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Abstract

Large-scale atmospheric circulation patterns, so-called weather regimes, modulate the occurrence of extreme events
such as heatwaves or extreme precipitation. In their role as mediators between long-range teleconnections and local
impacts, weather regimes have demonstrated potential in improving long-term climate projections as well as sub-
seasonal to seasonal forecasts. However, existingmethods for identifying weather regimes are not specifically designed
to capture the relevant physical processes responsible for variations in the impact variable in question. This paper
introduces a novel probabilistic machine learning method, RMM-VAE, for identifying weather regimes targeted to a
local-scale impact variable. Based on a variational autoencoder architecture, the method combines non-linear dimen-
sionality reduction with a prediction task and probabilistic clustering in one coherent architecture. The new method is
applied to identify circulation patterns over the Mediterranean region targeted to precipitation over Morocco and
compared to three existing approaches: two established linear methods and another machine-learning approach. The
RMM-VAEmethod identifies regimes that aremore predictive of the target variable compared to the two linearmethods,
both in terms of terciles and extremes in precipitation, while also improving the reconstruction of the input space.
Further, the regimes identified by theRMM-VAEmethod are alsomore robust and persistent compared to the alternative
machine learning method. The results demonstrate the potential benefit of the new method for use in various climate
applications such as sub-seasonal forecasting, and illustrate the trade-offs involved in targeted clustering.

Impact Statement

This paper introduces a new machine learning method for identifying large-scale atmospheric circulation
patterns, so-called weather regimes, that modulate a local-scale impact variable such as extreme precipitation.
This has the potential to enhance the usefulness of regimes for various climate applications such as impact-based
sub-seasonal to seasonal forecasting or downscaling of climate model output. Co-authored by researchers with
respective backgrounds in meteorology and computer science, this paper is intended to introduce a new method
in an accessible manner to researchers from both communities. Additionally, it aims to illustrate the similarities,
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differences and trade-offs associated with novel machine learning methods compared to more established
statistical approaches for dimensionality reduction and clustering in weather and climate science.

1. Introduction

1.1. Weather regimes as mediators between local impacts and long-range teleconnections

Large-scale atmospheric circulation modulates the occurrence of extreme events such as heavy
precipitation and heat waves that cause devastating impacts on people and livelihoods across the
planet. Understanding these dynamical drivers of local extreme impacts can both improve their near-
term forecast skill for early-warning decisions (Coughlan de Perez et al., 2022; Gonzalez et al., 2022;
Dunstone et al., 2023) and support the physical interpretation of future projected changes
and associated uncertainty to identify robust adaptation pathways (Lemos et al., 2012; Shepherd
et al., 2018).

Weather regimes, defined as persistent and recurrent circulation patterns, are one common approach
to understanding the low-frequency variability of atmospheric circulation (Vautard, 1990; Ghil and
Robertson, 2002; Hannachi et al., 2017). In many applications, weather regimes have proven particu-
larly useful as discrete and interpretable mediators between long-range teleconnections in the climate
system and local-scale impact variables (Yiou and Nogaj, 2004; Cassou, 2008; Beerli and Grams, 2019;
Straus, 2022). For example, over the North Atlantic and European region, weather regimes have been
shown to carry a predictability signal from tropical teleconnections such as the Madden-Julian
Oscillation and the El-Niño Southern Oscillation (Lee et al., 2019; Gadouali et al., 2020), as well as
from stratospheric polar vortex states (Charlton-Perez et al., 2018; Domeisen et al., 2020, while also
modulating surface-level variables such as cold-extremes and precipitation (Ferranti et al., 2018;
Pasquier et al., 2019).

Due to these teleconnection signals as well as their persistence, weather regimes can improve both the
skill and usability of forecasts for extended-range lead times (Allen et al., 2021; Bloomfield et al., 2021.
On climate timescales, weather regimes have been used to disentangle the dynamic and thermodynamic
components of climate change for extreme event attribution and quantify the role of atmospheric internal
variability in observed trends (Cattiaux et al., 2010; Horton et al., 2015; Terray, 2021), as well as to
statistically downscale climate models (Ailliot et al., 2009; Maraun et al., 2010).

1.2. Mediterranean weather regimes and precipitation over Morocco

The present study investigates the potential of targeted weather regimes to capture precipitation extremes
over Morocco. The country is vulnerable to both flooding driven by extreme rainfall, which has caused
over 760 million USD in economic damages since 1950 (Delforge et al., 2023), as well as droughts that
have threatened food security, agricultural livelihoods and compounded debt crises of the country
(Tanarhte et al., 2024). Extreme precipitation events primarily occur in extended winter, between
November and March, and can lead to different types of flooding events, ranging from gradual or flash
floods ofwadis (river valleys) to torrential flash floods of small mountain basins or flooding of urban areas
(Loudyi et al., 2022).

Previous literature has investigated the dynamical drivers and precursors of wintertime extreme
precipitation over the Western Mediterranean region, highlighting dynamically driven moisture flux
from the Atlantic as a key driver (Ulbrich et al., 2012; Dayan et al., 2015) and positive anomalies in
potential vorticity over the eastern Atlantic region as a precursor to extreme precipitation events (Toreti
et al., 2016). Toreti et al. (2010) show that over the Western Mediterranean region, the negative
geopotential height anomaly pattern associated with extreme precipitation is associated with an
alignment of the subtropical jet with the African coastline and anomalous southwesterly surface to
mid-tropospheric flow leading to large-scale ascending motions and instability over the Western
Mediterranean region.
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Weather regimes over both the North Atlantic and European, as well as the Mediterranean region, have
been reported to modulate the occurrence of extreme precipitation over Morocco (Driouech et al., 2010;
Pasquier et al., 2019; Gadouali et al., 2020; Mastrantonas et al., 2020; Giuntoli et al., 2022). For example,
Mastrantonas et al. (2022a) demonstrate that Mediterranean weather regimes determine a significant
increase in the probability of above 95th percentile precipitation. Using this information in a simple hybrid
forecasting approach, they are able to slightly improve medium-range forecast skills over Morocco.
Gadouali et al. (2020), on the other hand, identify sevenwintertimeweather regimes over the North Atlantic
and show their association with precipitation over Morocco, along with their modulation by the Madden-
Julian Oscillation. Recent findings by Chaqdid et al. (2023), investigating geopotential height, vertically
integratedwater vapor flux andwind speed anomalies associatedwith precipitation extremes overMorocco,
however, indicate that these dynamical precursors might not be optimally resolved in weather regimes over
either of the two regions, highlighting the scope for a more targeted approach in this region.

