Hiroshi Umemura Nagoya Math. J. Vol. 54 (1974), 123-134

A THEOREM OF MATSUSHIMA

HIROSHI UMEMURA*

In [7], Matsushima studied the vector bundles over a complex torus. One of his main theorems is: A vector bundle over a complex torus has a connection if and only if it is homogeneous (Theorem (2.3)). The aim of this paper is to prove the characteristic p > 0 version of this theorem. However in the characteristic p > 0 case, for any vector bundle E over a scheme defined over a field k with char. k = p, the pull back F^*E of E by the Frobenius endomorphism F has a connection. Hence we have to replace the connection by the stratification (cf. (2.1.1)). Our theorem states: Let A be an abelian variety whose p-rank is equal to the dimension of A. Then a vector bundle over A has a stratification if and only if it is homogeneous (Theorem (2.5)).

The author wishes to express his thanks to T.Oda. The discussion with him was indispensable.

§ 1. Preliminaries

(1.1) All schemes are of finite type over an algebraically closed field k, unless the contrary is stated as in (1.4.1). Let char. $k = p \ge 0$. Let P, X be schemes. Let $\pi: P \to X$ be a morphism. Let G be a group scheme. We denote by $P(X, G, \pi)$ a principal G-bundle over X: G operates on P from the right satisfying the following conditions:

(i) The diagram

is commutative.

Received October 5, 1973.

^{*} partially supported by the Sakkokai Foundation.

(ii) The morphism

$$G \times_{k} P \longrightarrow P \times_{x} P$$
$$(g, p) \longmapsto (p \cdot g, p)$$

is an isomorphism.

(iii) There exists an (fpqc) extension $X' \to X$ such that $P' = P \times_X X'$ is isomorphic to $G \times_k X'$.

(1.1.1) Let K be a group scheme. Let H be a subgroup scheme. Then the quotient $K \xrightarrow{\pi} K/H$ exists (S.G.A.D. Exposé VI_A) and $K(K/H, H, \pi)$ is a principal H-bundle.

We need some results of Grothendieck [4].

(1.2) THEOREM A. An (fpqc) (faithfully flat and quasi-compact) morphism is a strict descent morphism for the category of affine schemes and for the category of quasi-coherent sheaves.

In particular this means two important things:

(1.2.1) Let S', S be schemes. Let $\alpha: S' \to S$ be an (fpqc) morphism. Let X, Y be schemes affine over S. Let X' (resp. Y') be the pull-back of X (resp. Y). Then to define a morphism $X \to Y$ over S, it is sufficient to define a morphism $X' \to Y'$ over S' commuting with the descent data. (1.2.2) In the category of affine schemes (or in the category of quasi-coherent sheaves) descent data descends through an (fpqc) morphism.

(1.3) Let $P(X, G, \pi)$ be a principal G-bundle over X with group G. Let G' be a group scheme. Let $\varphi: G \to G'$ be a morphism of group schemes.

LEMMA (1.3.1) Assume that G, G' are affine over k. Then there exists a unique principal G'-bundle $P'(X, G', \pi')$ such that there exists a morphism f of P to P' over X with $f(x^g) = f(x)^{\varphi(g)}, x \in P, g \in G$.

Proof. Let $X' \to X$ be an (fpqc) morphism trivializing P. Let P^* denote the pull-back of P on X'. The pull-back $P^* \simeq G \times_k X'$ carries naturally a descent data, so that it induces a descent data on $G' \times_k X'$. We put $P^{*'} \simeq G' \times_k X'$. Since $P^{*'}$ is affine over X', by (1.2.2), $P^{*'}$ descends and defines a principal G'-bundle over X. This shows the existence.

