies with fully-observed AE counts, and L represents the set of
studies where the AE count is left-censored below a study-specific cutoff 𝑐𝑙 . The censored probability
component, 𝐹𝑌 (𝑐𝑙), ensures that the analysis incorporates information about studies where AEs were
unreported due to cutoff-based omission rather than true absence.
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The incidence probability parameter 𝜃𝑖 can be modeled based on the link function 𝑔(·) that can
transform values in the probability space into the real-value space. In the Shiny application, a logit link
was used, such that

𝑔(𝜃𝑖) = logit(𝜃𝑖) = 𝜇 + 𝛼𝑖 + X𝑖𝜷,

where 𝜇 is the overall log-odds of AE incidence, 𝛼𝑖 are the study-specific random effects, X𝑖 is the
design matrix of study-level covariates in the ith study, and 𝜷 are the effect parameters corresponding
to the study-level factors. In the current version of the Shiny application, specifications of the
study-level covariates are not available. The 𝛼𝑖 parameters follow conditionally independent normal
distributions with mean 0 and variance 𝜏2, where 𝜏 quantifies the between-study heterogeneity of the
log odds. A noninformative normal prior distribution N(0, 𝑣2

0) is placed on the overall mean parameter
𝜇 (𝑣2

0 = 104 by default). A half-Cauchy prior distribution 𝐶+(0, 𝐴) is placed for the between-study
standard deviation (SD) parameter 𝜏. Such weakly-informative prior with its scale parameter A equal
to 2.5, 10, or 25 was generally recommended for the SD parameters in hierarchical models.18 The
estimation for posterior inference is implemented using Just Another Gibbs Sampling (JAGS),19 and
carried out using a data-augmentation strategy for censored data.11

This MAGEC model mitigates bias in incidence estimation while incorporating between-study
variability. The hierarchical Bayesian framework avoids relying on asymptotic normality for inference,
improves estimation stability through MCMC sampling,20 and enhances the reliability of drug safety
assessments. Simulation studies have demonstrated its robustness in small-sample scenarios and for
rare events.

3. The R shiny application: Shiny-MAGEC

We have developed an R Shiny application named Shiny-MAGEC that implements the Bayesian meta-
analysis model reviewed in Section 2. Users can upload their raw AE data collected from multiple
clinical studies to obtain meta-analytic estimates of the overall AE incidence probability and the
between-study heterogeneity.

In this section, we provide a walk-through of the application, outlining its main features and
functions. Users may refer to Section 4 for an illustrative example using a sample data excerpted from
the real data application2 and subsequently reanalyzed in a methodological study.6 The application
consists of an operation panel on the left and a result panel on the right. The right panel is organized into
two primary tabs: (1) “User Guide,” providing basic information about the software and showing an
overview of the uploaded dataset and (2) “Results,” displaying the analysis outputs. The accepted data
format, advanced settings tunable by users, and the result presentations supported by the application
are introduced below. The general layout and features are summarized in Figure 1.

3.1. Data preparation

To familiarize themselves with the accepted data format, users can download the sample dataset at the
operation panel for reference. The sample data, a subset of an AE meta-analysis dataset,2 is displayed in
Table 1. The input data should be provided as a CSV file with mandatory column names: “study,” “N,”
“Y,” and “cutoff.” The “study” column is a unique identifier for each study. We recommend using the
abbreviated names of different studies (i.e., character strings) to label the studies since these labels will
be used in presenting and plotting the study-specific results as shown in Section 3.2. The “N” column
is the sample size assigned to the treatment in each study, and the “Y” column (when not missing)
represents the observed AE count given the prespecified severity grade and category of interest. “Y”
should be coded as NA or left blank (preferred) when an AE count is unreported. The “cutoff” column
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Figure 1. An overview of the operation and result panels in Shiny-MAGEC.

Table 1. An example AE data subset2 including the grade 3–5 pneumonitis counts for patients treated
with Atezolizumab. “-” indicates unreported (left-censored) in the original publication. The left-
censored cutoffs are calculated specific to different studies. Given a cutoff of 0 (e.g., in 2018-Colevas-
Ann Oncol), the actual pneumonitis count, though unreported, was exactly 0.