1.3. Research gap: identifying targeted weather regimes

Weather regimes are commonly identified using a combination of dimensionality reduction and clustering
methods. While the dimensionality reduction step projects the high-dimensional data into a lower-
dimensional subspace, the clustering subsequently identifies and assigns discrete regimes within this
reduced space (Hannachi et al., 2017).

Following Michelangeli et al. (1995), principal component analysis (PCA, often referred to as
Empirical Orthogonal Function or EOF analysis in atmospheric sciences (Hannachi et al., 2007) and
k-means have established themselves as common choices for dimensionality reduction and clustering
and have been applied in the relevant studies investigating weather regimes over the Western
Mediterranean region (Gadouali et al., 2020; Mastrantonas et al., 2020). The advantage of this
combination of methods is that they are easy to compute, understand, and interpret. However, they
are not inherently more physically meaningful than other statistical dimensionality reduction and
clustering methods. Alternative methods have been proposed in the literature on weather regimes,
addressing, for example, the non-probabilistic nature of both methods which can lead to a loss of
information on transitional states (Falkena et al., 2023). Figure 1 provides a summary of possible

Figure 1. Illustration of selected methodological choices for dimensionality reduction and clustering
based onHannachi et al. (2017) andMurphy (2022). Themethods highlighted in green are applied in this
paper and described in more detail in Section 3. Methods highlighted with a star refer to joint
dimensionality reduction methods between two high-dimensional spaces.
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choices of dimensionality reduction and clustering methods for the identification of weather regimes.
For a detailed discussion of existing methods for identifying weather regimes, we refer to Hannachi
et al. (2017) and Straus et al. (2017).

The relationship between weather regimes and surface-level variables provides a key motivation for
their investigation. However, most methods for identifying weather regimes are not specifically designed
to capture variations of the impact variable in question, such as extreme precipitation overMorocco in this
application. Therefore, available methods do not necessarily resolve the dynamical processes that
modulate the relevant surface-level impact. Due to this limitation, studies investigating dynamical
precursors of extremes using weather regimes might fail to capture relevant physical processes as well
as potential predictors at subseasonal-to-seasonal lead times.

Recognizing the value of atmospheric patterns that are more informative of a local-scale variable,
existing methods for identifying targeted atmospheric patterns are based on either pre-filtering data to
extreme impact days (Rouges et al., 2023; Dorrington et al., 2024a, 2024b), clustering the impact
variable directly (Ullmann et al., 2014; Bloomfield et al., 2020), or increasing the number of clusters to
maximize the informativeness of regimes regarding the impact variable (Gadouali et al., 2020;
Mastrantonas et al., 2020. However, these approaches compromise either regime persistence and
robustness, and thereby their extended-range predictability, or the completeness of the representation
of atmospheric dynamics. On the other hand, linear statistical methods for identifying related subspaces
of two high-dimensional datasets such as canonical correlation analysis (CCA) have been applied,
amongst others, by Vrac and Yiou (2010) in combination with k-means clustering to identify weather
regimes targeted to rainfall over France. However, CCA, for example, identifies linear transformations
such that the two reduced spaces are maximally correlated (Murphy, 2022), thereby projecting the data
into partial subspaces and compromising the ability of the regimes to represent the full atmospheric
phase space.

Both the optimal number of clusters (Straus et al., 2017; Dorrington and Strommen, 2020; Falkena
et al., 2020), as well as the physical and statistical interpretation of the weather regimes (Stephenson et al.,
2004; Hochman et al., 2021) have been subject to discussion, in particular, whether multimodality of the
underlying probability density function is assumed. In this paper, weather regimes are here interpreted as
statistical representations of the underlying physical processes that should be statistically robust and
relevant to the intended use case, withoutmaking any stronger assumptions about themultimodality of the
underlying probability density function.

1.4. Contribution

To address the research gaps outlined above, this paper presents a novel method for identifying
probabilistic weather regimes targeted to a local-scale scalar impact variable based on a modified
variational autoencoder architecture. The proposed method, called regression mixture model variational
autoencoder (RMM-VAE), combines targeted dimensionality reduction with probabilistic clustering.
This is achieved by integrating a regression into the dimensionality reduction step of the variational
autoencoder (VAE) and regularizing the reduced space using a Gaussian mixture model. The method
thereby aims to capture the dynamical processes that modulate the target variable while maintaining the
physical robustness and persistence of the identified regimes.

The regimes identified by the RMM-VAE method are probabilistic as each datapoint is assigned
probabilities of belonging to the different clusters, and the clusters themselves are fit as multidimensional
Gaussian distributions. One advantage of probabilistic clusters compared to so-called hard clusters
identified, for example, by k-means is that information on transitional states can be captured, leading
to a more complete picture of reduced atmospheric dynamics (Falkena et al., 2023).

VAEs are a deep generative machine learning method introduced by Kingma and Welling (2013) and
described in more detail in Section 3, that have shown promise in identifying non-targeted weather
regimes (Baldo and Locatelli, 2022). The advantages of using a VAE architecture for identifying targeted
weather regimes lie in their ability to generalize the linear dimensionality reduction conducted in PCA to
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nonlinear transformations while offering the possibility of fitting an extendable probabilistic model in the
dimensionality-reduced space. The approach presented here builds on previous machine learning
architectures reported by Zhao et al. (2019a), abbreviated R-VAE (regression-VAE) that target the
dimensionality reduction of a VAE without combining it with clustering, and Ye and Bors (2020) who
fit a mixture model into the reduced space of a VAE.

The RMM-VAE method is applied to identify weather regimes over the Mediterranean region in
extended winter (November to March) targeted to total precipitation over Morocco and is compared to
two established linear approaches (PCA + k-means and CCA + k-means), as well as the R-VAEmethod
(Zhao et al., 2019a) combined with k-means clustering (R-VAE + k-means) which is introduced in
Section 3.