We shall show the uniqueness. Let P'_1 and P'_2 be two principal G'bundles over X having the property described in the lemma. Let $X' \rightarrow X$ be an (fpqc) morphism trivializing P, P_1 and P_2 . We denote the pull-

back by *. We have $f_i^* \colon P^* \simeq X' \times G \to X' \times G', i = 1, 2.$

$$(x,g) \rightarrow (x,f_i^*(x,g))$$

$$P^* \xrightarrow{f_1^*} P_1'^* \xrightarrow{f_2^*} \downarrow^{\ell}_{P_2'^*}$$

 $f_i^*(x,g) = f_i^*((x,1)^{q}) = f_i^*(x,1)^{\varphi(q)}, x \in X', g \in G.$ If we put $\ell(x,g') = (x, f_2^*(x,1)f_1^*(x,1)^{-1}g')$ for $(x,g') \in X' \times G'$, then the diagram above commutes and gives an isomorphism between $P_1'^*$ and $P_2'^*$. It is easy to check that this isomorphism commutes with the descent data for $P_1'^*$ and for $P_2'^*$. Hence this gives an isomorphism of P_1 and P_2' over X.

(1.4) Let X be a projective scheme over k. Let $P(X, GL(r, k), \pi)$ be a principal GL(r, k)-bundle over X. $\tilde{\mathscr{G}}(P)$ is a functor from the category of k-schemes to the category of groups defined by the following formula:

 $\widetilde{\mathscr{G}}(p)(T) = \{f \in \operatorname{Hom}_T (P \times_k T, P \times_k T) | f \text{ is an automorphism of } P \times_k T.$ $f(x^g) = f(x)^g \text{ for any } g \in GL(r, k).\}$ for a scheme T over k. Since X is the quotient of P by the action of GL(r, k), f induces the following commutative diagram:

$$\begin{array}{ccc} P \times_{k} T \xrightarrow{f} P \times_{k} T \\ \downarrow^{\pi} & \downarrow^{\pi} \\ X \times_{k} T \xrightarrow{\overline{f}} X \times_{k} T \end{array}$$

PROPOSITION (1.4.1) The functor $\tilde{\mathscr{G}}(P)$ is represented by a scheme locally of finite type over k.

Proof. GL(r,k) is an open subscheme of the scheme of $r \times r$ matrices $M(r \times r, k)$. GL(r, k) operates on $M(r \times r, k) \simeq A_k^{r^2}$ from the left and the right as linear automorphisms of the affine space $A_k^{r^3}$. Since a linear automorphism of $A_k^{r^2}$ can be prolonged to an automorphism of $P_k^{r^2}$, the actions from the left and the right of GL(r, k) on $A_k^{r^2}$ can be extended equivariantly to the actions on $P_k^{r^3}$. Hence $GL(r, k) \subset P_k^{r^2}$ is an equivariant completion of GL(r, k) with respect to the both actions. Since a principal GL(r, k)-bundle is locally trivial for the Zariski topology,

we can associate $P_k^{r^2}$ -bundle $P' = P \times^{GL(r,k)} P^{r^2} \xrightarrow{\pi'} X$ with $P(X, GL(r,k), \pi)$. Then P is an open subscheme of P' and GL(r,k) operates on P' from the right. From the existence of the Hilbert scheme (See Grothendieck [5]), we deduce that the functor $\operatorname{Aut}_k P'$ is represented by a group scheme G locally of finite type over k since P' is projective over X and since X is projective over k by hypothesis. Now let Y = P' - P and we regard Y as a reduced closed subscheme of P'. Consider the subfunctor F of $\operatorname{Aut}_k P'$:

 $F = \{\text{Automorphisms of } P' \text{ leaving the closed subscheme } Y \text{ fixed}\}.$ Then F is representable. Now we show $\tilde{\mathscr{G}}(P)$ is a subgroup functor of F. It is sufficient to show that any element of $\mathcal{G}(P)$ can be extended to an automorphism of P'. First we assume that P is trivial. In this case, letting f be an element of $\tilde{\mathscr{G}}(P)$, $f(g) = f(I_rg) = f(I_r)^g = f(I_r)^g$ $f(I_r)g$. Hence f is nothing but the multiplication by $f(I_r)$ from the left. Since P' is an equivariant completion, the multiplication by $f(I_r)$ can be extended to P'. In the case P is not trivial, take an open covering $\{U_a\}$ of X so that $\pi^{-1}(U_a) = P_a$ is trivial. $\tilde{\mathscr{G}}(P)$ acts on P_a . By what we have seen above, the action of $\tilde{\mathscr{G}}(P)$ on P_{α} can be extended to an automorphism of the restriction of P' on U_{α} . Since the extension is unique, the extensions over U_{α} and U_{β} coincide if $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Hence the operation of $\widehat{\mathscr{G}}(P)$ on P can be extended to the operation on P'. This is what we had to show. GL(r, k) operates on P' from the right and leaves Y fixed. Hence GL(r, k) is a closed subgroup scheme of F (See S.G.A.D. Exposé VI_B Cor. 1.4.2.). $\tilde{\mathscr{G}}(P)$ is the centralizer of the closed subgroup scheme GL(r,k) of the group scheme F. Hence $\hat{\mathscr{G}}(P)$ is representable. q.e.d.