Study source No. of treated patients (N) Cutoff Pneumonitis count (Y)

2014-Herbst-Nature 277 1 0
2016-Fehrenbacher-Lancet 142 14 1
2016-McDermott-J Clin Oncol 70 0 0
2016-Rosenberg-Lancet 310 0 2
2017-Balar-Lancet 119 0 -
2016-Mizugaki-Invest New Drugs 6 1 -
2017-Peters-J Clin Oncol 659 6 11
2017-Rittmeyer-Lancet 609 60 4
2018-Colevas-Ann Oncol 32 0 -
2018-Emens-JAMA Oncol 116 3 1
2018-Horn-Eur J Cancer 89 4 0
2018-Lukas-J Neurooncol 16 0 -
2018-McDermott-Nat Med 103 20 0
2018-Petrylak-JAMA Onc 95 0 -
2018-Powles-Lancet 459 9 -

gives the study-specific left-censoring threshold, which can be extracted from a footnote or methods
description in the original publication. Each cutoff is the largest integer not reported; for example, in
a study with 𝑁 = 459 and a footnote stating that “AE counts ≥ 2% of the treated size are disclosed,”
the study-specific cutoff would be 9, since any count larger than 459 × 2% = 9.18 would be reported.
Of note, some studies’ reporting threshold might differ by AE categories (e.g., “2017-Peters-J Clin
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Oncol” in Table 121). Users should carefully collect the “cutoff” information in order to match their AE
category of synthesis interest.

After uploading the meta-analysis data following the required format, the application will automat-
ically display the data content in the “Data Overview” section in the “User Guide” tab for a routine
check. In addition, the app will automatically check the uploaded data and provides error messages to
the user in the following situations: (1) if any data entry in the “N,” “cutoff,” or “Y” columns contains
non-numeric symbols instead of numeric values, NA, or a blank; (2) if the column names do not match
the required format; and (3) if “cutoff”>“N” or “Y”>“N.” This immediate feedback allows users to
verify that their data has been read correctly (e.g., all studies are listed and the columns are interpreted
as intended) before proceeding.

3.2. Operation and results of Shiny-MAGEC

Once the data is loaded, the analysis can be initiated by clicking the “Run Models” button. Basically,
two Bayesian models will be sequentially executed: one that incorporates the censored data and uses
the MAGEC approach and another that solely utilizes the fully observed data. The latter serves as
an optional supplementary reference highlighting the bias that might be caused by the inappropriate
complete-case analysis procedure. The Bayesian model estimations are based on MCMC simulations,
and the sampling algorithm is the Metropolis–Hasting algorithm implemented using the JAGS software
(Version 4.3.1). A few advanced parameters regarding the prior specifications in the models and the
MCMC simulations can be manipulated by checking the box of “Advanced Settings.” By default,
a half-Cauchy prior is specified for the between-study SD 𝜏, and the scale parameter A in the prior
distribution of 𝜏 described in Section 2 is set to 2.5. The app also provides sensitivity analysis options,
allowing the users to specify a uniform prior for the between-study SD 𝜏, or an inverse-Gamma prior
for the between-study variance 𝜏2. The hyperparameters in these priors can further be customized
in “Advanced Settings.” For MCMC, three chains are run in parallel, each with a total of 100,000
iterations, that include a burn-in of 50,000 and a thinning interval of 5 (i.e., keeping 1 out of every
5 samples). These defaults enhance robust estimation and an acceptable convergence performance in
general applications. Finally, for reproducibility, a random seed for MCMC sampling can be set under
“Advanced Settings.”

When the model fitting is finished, the application generates tabular and figure outputs for the
MAGEC model shown in the “Results” tab. Within the “Results” tab, first, summary statistics about the
posterior estimates of the overall AE incidence probability, the between-study variation prediction for a
new data entry are shown in a table. This includes the posterior median, the SD, boundaries of the 95%
credible interval (CrI), and the mean and standard error of the posterior distributions. If any optional
sensitivity analysis prior is selected, a separate table presenting the same results for the sensitivity
analysis will also be provided. It is followed by a short paragraph briefly summarizing the key meta-
analytic results. For the purpose of comparison, the biased overall AE incidence probability from the
complete-case analysis is also provided. The summary table also includes the Gelman–Rubin potential
scale reduction factors R-hat statistics 22 for diagnosing the convergence of the MCMC chains. If the
R-hat statistics of any key parameters is larger than 1.01, a warning will be output, suggesting the user
increase the lengths of the MCMC chains in the “Advanced settings” to improve the convergence and
mixing performance.