The performance of these four methods is analyzed in terms of the predictive skill of the resulting
regimes with respect to the target variable, as well as their persistence and separability. These evaluation
metrics are chosen to assess both the ability of the regimes to capture the relevant dynamical processes
modulating the target variable and their physical robustness. To enhance the understanding and inter-
pretability of the novel methods, we further investigate the reduced space—also called the latent space—
along with the ability of the different dimensionality-reduction methods to reconstruct the input space
from the reduced representation.

The remainder of this paper is structured as follows. Section 2 describes the data used, Section 3
provides a detailed description of the different methods, including the RMM-VAEmethod, and Section 4
reports details of the implementation and parameter choices. After comparing the results of the different
methods for identifying targeted weather regimes in Section 5, and Section 6 discusses and concludes the
findings of this paper.

2. Data

Atmospheric circulation patterns are investigated over the Mediterranean region (lat: 25°N–50°N; lon:
20°W–45°E, region shown in Figure 6) in extended winter (Nov–Mar) using ERA5 reanalysis data
from 1940 to 2022 (Hersbach et al., 2020) of geopotential height at 500 hPa (z500) re-gridded to a
resolution of 2.5° × 2.5°. The data is standardized by subtracting the climatological daily mean and
dividing the result by the standard deviation at each grid point. While this breaks the geostrophic
relationship between geopotential height and the horizontal wind field, the dimensionality-reduction
and clustering methods do not make use of this relationship, and the choice was therefore deemed
acceptable for this application.

For the initial application of the new method, ERA5 reanalysis data of daily total precipitation in a
region over Morocco (lat: 30°N–36°N; lon: 11°W–0°E, resolution: 0.25° × 0.25°) is used as a target
variable over the same period as a proxy for observations. Figure 2 shows the annual mean and 95th-
percentile precipitation over the selected region. Precipitation data was normalized by applying a Box-
Cox transformation, at each grid cell for CCA, and over the entire region for the two VAE methods (Box

Figure 2.Extendedwinter precipitation (November–March) over the selected region overMorocco based
on ERA5 reanalysis data from 1940 to 2022. Left-side: daily mean precipitation. Right-side: 95th
percentile of daily precipitation.
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and Cox, 1964. A three-day running average of daily total precipitation and a five-day running average of
z500 were taken to reflect the duration of extreme precipitation events and associated weather systems
during the observational period (Dayan et al., 2015; Loudyi et al., 2022).

3. Methods

This study compares four different methods for identifying weather regimes. All methods combine
dimensionality reduction of the geopotential height space x into a latent space z with subsequent
clustering. Except for the first method, PCA + k-means, all methods explicitly make use of the target
variable t, precipitation over Morocco, in the identification of weather regimes.

3.1. Principal component analysis and k-means clustering (PCA + k-means)

The PCA + k-means method combines linear dimensionality reduction using PCA with subsequent
clustering using k-means to identify weather regimes (Michelangeli et al., 1995). PCA provides a linear
transformation of the data into a subspace z spanned by the orthogonal eigenvectors of the covariance
matrix Cxx of the dataset x (Jolliffe and Cadima, 2016). k-means clustering is applied to iteratively
partition the reduced space z into k sets with the objective of minimizing the within-cluster squared
distance from the cluster center (Murphy, 2022). This method is implemented due to its prevalence in the
current literature, including existing studies on Mediterranean weather regimes and precipitation over
Morocco (Mastrantonas et al., 2020).

3.2. Canonical correlation analysis and k-means clustering (CCA + k-means)

The CCA + k-means method also combines a linear dimensionality reduction method with k-means
clustering. CCA is a dimensionality reduction method that identifies linear transformations of two high-
dimensional spaces, x and t, into respective subspaces such that the correlation between the projections of
the variables onto their new basis vectors is maximized (Johnson and Wichern, 2013). The method is
symmetric, meaning the spaces x and t are treated in the same manner. In contrast to the machine learning
methods presented in this paper, CCA takes the full precipitation field as input, rather than the aggregate
scalar total precipitation over the selected region. CCA is applied to the input geopotential height space x and
target precipitation space t. Subsequently, weather regimes are identified by applying the k-means clustering
algorithm to this dimensionality-reduced geopotential height space. This combination of methods is
implemented to identify targeted clusters based on an established linear dimensionality reduction method.

3.3. Regression-variational autoencoder (R-VAE + k-means)

TheR-VAE+ k-meansmethod is a targeted approach to the identification of weather regimes. Themethod
is an extension of a VAE architecture that combines dimensionality reduction with a prediction task
introduced by Zhao et al. (2019a) in a neuroscience application.

In a first application to climate data, this approach is amended to target the dimensionality reduction of
the geopotential height input space x into the latent space z to the impact variable t, that is, total
precipitation over Morocco. Weather regimes are identified by subsequentially clustering the reduced
space z using the k-means clustering algorithm described in Section 3.1.

Section 3.3.1 introduces VAEs and variational inference. Any foundational technical statistical and
machine learning terminology not explained directly in the text is highlighted in italics and introduced in
more detail in a glossary in Appendix 2. Section 3.3.2 then provides a detailed description of the R-VAE
method and its application to identify targeted weather regimes.

3.3.1. Variational autoencoders
Autoencoders can be interpreted as a non-linear extension of PCA implemented through an encoder and
decoder neural network. In PCA, the encoder would correspond to the linear transformation of the high-
dimensional input data into the dimensionality-reduced space of principal components, while the decoder

e25-6 Fiona R. Spuler et al.



corresponds to the inverse transformation that reconstructs the input space using a selected number of
principal components. Although autoencoders are more efficient at encoding the input data compared to
PCA, the identified latent space is not necessarily continuous, which is an obstacle to subsequent clustering
(Murphy, 2022).

VAEs are a generative machine learning architecture introduced by Kingma andWelling (2013). They
extend the encoder-decoder architecture of autoencoders by fitting a probabilistic model of the data into
the reduced space using Bayesian variational inference. By estimating the underlying probability
distribution of the data in the latent space explicitly, the architecture allows for the generation of new
samples from the encoded data, hence the term generative model. VAEs thereby provide a probabilistic
and non-linear dimensionality reduction method and alternative to PCA.