(1.4.2) We have the natural homomorphism of group schemes $q: \hat{\mathscr{G}}(P) \to \operatorname{Aut} X$ as we remarked above. The kernel of this homomorphism is the group $\operatorname{Aut}_X(P)$ which is connected and affine over k (See M. Maruyama: On a family of algebraic vector bundles, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki Kinokuniya, Tokyo, 1973, 95-146). We apply (1.4.1) to an abelian variety A.

COROLLARY (1.4.3) Let A be an abelian variety. Let $P = P(A, GL(r, k), \pi)$. Consider a subgroup functor $\mathscr{G}(P)$ of $\widetilde{\mathscr{G}}(P)$ whose value is defined for any k-scheme T by the following formula:

 $\mathscr{G}(P)(T) = \{(x_T, f) | x_T \text{ is a T-valued point of } A. f \in \widetilde{\mathscr{G}}(P)(T) \text{ such that} the diagram}$

Then the group functor $\mathscr{G}(P)$ is represented by a scheme of finite type over k.

Proof. The abelian variety A can be regarded in a natural way as a subgroup scheme of $\operatorname{Aut}_k A$. Let $i: A \longrightarrow \operatorname{Aut}_k A$. From the definition $\mathscr{G}(P)$ is isomorphic to the fibre product $\widetilde{\mathscr{G}}(P) \times_{\operatorname{Aut}_k A} A$. Since A and $\operatorname{Aut}_A P$ are connected, $\mathscr{G}(P)$ is isomorphic to the fibre product $\widetilde{\mathscr{G}}^0(P)$ $\times_{\operatorname{Aut}_k A} A$ where $\widetilde{\mathscr{G}}^0(P)$ is the connected component containing the identity of the group scheme $\mathscr{G}(P)$.

$$\begin{array}{ccc} \mathscr{G}(P) \longrightarrow & A \\ & & & & & \downarrow i \\ \mathscr{G}^{0}(P) \xrightarrow{q} \operatorname{Aut}_{k} A \end{array}$$

 $\widetilde{\mathscr{G}}^{0}(P)$ is of finite over k. Hence $\mathscr{G}(P)$ is of finite type over k. q.e.d.

DEFINITION (1.4.4) Using the notation of (1.4.3),

 $1 \to \operatorname{Aut}_A P \to \mathscr{G}(P) \to A \ .$

The quotient group scheme $\mathscr{G}(P)/\operatorname{Aut}_A P$ is denoted by H(P). H(P) is a closed subgroup scheme of A (See S.G.A.D. Exposé VI_A).

A principal GL(r, k)-bundle $P(A, GL(r, k), \pi)$ over an abelian variety A is said to be homogeneous if H(P) = A.

If P is homogeneous,

$$I \to \operatorname{Aut}_A P \to \mathscr{G}(P) \to A \to 0$$
.

Remark (1.4.5) The set of all the k-valued points of H(P) is $\{k$ -valued point x of $A \mid P \simeq T_x^* P$ where T_x is the translation by $x\}$.

LEMMA (1.4.6). Let A, B be abelian varieties. Let $\varphi: A \to B$ be a

homomorphism. We set $N = \operatorname{Ker} \varphi \xrightarrow{i} A$ (scheme theoretic kernel, of course). Let $P'(B, GL(r, k), \pi')$ be a principal GL(r, k)-bundle over B. Let $P(A, GL(r, k), \pi) = \varphi^* P'(B, GL(r, k), \pi')$. Then N is a subgroup scheme of H(P).