In the bottom part of the page, the meta-analytic estimates as well as the study-specific estimates will
be comprehensively visualized in a forest plot. Users may navigate to the advanced operation panels
on the tab to customize the figure. Finally, an analysis report in Microsoft Word format containing the
summary tables and the forest plots of both the MAGEC analysis and the complete-case analysis can be
downloaded by clicking the “Download Report” button on the operation panel. To facilitate scientific
writing and reporting, users can also find a template for drafting the statistical analysis section in the
downloaded analysis report, which details the statistical methods for the MAGEC modeling (e.g., the
specification of MCMC simulations) and cites relevant references.
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4. An illustrative example

We present an illustrative example to demonstrate the use of Shiny-MAGEC based on the built-in
sample dataset. A meta-analysis of 125 clinical studies was conducted to evaluate the incidence
probabilities of pneumonitis (a type of AE involving inflammation of lung tissue) for several types of
PD-1 and PD-L1 inhibitors.2 As shown in Table 1 (Section 3.1), our sample data is a small subset of the
full data focused on the incidence of Grade 3–5 pneumonitis for patients who received the PD-L1 drug
Atezolizumab. Note that in the practical use of this current version of the Shiny app without accounting
for study-level factors, such division of meta-analysis data by specific grade interval and specific AE
category, as illustrated in the example, is highly recommended for delivering evidence synthesis within
meaningful subgroups.

Once the data are uploaded, a data overview can be found in the “User Guide” tab. By clicking the
“Advanced Settings” checkbox on the left, a panel allowing customization of prior hyperparameters and
MCMC options will show up. In this illustrative example, we use the default settings. After clicking
the “Run Model” button, a progress bar will approximately indicate the models’ execution statuses. In
this illustrative example, the running time on an AMD R9-6900HS CPU is approximately 10 seconds.
Once the posterior sampling is completed, we can navigate to the “Results” page to review the model
outputs.

The main results generated based on the MAGEC methodology are displayed in the “Results” tab,
while the parallel results derived from the complete-case analysis are summarized briefly in a separate
paragraph only for supplementary comparison purposes. Figure 2 illustrates the summary statistics of
the MAGEC model estimates (results associated with the default and alternative prior choices would be
paralleled). Furthermore, it will automatically generate paragraphs summarizing the key meta-analytic
results as exemplified in Figure 3 for users’ references.

Additionally, a forest plot will be generated to illustrate both the study-specific and overall AE
incidence probability estimates (in percentages), as presented in Figure 4. This visualization will follow
established scientific reporting structures exemplified in prior literature.2,6 As demonstrated in prior
research, this presentation approach provides a clear and structured summary of results, enhancing
interpretability and comparability of the results.

It is straightforward that by incorporating richer information provided by the censored studies,
the MAGEC model provides different point and interval estimates compared to the complete-case
analysis that solely uses the non-censored studies. By applying the MAGEC modeling approach, the AE
incidence is estimated at 0.38% (95% Crl [0.05%, 0.87%]) in this example, whereas the complete-case

Figure 2. Shiny app outputs of the summary statistics table.
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Figure 3. Result descriptions based on the illustrative example.