The probabilistic graphical model underlying the VAE architecture is shown in Figure 4a. The model
aims to identify a continuous latent space z that provides a dimensionality-reduced representation of the
high-dimensional input space x. This statistical model with parameters θ can be fit using Bayesian
inference based on Bayes theorem. However, this requires computing the posterior probability pθ zjxð Þ,
which is in general computationally intractable. Therefore, the loss function of a VAE is derived using
Bayesian variational inference (Murphy, 2023. Variational inference introduces a function qϕ from a
selected distributional family with parameters ϕ to approximate the intractable posterior by minimizing
the Kullback–Leibler (KL) divergence between the true and approximated posterior. Those terms of the
KL-divergence that depend on the parameters of themodel represent a lower bound to the likelihood of the
data and are termed the evidence lower bound L θ,ϕjxð Þ. This evidence lower bound can then be
minimized to provide the best variational estimate of the model, using the stochastic gradient variational
bayes (SGVB) estimator in the case of VAEs. Kingma and Welling (2013) further introduce the
reparameterization trick to generate samples from the probabilistic encoder qϕ zjxð Þ while still being able
to backpropagate information through the network.

L xð Þ= �Eqϕ zjxð Þ log pθ xjzð Þ½ �+DKL qϕ zjxð Þjpθ zð Þ� �
: (1)

Equation 1 shows the resulting loss function that is minimized to fit a standard VAE. The first term
represents the reconstruction loss of passing data points through the encoder and reconstructing it from its
reduced representation. The second term represents the regularization loss, which penalizes the diver-
gence of the fitted probability distribution in the latent space z from the prior probability distribution
pθ zð Þ, which is often assumed to be a multivariate Gaussian with mean μz and standard deviation σz.

3.3.2. The R-VAE method
Zhao et al. (2019a) demonstrate that the standard VAE architecture can be extended to not only
dimensionality-reduce the input space x but also predict a scalar target t variable that is subsequently
used to regularize the latent space z. The method, termed R-VAE in this application, is illustrated in
Figures 3 and 4b. Here, the inference model, shown in blue in Figure 3 and dashed lines in Figure 4b, not
only estimates a dimensionality reduced space z from the input space x but also predicts the mean and
variance of a target variable t. In the generative model, shown in green in Figure 3 and solid lines in
Figure 4b, the target variable is then used to predict back into the latent space, thereby providing an
additional regularization of the reduced space. The impact of this additional regularization when applying
this model to the dimensionality reduction of geopotential height using precipitation over Morocco as a
target variable is evaluated in Section 5.4.

The loss function of the model can be derived using the representation as a probabilistic graphical
model shown in Figure 4b to provide the following factorization of the joint probability distributions:

pθ x,z, tð Þ= pθ xjzð Þpθ zjtð Þpθ tð Þ,and qϕ z, tjxð Þ= qϕ zjxð Þqϕ tjxð Þ: (2)

The term pθ xjzð Þ corresponds to the input space x reconstructed from the latent space z through the
decoder network, and the term pθ zjtð Þ to the latent space estimated from the predicted target variable t,
while the prior distribution pθ tð Þ here simply corresponds to the ground truth data of the target variable.
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The term qϕ tjxð Þ corresponds to the regression of the target variable from the input space x, and the term
qϕ zjxð Þ to the latent space estimated from the input space using the encoding network.

The loss function of this modified VAE can then be derived as theKL divergence of the two probability
distributions. For the full derivation, see Zhao et al. (2019a) and Appendix A.

L xð Þ = �DKL qϕ z, tjxð Þjpθ zð ,x, tÞ� �
=Eqϕ zjxð Þ log pθ xjzð Þ½ ��Eqϕ tjxð Þ DKL qϕ zjxð Þ� jpθ zð jtÞÞ� ��DKL qϕ tjxð Þjpθ tð Þ� �

:
(3)

Figure 4.Different variational autoencoder models represented as probabilistic graphical models using
plate notation. The inferencemodel corresponds to the encoder and the generative model to the decoderof
the architecture. a) A standard VAEwith input variable x, latent variable z and priorΦz on the parameters
μ and σ of the multivariate Gaussian distribution of z. b) The R-VAE method with an additional target
variable t, and c) the RMM-VAE method with probabilistic cluster assignment c regularized by the prior
πk . In all panels, dashed lines indicate the inference model and solid lines the generative model.

Figure 3. Schematic diagram of the R-VAE + k-means method based on the architecture developed by
Zhao et al. (2019a). The input data x is passed through the encoder network, shown here in blue, which
outputs both an estimate of the latent space z and a prediction of the scalar target variable t. The target
variable is then used to predict back into the latent space, thereby targeting the dimensionality reduction.
The reduced space is subsequently clustered using k-means.

e25-8 Fiona R. Spuler et al.



As in the standard VAE described in the previous section, the first term represents the reconstruction
loss of the dimensionality reduction. The third term represents the regression loss term, penalizing
divergence of the predicted target variable qϕ tjxð Þ from the ground truth data p tð Þ. The second term uses
the predicted target variable to regularize the dimensionality-reduced input space by penalizing the
divergence between the two estimates of the latent space z: one that is based on the dimensionality
reduction of the original geopotential height data, qϕ zjxð Þ, and one that is predicted from the precipitation
target variable, pθ zjtð Þ.

In this application, the two components of the inferencemodel, qϕ zjxð Þ and qϕ tjxð Þ, are parametrized as
N-dimensional Gaussian distributions and estimated using non-linear functions with parameters ϕ.
Similarly, the probabilistic decoder is parametrized as a Gaussian and modeled as a nonlinear function
with parameters θ. Under the assumption that the decoder captures the nonlinearity of the generative
model, a linear model for pθ zjtð Þ�N at,Ið Þ is implemented, where a is a vector of unit norm. This
constrains the number of parameters the model has to fit overall.

3.4. Regression-mixture model variational autoencoder (RMM-VAE)

In the novel RMM-VAEmethod, we extend the R-VAE architecture to directly fit a Gaussian mixture model
into the reduced space of the VAE, instead of fitting a single multidimensional Gaussian, which is
subsequently clustered using k-means as in the R-VAE + k-means approach. The RMM-VAE method
thereby integrates probabilistic clustering and targeteddimensionality reduction in a single coherent statistical
model. A conceptual advantage of this is the ability of the model to represent the different aims of targeted
clustering—identifying physically robust as well as predictive clusters—as terms in a coherently derived loss
function, hence allowing for their statistical interpretation and an investigation of their trade-offs.