Proof. Let $f: T \to N$ be a T-valued point of N. Then

$$(B \times_{k} T) \times_{T} (B \times_{k} T) \xrightarrow{\mu_{B}} B \times_{k} T$$

$$\uparrow \varphi_{T} \times \varphi_{T} \qquad \uparrow \varphi_{T}$$

$$(A \times_{k} T) \times_{T} (A \times_{k} T) \xrightarrow{\mu_{A}} A \times_{k} T$$

$$\uparrow i_{T} \times \mathrm{Id}$$

$$(N \times_{k} T) \times_{T} (A \times_{k} T)$$

$$\uparrow f_{T} \times \mathrm{Id}$$

$$\times_{k} T \xrightarrow{\sim}_{W} T \times_{T} (A \times_{k} T) ,$$

where μ_A (resp. μ_B) is the law of composition of the abelian scheme A (resp. B) and Ψ is the natural isomorphism. Hence we get:

$$\begin{split} f_T^* P_T &= \mathscr{U}^* \circ (f_T \times \operatorname{Id})^* \circ (i_T \times \operatorname{Id})^* \circ \mu_A^* P_T \\ &= \mathscr{U}^* \circ (f_T \times \operatorname{Id})^* \circ (i_T \times \operatorname{Id})^* \circ \mu_A^* \circ \varphi_T^* P_T' \\ &\simeq \mathscr{U}^* \circ (f_T \times \operatorname{Id})^* \circ (i_T \times \operatorname{Id})^* \circ (\varphi_T \times \varphi_T)^* \circ \mu_B^* P_T' \\ &= \varphi_T^* P_T' \\ &= P_T \ . \end{split}$$

This shows we have a section s on N of $\mathscr{G}(P) \to H(P)$:

A

q.e.d.

Remark (1.4.7) Let X be a scheme. Consider a principal GL(r, k)bundle $P(X, GL(r, k), \pi)$. Let E be the associated vector bundle to P. We define the functor $\tilde{\mathscr{G}}(E)$ by the following formula:

 $\tilde{\mathscr{G}}(E)(T) = \{(\varphi, \varphi') | \varphi \text{ is a } T \text{-automorphism of } X \times_k T \text{ and } \varphi' \text{ is an isomorphism of } E_T \text{ to } \varphi^* E_T \}$ for a k-scheme T. Then it is easy to see that

 $\tilde{\mathscr{G}}(P) = \tilde{\mathscr{G}}(E)$ as group functors. Moreover $\operatorname{Aut}_X P = \operatorname{Aut}_X E$.

If X = A is an abelian variety, we define a subgroup functor $\mathscr{G}(E)$ of $\widetilde{\mathscr{G}}(E)$ by the following formula; for any k-scheme T,

$$\mathscr{G}(E)(T) = \{(\varphi, \varphi') \in \widetilde{\mathscr{G}}(E)(T) | \varphi \text{ is the translation by a } T\text{-valued point } x_T \}.$$

Then $\mathscr{G}(P) = \mathscr{G}(E)$. Let H(E) be the quotient group scheme of $\mathscr{G}(E)$ by $\operatorname{Aut}_A E$. The group schemes H(P) and H(E) are isomorphic. We say that E is homogeneous when P is so (cf. Miyanishi [8], Umemura [10] and Remark (1.4.5)).

§2. Main theorem

(2.1) We recall the definition of stratification (Grothendieck [6]).