Figure 4. Comprehensive forest plot of the incidence probabilities (in percentage) of Grade 3–5
pneumonitis related to the PD-L1 drug Atezolizumab based on the MAGEC meta-analysis model.

analysis yields a higher estimate of 0.51% (95% Crl [0.10%, 1.13%]). The discrepancy reflects a 34%
over-estimation bias inherent in the complete case approach, reinforcing findings from previous studies
that have shown complete case methods tend to inflate incidence estimates due to missing data.6

5. Discussion

Meta-analysis has become an indispensable tool for characterizing the safety profiles of medications,
but it comes with unique challenges compared to efficacy analysis. Incomplete reporting of AEs,
together with possible heterogeneity across studies, can compromise the validity of a drug safety
meta-analysis if not properly handled. On the methodological front, researchers are developing more
sophisticated models to tackle these challenges. The Bayesian censored-data approach6 is one such
innovation that addresses partially observed safety data. In this article, we extend these efforts by
providing a user-friendly tool that brings advanced methodology to a broader audience of clinicians
and researchers.
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The Shiny-MAGEC app offers an interactive platform to facilitate the application of the Bayesian
meta-analysis method described for censored AE data. By incorporating reporting cutoff information
into the analysis, it mitigates the estimation bias of AE incidence rates, accompanied by appropriate
uncertainty quantification. This new tool facilitates rigorous systematic review and meta-analysis of
safety data by making state-of-the-art bias correction accessible to users without requiring advanced
statistical programming skills.

Beyond this specific tool, our work aligns with a broader movement to improve the quality of AE
meta-analyses. Regulators (e.g., FDA and EMA) and guideline groups (e.g., Cochrane, CONSORT,
and PRISMA) have increasingly emphasized the need for high standards in safety evidence synthesis
to support robust conclusions about drug risks.23–27 A balanced, evidence-based understanding of
drug harms is critical to weighing benefits against risks in clinical decision-making. Particularly,
regulatory agencies rely on comprehensive safety evidence when making approval and labeling
decisions, as flawed or incomplete safety meta-analyses can have serious consequences.1,28 Therefore,
safety outcomes should be synthesized with the same rigor and transparency as efficacy data, ensuring
scientific completeness and reliability in assessments of drug risk. An understated risk in a meta-
analysis might delay regulatory actions on a harmful drug, whereas an overestimated risk could
unnecessarily alarm practitioners and patients. In practice, both underestimation and overestimation of
risks must be avoided.

While the challenges in meta-analysis of drug safety are non-trivial, they are surmountable with
diligent methodology innovation and improved data practices.29 By implementing best practices for
AE reporting, leveraging advanced statistical techniques like the Bayesian models employed here,
and exploring new tools like natural language processing for data gathering,30 the field can move
toward more reliable and informative safety meta-analyses. These improvements will ultimately benefit
patients and healthcare providers, as treatment decisions can be made with a clearer understanding of
the balance between benefits and harms.

This R Shiny application has several limitations. First, the computation capacity of the app is
restricted by the current shinyapps.io hosting plan, which has a maximum instance size of 1 GB. Users
with higher computational demands are recommended to refer to the sample JAGS model code of
the MAGEC model provided in the Supplementary Material and run the analysis on a local machine.
Note that the Shiny-MAGEC focuses on handling the left-censored data, aiming to offer a concise and
user-friendly interface that is suitable for most AE meta-analysis studies. Right-censoring and interval-
censoring, though also can be accounted for based on the MAGEC model, are rarely encountered in
the AE reporting of modern studies. We encouraged those users who have the needs to handle right- or
interval-censored AEs to locally run the MAGEC model code detailed in the Supplementary Material.
A potential limitation of the MAGEC model is that its performance may be less reliable in settings with
very few studies or extremely high between-study heterogeneity. Future research should investigate
strategies to improve robustness under these boundary conditions and extend the model’s applicability
to such challenging scenarios. Finally, one under-addressed topic in the safety meta-analysis is the pub-
lication bias, where studies reporting non-significant or unfavorable safety outcomes may be selectively
unpublished or underreported, potentially biasing AE incidence estimates.31,32 Exploring how the pub-
lication bias mechanism might interact with the AE incomplete reporting issue and developing methods
to simultaneously adjust for the biases caused by the two sources are insightful future directions.

The future of drug safety meta-analysis is moving toward greater scientific rigor, transparency, and
integration of diverse data sources—all aimed at safeguarding public health through better evidence
on drug risks. Continued methodological research and consensus-building are needed to refine how
we pool and interpret AE data. As tools like our R Shiny app become integrated into researchers’
workflows, we anticipate more accurate and trustworthy assessments of drug safety that will support
better-informed clinical and regulatory decisions.
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