To derive theRMM-VAEmethod, the singlemultidimensional Gaussian chosen to regularize the latent
space in the R-VAE method is replaced by k multidimensional Gaussians with mean μk and standard
deviation σk. In addition, the probabilities cik of the datapoint xi belonging to cluster k are estimated. This
builds on architectures combining VAEs with mixture models presented, for example, by Ye and Bors
(2020), Zhao et al. (2019b), and Jiang et al. (2017). Gaussian mixture models themselves are an
established probabilistic clustering method (Murphy, 2022) that has been used to identify probabilistic
weather regimes (Straus et al., 2017, Baldo and Locatelli, 2022). Figures 4c and 5 illustrate the method.

Figure 5. Schematic diagram of the proposed RMM-VAE approach. In contrast to the R-VAEmethod, the
encoder network, shown again in blue, outputs not only an estimate of the latent space z and a prediction
of the scalar target variable t, but also a probabilistic cluster assignment of the data point ck . The method
thereby combines a regression VAE (R-VAE) with probabilistic clustering usingmixture models (MM) in a
coherent statistical model.
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The inference model, shown again in blue in Figure 5 and dashed lines in Figure 4c, estimates not only the
dimensionality reduced space z and target variable z but also the cluster probabilities ck.

The conditional independence assumptions embedded in the corresponding graphical model shown in
Figure 4c are used to re-write the joint probability distribution of the model and derive the loss function of
the model. For the full derivation of the loss function, see Appendix A.

L xð Þ = �DKL qϕ z,c, tjxð Þjpθ x,z, t,cð Þ� �
=
X
k

qϕ ckjx� �
Eqϕ zjxð Þ log pθ xjzð Þ½ ��Eqϕ tjxð Þ DKL qϕ zð�� jxÞjp zð jtÞÞ�
h

�DKL qϕ tjxð Þ� jp tð ÞÞ�DKL qϕ zð jxÞjpθ zð jckÞÞ� ��DKL qϕ ckjx� �jp ck
� �� �

:

(4)

The first three terms in brackets correspond to the terms of the R-VAE loss function for an individual
mixture component: the reconstruction loss, the divergence of the estimated target variable qϕ tjxð Þ from
the ground truth data, and the divergence between the latent spaces generated from the target variable
p zjtð Þ and the latent space encoded from the input data qϕ zjxð Þ), all weighted by the cluster assignment

qϕ ckjx� �
. The fourth term of the loss function minimizes the divergence between the cluster mean k and

the latent space estimated from the input data, again weighted by the probability of cluster k occurring,
qϕ ckjx� �

. The final term regularizes the cluster assignment qϕ ckjx� �
to the previous cluster occurrence

frequency p ck
� �

.
The components of the inference model qϕ zjxð Þ and qϕ tjxð Þ, and generative model pθ xjzð Þ and pθ zjtð Þ,

are parametrized as in the previousmethod. p ck
� �

is a categorical distribution populated by the occurrence
frequency of the different clusters updated at each step. This occurrence frequency is used as prior to the
probabilistic cluster assignment of an individual day qϕ ckjx� �

. Individual mixture components p zjck� �
are

modelled as Gaussians with mean μ and the identity covariance matrix. The latter choice is made to
constrain the number of parameters and avoid model overfitting.

4. Experiments

The encoders and decoders of both VAEmethods are implemented using three dense layers of decreasing
dimensionality of 128, 64, and 32, respectively. A batch size of 128 and the ReLU activation function are
chosen. For 100 epochs, the model is trained on iterative train-test splits using k-fold cross-validation, and
subsequently fitted again using a random weights initialization on the entire dataset. For the implemen-
tation of the neural network architectures, the Python package keras (Chollet et al., 2015) was used. For a
number of the evaluation metrics as well as the implementation of the two linear methods, the Python
package scikit-learn (Pedregosa et al., 2011) was employed.

Table 1 provides an overview of the compared methods and relevant hyperparameters. A
10-dimensional latent space was implemented for all the methods, and cluster numbers between 4 and
10were investigated based on the understanding that the correct number of clusters will depend on the use
case and cannot be determined in a general sense in all regions (Straus et al., 2017). The sensitivity of the
results to both these choices was investigated and, in the case of the cluster number, the sensitivity of the
clusters to sub-sampling of the input data for different choices of k is shown in Appendix B. Based on
these results, k = 5 was identified as a reasonable choice of cluster number to visualize in the results
section where required.

For both VAE methods, the inclusion of a hyperparameter β based on Higgins et al. (2017) is
investigated. The hyperparameter is multiplied with the respective first terms in equations 3 and
4 representing reconstruction loss, thereby changing the weight of the reconstruction objective in the
loss function. Two values of β are explored for each of the twomethods, whereby v1 (β = 1) corresponds to
the original loss function without the inclusion of an additional hyperparameter, and v2 (β < 1) decreases
the importance of the reconstruction loss term in the loss function. Selected values for β are shown in
Table 1.
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5. Results

Section 5.1 presents the weather regimes identified over the Mediterranean region using the different
methods, alongside the conditional changes in the probability of extreme precipitation over Morocco.
Next, the predictive skill of the regimes with respect to the target variable (Section 5.2), and their physical
robustness (Section 5.3) are evaluated and contrasted. To gain further insight and interpretability of the
methods, we investigate the respective dimensionality-reduced spaces in Section 5.4 and the recon-
structed input spaces in Section 5.5.

5.1. Cluster centers and characteristics

Figure 6 shows the weather regimes, defined as the centers of the identified clusters, along with the
associated change in the conditional probability of extreme precipitation over Morocco, defined as the
exceedance of the grid cell-specific 95th percentile.

The weather regimes identified using the PCA + k-means method correspond to those found over the
Mediterranean region in other publications using this method such as Giuntoli et al. (2022) and
Mastrantonas et al. (2022b). While the number of regimes investigated varies, both publications identify
the meridional patterns observed in regimes 3 and 4, a high geopotential height anomaly (regime 5 –

termedMediterranean high inMastrantonas et al., 2022b), and the western low anomalies seen in regimes
1 and 2, (termed Iberian and Biscay Low in Mastrantonas et al., 2022b). Regime 1, associated with a
geopotential height low over the west of Europe, increases the probability of extreme precipitation by a
factor of three to four, while the other regimes show no or marginal increases in the probability of extreme
precipitation. This is consistent with the results found byMastrantonas et al. (2020). Overall, the regimes
identified by PCA + k-means have roughly similar frequencies of occurrence.