DEFINITION (2.1.1) Let X be a smooth scheme defined over k. Let E be a vector bundle on X. For each positive integer n, we denote by $\Delta^{1}(n)$ the n-th infinitesimal neighbourhood of the diagonal of $X \times_{k} X$. $\Delta^{2}(n)$ denotes the n-th infinitesimal neighbourhood of the diagonal of $X \times_{k} X \times_{k} X$. Then we have the usual diagram of projections:

$$X \xleftarrow{p_1(n)}{p_2(n)} \varDelta^1(n) \xleftarrow{p_{31}(n)}{p_{32}(n)} \varDelta^2(n) \; .$$

An *n*-connection is an isomorphism

$$\varphi: P_1(n)^*(E) \xrightarrow{\sim} P_2(n)^*E$$

satisfying the cocycle condition

$$P_{31}^*(\varphi) = P_{32}^*(\varphi)P_{21}^*(\varphi)$$
.

A stratification on E is a system of an *n*-connection for each positive integer n so that if $n \leq n'$, the *n'*-connection induces the given *n*-connection.

We need two facts:

(2.1.2) In the case k is the field of complex numbers C, E has a stratification if and only if E has an integrable connection.

(2.1.3) In the case the characteristic of k is positive, then E has a stratification if and only if E descends through any power of Frobenius endomorphism F^m of X. Sketch of the proof. Consider the fibre product $X^{(m)}$:

Then $X^{(m)}$ is a closed subscheme of $X \times_k X$ defined by the ideal $I^{(m)}$ where I is the ideal defining the diagonal $\Delta^1(1)$ and $I^{(m)}$ is the *m*-th Frobenius power, the ideal generated by the p^m -th power of all the elements of I.

Let E be a vector bundle descending through F^m for any m. Then it induces an isomorphism $q_1^*E \xrightarrow{\sim} q_2^*E$ satisfying the cocycle condition. For any integer n, if we take m sufficiently large, we have $\Delta^1(n) \subset X^{(m)}$ since $\Delta^1(n)$ defined by I^n . The isomorphism $q_1^*E \xrightarrow{\sim} q_2^*E$ induces an isomorphism

$$p_1(n)^*E = q_1^*E_{|_{A^1(n)}} \xrightarrow{\sim} q_2^*E_{|_{A^1(n)}} = p_2(n)^*E$$

satisfying the cocycle condition hence it defines an n-connection. Hence E has a stratification.

Conversely, suppose E has a stratification, for any n, we have $I^n \supset I^{(m)}$ provided m is sufficiently large. Hence we have $X^{(m)} \subset \Delta^1(n)$. This immersion and the isomorphism $p_1(n)^*E \xrightarrow{\sim} p_2(n)^*E$ give a descent data on E. By the descent theory (1.2), E descends through F^m for any m.

DEFINITION (2.2). Let G be a complex Lie group. Let B be a closed normal subgroup of G such that the quotient G/B is a complex torus T. Hence G is a principal B-bundle over T. Let $\rho: B \to GL(r, C)$ be a representation of B. Let $P = G \times {}^{B}GL(r, C)$ be the principal GL(r, C)-bundle over T associated with this representation. Let E be the vector bundle over T associated with the principal GL(r, C)-bundle P. We say that the vector bundle E is associated with the Lie group G.

The following theorem was proven by Matsushima [7].

THEOREM (Matsushima) (2.3). Let T be a complex torus (not necessarily an abelian variety). Let E be a vector bundle over T.

Then the following are equivalent.

- (1) E has a holomorphic connection.
- (2) E has an integrable connection.
- (3) E is associated with a Lie group.
- (4) E is homogeneous.

DEFINITION (2.4). Let G be a group scheme. Let B be a normal subgroup scheme such that B is affine and G/B is an abelian scheme A. By (1.1.1), G is a principal B-bundle over A. Let $\rho: B \to GL(r, k)$ be a representation. Since B and GL(r, k) are affine, we can associate the principal GL(r, k)-bundle P over A by Lemma (1.3.1). Let E be the vector bundle associated to the principal GL(r, k)-bundle P. We say that the vector bundle E is associated to the group scheme G.

THEOREM (2.5). Assume that k is of characteristic p > 0. Let A be an abelian variety defined over k. Let P be a principal GL(r, k)bundle over A. Let E be the vector bundle associated to P. Consider the following conditions.

(1) E has a stratification.

(2) E descends through any power of the Frobenius endomorphism F^m of A.

(3) E is associated with a group scheme.