CCA + k-means, on the other hand, identifies multiple regimes associated with an increase in the
conditional probability of extreme precipitation by a factor of three or more in different regions of
Morocco (regimes 1–3). The spatial patterns of extreme precipitation appear to be modulated by the
location of the geopotential height low around Morocco. In contrast, high geopotential height anomalies
dominate over the western Mediterranean in the two regimes associated with a lower-than-average
probability of extreme precipitation. The regimes associated with extreme precipitation (regimes 1–3)
have a slightly lower frequency of occurrence than the other two (regimes 4–5). It can be observed that the
anomalies that primarily define the CCA + k-means cluster centers are located in the Western Mediter-
ranean region, which will be further investigated in Section 5.5.

In contrast to the different spatial patterns of extreme precipitation associated with different weather
regimes identified using CCA + k-means, the R-VAE + k-means method identifies a single regime
associated with a five to six times increase in the probability of extreme precipitation. Furthermore, we
find that the cluster center of regime 2, which occurs on almost 30% of days, shows little mean z500
anomaly, meaning it is quite close to a climatologically average day in extendedwinter. This indicates that
while the method is able to identify a regime that is highly informative regarding the occurrence of

Table 1. Overview of methods for the identification of weather regimes and associated parameter
choices

Method Version β Target variable

PCA + k-means – – None
CCA + k-means – – t – full daily precipitation field at 0.25° resolution
R-VAE + k-means v1 1 t – spatially averaged daily precipitation (scalar)

v2 0.1 “–”
RMM-VAE v1 1 “–”

v2 0.5 “–”
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extreme precipitation, it might not be able to identify structure in the full atmospheric phase space. This
will be further investigated in Sections 5.4 and 5.5.

The regimes identified by the RMM-VAE method appear to strike a balance between the baseline
method PCA + k-means, and the purely targeted method R-VAE + k-means. On the one hand, the method
identifies a single regime associated with a higher probability increase of extreme precipitation compared

Figure 6. Identified weather regimes (top rows) and corresponding odds ratios of extreme precipitation
(bottom rows) for the four different methods with the number of clusters specified as k = 5. The regime
frequencies are given in percent. The odds ratio of extreme precipitation corresponds to the ratio of the
probability of the climatological 95th percentile of precipitation at the grid cell conditional on that
weather regime, divided by the unconditional probability of 95th percentile of precipitation (i.e., 0.05).
The weather regimes are ordered in decreasing order of total precipitation during the days assigned to
this cluster by the respective method.

e25-12 Fiona R. Spuler et al.



to PCA + k-means, similar to R-VAE + k-means. On the other hand, the resulting cluster centers are
visually more similar to the PCA + k-means cluster centers.

To gain further insight into the dynamical precursors of extreme precipitation, we cluster the
precipitation field directly using k-means clustering and investigate the corresponding average geopo-
tential height anomalies, shown in Figure 7. As noted in Section 1, clustering the impact variable directly
compromises regime persistence and leads to an incomplete representation of the large-scale dynamics,
and is therefore shown for illustration purposes only, but not compared as an alternative targeted
clustering method.

In agreement with the odds ratios associated with the weather regimes shown in Figure 6, the
location and intensity of the precipitation events appear to be modulated by the location and intensity
of a geopotential height low off the coast of Spain, consistent with existing literature on dynamical
drivers of extreme precipitation in the Western Mediterranean discussed in Section 1.2. Comparing
these patterns with the weather regimes shown in Figure 6, we find that the two VAE methods cluster
the different patterns of z500 anomalies identified in Figure 7 in one single weather regime, while
CCA + k-means disaggregates some of the different spatial patterns of extreme precipitation into
different weather regimes. This finding is consistent with the way the different methods incorporate
the target variable: while CCA makes use of the entire precipitation field as input data and can hence
extract more information about its spatial structure, the VAE methods only receive a single scalar
target variable, total precipitation, as input, and are therefore not able to separate different spatial
patterns.

5.2. Evaluating the skill of weather regimes in predicting the target variable

To evaluate the ability of the weather regimes to capture the dynamical processes responsible for
modulating extremes in precipitation over Morocco, we evaluate an empirical prediction of the target
variable using the identified weather regime assignment.

The prediction is calculated by multiplying the probability of the weather regimes assigned by the
respective method with the conditional probability of the target variable given that weather regime. To
assess the ability of the weather regimes to capture both the body and tail of the target variable

Figure 7. Precipitation clusters computed on precipitation reanalysis data without pre-processing using
the k-means clustering algorithm for k = 8 (top rows) and corresponding z500 anomalies (bottom rows).
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distribution, both the skill of the weather regimes in predicting precipitation terciles and the exceedance
of the 95th percentile are evaluated. The skill of this prediction is analyzed using the Ranked Probability
Score (RPS), a strictly proper scoring rule to measure the accuracy of a probabilistic prediction of
mutually exclusive discrete outcomes widely used in forecast evaluation (Gneiting and Raftery, 2007).
Skill scores were also used by Schiemann and Frei (2010) to quantify the surface impact of circulation
types. The RPS is defined as

RPS =
1
N

XN
n= 1

Xm
j = 1

δinj�pj
� �2

= � 1
N

XN
n= 1

1�2pin +
Xm
j = 1

p2j

 !
, (5)

wherem is the number of forecast categories and N is the number of timesteps. δinj is the Kronecker delta
which equals 1 if the observation i at timestep n corresponds to category j, and 0 otherwise, and pj the
forecast probability of category j. The corresponding skill score (RPSS) is calculated with respect to a
reference forecast, chosen here to be the climatology over the entire period, and defined as

RPSS = 1� RPSforecast
RPSc limato logy

: (6)

ARPSS of 1 indicates a perfect forecast, while values close to zero indicate little, or no skill compared
to the reference forecast.