(4) E is homogeneous.

Then (3) and (4) are equivalent one another. (1) and (2) are equivalent and they imply (3) and (4).

If the p-rank of A is equal to the dimension of A i.e. if the plinear map $H^{1}(A, O_{A}) \rightarrow H^{1}(A, O_{A})$ induced by the Frobenius endomorphism of A is bijective, then all the conditions are equivalent.

Proof. By (1.2), (1) and (2) are equivalent. We shall show the equivalence of (3) and (4). Assume that E is associated to a group scheme G. We use the notation of the Definition (2.4). Let x be a point of G. Then the following diagram is commutative:

This shows that G is homogeneous. Hence the associated vector bundle to G is also homogeneous.

Now suppose that P is homogeneous. Then we have the exact sequence

$$1 \to \operatorname{Aut}_{A} P \to \mathscr{G}(P) \to A \to 0$$
.

We shall show that P is associated to the group scheme $\mathscr{G}(P)$. Let r be the rank of E. We define a representation $\tilde{\alpha}$: Aut_A $P \to GL(r, k)$ as follows:

Let x_0 be a k-valued point of P lying over 0 in A. Let T be a scheme. Consider the map

$$\operatorname{Aut}_{A} P(T) \subset \operatorname{Hom}_{k} (P \times_{k} T, P \times_{k} T) \longrightarrow P(T)$$

$$\overset{\mathbb{U}}{\underset{g}{\longrightarrow}} g(x_{\mathfrak{o}_{T}})$$

where $x_{0_T} \colon k \times_k T \xrightarrow{x_0 \times \mathrm{id}} P \times_k T$. Then there exists the unique element $\tilde{\alpha}(g)$ of GL(r, k)(T) such that $g(x_{0_T}) = x_{0_T}^{\tilde{\alpha}(g)}$. We put

$$\tilde{\alpha}(T) : \operatorname{Aut}_{A} P(T) \longrightarrow GL(r, k)(T) .$$

 $g \longmapsto \tilde{\alpha}(g)$

Since $\tilde{\alpha}$ is functorial we get a representation $\tilde{\alpha}$: Aut_A $P \to GL(r, k)$. We define a morphism of fibre bundles

$$\alpha: \mathscr{G}(P) \longrightarrow P \ .$$
$$g \longmapsto g x_0$$

Since this is functorial and commutes with the representation $\tilde{\alpha}$: Aut_A $P \rightarrow GL(r, k)$, we get a homomorphism of fibre bundles over A. By Lemma (1.3.1), P is the principal GL(r, k)-bundle associated to the group scheme $\mathscr{G}(P)$.

We prove (2) \Rightarrow (4). Suppose that E descends through any power of the Frobenius endomorphism F^m of A. We denote by N_m the kernel of F^m . Then by Lemma (1.4.6), $N_m \subset H(E) \subset A$. Hence the formal groups $\hat{H}(E)$ and \hat{A} are isomorphic. This implies $H(E) \simeq A$. Hence Eis homogeneous.

Assume that the *p*-rank of A is equal to the dimension of A. We shall show (4) \Rightarrow (2). Suppose that E is homogeneous. If E is decomposable, say $E = E_1 \oplus E_2 \oplus \cdots \oplus E_s$ such that E_i is indecomposable for

 $1 \leq i \leq s$, then E_i is homogeneous for $1 \leq i \leq s$. In fact if E_1 were not homogeneous, we would have a closed point x of A such that $T_x^*E_1$ is isomorphic to none of E_i , $1 \leq i \leq s$ since $\{x \in A \mid T_x^*E_1 \simeq E_i \text{ for some } i\}$ would be a closed subset of dimension strictly less than the dimension of A (cf. (1.4.5)). Then we would have $E_1 \oplus E_2 \oplus \cdots \oplus E_s \simeq E \simeq T_x^*E$ $\simeq T_x^*E_1 \oplus T_x^*E_2 \oplus \cdots \oplus T_x^*E_s$. This is a contradiction to the Krull-Schmidt theorem (Atiyah [1]). Hence we may assume E to be indecomposable. Then by Miyanishi [8], E is isomorphic to $F_r \otimes L$ where L is a line bundle algebraically equivalent to 0 and F_r is a succesive extension of O_A by O_A :