The resulting RPSS is calculated for precipitation terciles (Figure 8a), and for extreme precipitation
(Figure 8b). The predictive skill is overall higher for terciles compared to the 95th percentile threshold,
which is to be expected. In both cases, all targeted methods outperform PCA + k-means (blue line),
highlighting the potential of improving the predictive skill of standard weather regime definitions.
R-VAE + k-means (green and red lines) performs best, followed by RMM-VAE (purple and brown lines)
up to k = 8, after which it is slightly outperformed by CCA + k-means.

The better performance of R-VAE can be attributed to RMM-VAE having more objectives to achieve
simultaneously as it aims to identify probabilistic clusters while also disentangling the latent space with
respect to the target variable. For bothVAEmethods, increasing the importance of the prediction objective
in the loss function (v2) further boosts the predictive skill, although not consistently across cluster
numbers.

Figure 8. Ranked Probability Skill Score of an empirical prediction of total precipitation over Morocco
using the weather regimes, shown for different numbers of weather regimes k. a) Skill score for the
prediction of the tercile of the precipitation distribution, and b) Skill score for extreme precipitation,
defined as a binary prediction above or below the 95th percentile. For probabilistic clustering, the skill
score is computed using the most likely cluster at the given data point. The higher the RPSS, the more
predictive the weather regimes are of precipitation over Morocco.
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Increasing the number of clusters does not improve the skill except for CCA + k-means. For the two
VAE methods, this result is likely because the targeted dimensionality reduction already groups data
points with similar precipitation amounts in the reduced space, as discussed in section 5.4. Unlike the
other methods, CCA takes the full precipitation field as input. The ability to extract spatial information
about the precipitation field might enable the predictive skill to increase with cluster number.

5.3. Evaluating the physical robustness of the weather regimes

Existing literature on targeted weather regimes finds that patterns that are more informative of a local-scale
target variable risk compromising the physical robustness of regimes,which is associatedwith their persistence
and subseasonal predictability. To evaluate the robustness of the targeted regimes, we assess the persistence
and the separability of the identified circulation patterns as proxies for their physical robustness.

The separability of the clusters is assessed using the silhouette score (Rousseeuw, 1987). The higher
the silhouette score, the better the clusters are separated from one another, while a silhouette score close to
zero indicates that the separation between different clusters is not statistically significant. The statistical
robustness of the patterns to sub-sampling is also evaluated and shown in Appendix B.

Figure 9a shows the distribution of mean cluster persistence across k = 5 clusters. Mean persistence
across clusters is highest for PCA, followed by RMM-VAE. However, the spread of the distribution of
persistence across clusters is lower for PCA and CCA compared to the two VAE methods, in particular
RMM-VAE. This result indicates that while all five PCA+k-means clusters have around the same average
persistence, there are some clusters with a longer and somewith a shorter average persistence identified by
the VAE methods. These results are qualitatively similar for other choices of k (not shown). Sample time
series of the cluster assignments in different methods are shown in Appendix C. Similarly, all targeted
clusters performworse in terms of cluster separability (Figure 9b) compared to the baselinemethod PCA+ k-
means. RMM-VAE outperforms the other targeted methods, while R-VAE performs the worst overall.

Overall, these results indicate that RMM-VAE identifies more coherent and robust clusters compared
to the other targeted methods, in particular, the R-VAE + k-means method. This result indicates that there
is a benefit in performing the probabilistic clustering in one coherent statistical model and predicting the

Figure 9. Regime persistence and separability. a) Distribution of mean persistence across k = 5 regimes.
Violin plots show the kernel density estimation of the distribution, the distribution median (white point) as
well as the interquartile range (black box). The ranking of different methods in terms of persistence
remains the same for different choices of k. b) Silhouette score for a range of cluster numbers k. The
silhouette score defined as the mean silhouette coefficient (b-a)/max(a,b), where a is the average intra-
cluster distance and b is the average inter-cluster distance that is the average distance between all
clusters.
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target variable and dimensionality reducing the input space in a single step, as opposed to separating the
two steps, as in the R-VAE + k-means method.

5.4. Structure of the dimensionality-reduced spaces

To enhance the interpretability of the methods, we investigate the dimensionality-reduced spaces
identified by different methods along with the associated cluster assignment.

All methods identify a 10-dimensional dimensionality-reduced space of geopotential height data of
either principal components, canonical variates, or multidimensional Gaussian distributions. To visualize
this 10-dimensional representation in two dimensions, we use t-distributed stochastic nearest neighbor
embedding (t-SNE) (van der Maaten and Hinton, 2008), a method commonly applied in the machine
learning community for the visualization of high-dimension datasets. The resulting visualization, shown
in Figure 10, provides an intuition for how the target variable is distributed in the dimensionality-reduced
space (top row), and how different clustering methods capture this distribution (bottom row). The t-SNE
method preserves nearest neighbors but projects the high-dimensional data onto dimensions that can no
longer be interpreted in terms of the physical units of the original input space, therefore the axes in
Figure 10 do not have a unit associated with them. Different values of the perplexity parameter, which
determines the number of neighbors considered for each point, were tested, and a value of 10 was chosen
as it shows representative results.

We find that both targeted VAE methods, R-VAE and RMM-VAE, disentangle the dimension of the
geopotential height dataset associated with variations in precipitation over Morocco, the scalar target
variable t (dark dots in Figure 10, top row). This aligns with the findings presented by Zhao et al. (2019a)
demonstrating a similar type of disentanglement when applying the R-VAE method to the studied
neuroscience application. Interpreting the disentanglement in the context of the dynamical drivers of
extreme precipitation shown in Figures 6 and 7, the disentangled dimension can be seen to represent the
location and depth of the geopotential height anomaly over theWesternMediterranean shown tomodulate
precipitation over Morocco.

The PCA latent space, on the other hand, shows less organization with respect to the target variable, as
expected, since the target variable is not part of the dimensionality reduction. In contrast, the CCA latent

Figure 10. Visualization of the 10-dimensional latent spaces in two dimensions using t-distributed
stochastic nearest-neighbor embedding (t-SNE). Embedded data points are coloured according to the
value of the target variable, total mean precipitation (top row), and according to the cluster they are
subsequently assigned to (bottom row).
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space appears to have more structure compared to PCA, though not as aligned as the latent spaces
identified by the R-VAE and RMM-VAE methods.