Since L descends through any power of the Frobenius endomorphism F^m of A, it is sufficient to show the

LEMMA (2.6). If the p-linear map $H^{i}(A, O_{A}) \to H^{i}(A, O_{A})$ induced by F is bijective, then F_{r} descends to $F_{r}^{(m)}$, $r \geq 1$, through any power of the Frobenius endomorphism F^{m} of A and the p^{m} -linear map $H^{i}(A, F_{r}^{(m)})$ $\to H^{i}(A, F_{r})$ induced by F^{m} is bijective for any $m, i \geq 0$.

Proof. Induction on r. If r = 1, then $F_1 \simeq O_A$ descends and by hypothesis the map $H^i(A, O_A) \to H^i(A, O_A)$ is bijective. Since $H^{\cdot}(A, O_A) = \Lambda \cdot H^i(A, O_A)$, we conclude that the map $H^i(A, O_A) \to H^i(A, O_A)$ is bijective for any $i \ge 0$. Suppose that the assertion is proven for r. We have exact sequence

$$(*) \qquad \qquad 0 \longrightarrow F_{r-1} \xrightarrow{\alpha} F_r \xrightarrow{\beta} O_A \longrightarrow 0 \ .$$

Since the extension is determined by an element of $H^{1}(A, F_{r-1})$, F_{r-1} descends to $F_{r-1}^{(m)}$ and since F^{m} induces a bijective morphism $H^{1}(A, F_{r-1}^{(m)}) \rightarrow H^{1}(A, F_{r-1})$ by induction hypothesis, F_{r} descends to an extension of O_{A} by $F_{r-1}^{(m)}$,

$$(**) 0 \longrightarrow F_{r-1}^{(m)} \xrightarrow{\alpha^{(m)}} F_r^{(m)} \xrightarrow{\beta^{(m)}} O_A \longrightarrow 0 .$$

By (*), (**) and induction hypothesis we have

Then by the five lemma, we conclude that F^m induces a bijective p^m -linear map $H^i(A, F_j^{(m)}) \to H^i(A, F_r^{(m)})$ for any *i*. This is what we had to show.

Remark (2.7). If the *p*-rank of *A* is not equal to the dimension of *A*, the conditions (2) and (4) in the Theorem (2.5) are not always equivalent. For example, let *A* be an elliptic curve whose *p*-rank is 0. Let F_2 be the unique extension of O_A by O_A with $H^0(A, F_2) \neq 0$ (cf. Atiyah [2]). Then F_2 is homogeneous. But F_2 does not descent through the Frobenius endomorphism *F* of *A*.

REFERFNCES

- Atiyah, M. F., On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France, 84 (1956), 307-317.
- [2] —, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3), 7 (1957), 414-452.
- [3] Demazure, M. et Grothendieck, A., Schemas en Groupes (S. G. A. D.), I, II, III, Vol. 151, 152, 153, Lecture Notes in Math., Springer.
- [4] Grothendieck, A., Technique de construction et théorèmes d'existence en géométrie algébrique I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, t. 12 (1959/60), n° 90.
- [5] —, Technique de construction et théorèmes d'existence en géométrie algébrique IV. Les schémas de Hilbert, Séminaire Bourbaki, t. 13 (1960/61), n°221.
- [6] —, Crystals and the De Rham cohomology of schemes, Dix exposés sur la cohomologie des schemas, 1968 North-Holland Pub. company.
- [7] Matsushima, Y., Fibrés holomorphes sur un tore complexe, Nagoya Math. J., vol. 14 (1959), 1-24.
- [8] Miyanishi, M., Some remarks on algebraic homogeneous vector bundles, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo (1973), 71-93.
- [9] Morimoto, A., Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe, Nogaya Math. J., vol. 13 (1958), 157-168.
- [10] Umemura, H., Some results in the theory of vector bundles, Nagoya Math. J., vol. 52 (1973), 97-128.

Nagoya University