Coloring the data points according to their assigned cluster shown in the bottom row of Figure 10, we
find that the R-VAE and RMM-VAE methods achieve improved predictive skill regarding the target
variables shown in Figure 8 by first grouping data points associated with a similar precipitation impact in
the dimensionality reduction step, and subsequently assigning them to one cluster.

The R-VAE method, which carries out the targeted dimensionality reduction and clustering in two
separate steps, identifies clusters in ‘bands’ along the dimension associated with the target variable. The
RMM-VAE method, on the other hand, which fits probabilistic clusters while simultaneously disentan-
gling the dimension associated with the target variable, organizes the clusters in a way that appears more
consistent with the target of minimizing the distance between points in one cluster, which is also the case
for PCA + k-means and CCA + k-means. This difference provides an interpretation and explanation as to
why the RMM-VAE method is able to balance informativeness with respect to the target variable with
cluster robustness better than R-VAE, although the latter provides a higher predictive skill.

5.5. Ability to reconstruct the input spaces

To evaluate the performance of the dimensionality reduction performed by different methods, we compare
the geopotential height data reconstructed from the dimensionality-reduced spaces to the original input
data. In the case of PCA, for example, an input data point corresponding to a z500 anomaly pattern is
compared to that same data point reconstructed using the first 10 principal components. In the case of the
VAEmethods, the input data point is compared to that same data point after passing it through the encoder
and decoder of the model.

The performance of the dimensionality reduction can then be assessed by computing the mean squared
error (MSE) between input and reconstructed data. The lower this value, the more information about the
input space is captured by the dimensionality reduction method. Figure 11 shows the distribution of this
error across all data points.

Both VAE methods, in particular the respective v1 methods (with β = 1) have a lower and less widely
distributedMSE compared to both PCA andCCA. Thismeans that despite targeting their respective latent
spaces to an impact variable, the VAE methods still outperform the two linear methods in terms of
representing the atmospheric dynamics in a dimensionality-reduced space.

When increasing the importance of the prediction objectives in the VAE v2 models (with β < 1), both
R-VAE v2 and RMM-VAE v2 still outperform PCA and CCA but perform worse than their respective v1
counterparts. The RMM-VAE v2 (β = 0.5) method performs slightly better than R-VAE v2 (β = 0.1),
which is consistent with the different values for β chosen to ensure convergence of the model. This result
shows that a trade-off between targeting the dimensionality reduction and reconstructing the full phase
space exists: while both v2methods perform better in the task of predicting the target variables, this comes
at the cost of a loss of skill in the dimensionality reduction.

Investigating the reconstruction of an individual data point, shown in Figure 12, we find that both v2
methods and CCA focus the dimensionality reduction on the Western Mediterranean region surrounding
Morocco. This explains the worse performance of the two v2 methods compared to their respective v1
versions, as well as the worse performance of CCA compared to PCA in Figure 11. The result highlights
that some methods for identifying targeted weather regimes such as CCA come at the cost of only
representing the dynamics of a partial subspace. The two VAE v1methods on the other hand, appear to be
able to balance this trade-off.

6. Discussion and conclusion

In this paper, we present a novel machine learning method, RMM-VAE, for identifying weather regimes
targeted to a scalar impact variable. The method combines the different objectives of targeting weather
regimes - predicting the target variable and identifying robust dynamical patterns - in a coherent
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probabilistic model for the first time. The model integrates non-linear and targeted dimensionality
reduction with probabilistic clustering using Gaussian mixture models in a modified VAE architecture
described in Section 3.4.

The RMM-VAEmethod is applied to identify weather regimes over theMediterranean region targeted
to precipitation overMorocco. Results are compared to three alternative approaches: PCA combined with
k-means clustering as the currently established standard practice for identifying weather regimes
(Bloomfield et al., 2020; Giuntoli et al., 2022), CCA combined with k-means as an established statistical
method to relate two high-dimensional input spaces, and R-VAE combined with k-means clustering Zhao
et al. (2019a) which is a precursor of the RMM-VAE method.

Overall, we find that the novel RMM-VAEmethod is able to improve the predictive skill of the identified
probabilistic weather regimes with respect to the target variable while maintaining higher regime robustness

Figure 12. Gridded and normalized z500 anomalies, as detailed in Section 3, on an example day 1940-
01-04, showing the original data on the left and the reconstructions using different methods on the right.

Figure 11.Distribution of the reconstruction loss, assessed using the mean squared error (MSE) between
original input data and reconstructed data for all data points. The thin line in the boxes corresponds to the
mean of the distribution, while the boxes extend to quartiles of the dataset. The whiskers extend to points
that lie within 1.5 inter-quartile ranges of the opposite quartile, so the lower quartile in the case of the
upper bound of the whiskers and the upper quartile in the case of the lower bound of the whiskers.
Observations outside this range are displayed as black points.
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and persistence compared to the other targetedmethods. Themethod thereby balances the different objectives
of targeted clustering well, and better than the other methods assessed in this study.

Evaluating the identified weather regimes, we find that all the targeted methods resolve the dynamical
drivers of extreme precipitation better than the non-targeted baseline PCA+ k-means approach (Figure 6).
Moreover, we find that the R-VAEmethod performs best in predicting the target variable from theweather
regimes assignment, followed by RMM-VAE up to a certain cluster number. Investigating the persistence
and separability of the regimes as proxies for their physical robustness, we find that while all targeted
methods perform worse than PCA, the RMM-VAE method performs best among the targeted methods
(Figure 9).

By investigating the dimensionality-reduced spaces estimated by the different methods (Figure 10), we
find that the two VAEmethods disentangle the dimension of the geopotential height field associated with
variations in precipitation over Morocco. However, while the R-VAE + k-means method subsequently
clusters geopotential height data in bands along this disentangled dimension, integrating the probabilistic
clustering with the targeted dimensionality reduction in the RMM-VAE method appears to identify more
coherent clusters.

Analyzing the reconstruction of the input space from the reduced representations, we find that both
VAE methods outperform the two linear methods (PCA + k-means and CCA + k-means) in terms of
reconstruction loss (Figure 11).While amore efficient reconstruction of the input space is expected from a
generic VAE architecture due to the possibility of fitting a non-linear encoding function (Murphy, 2023,
this result is not obvious here, given that the presented RMM-VAE method has the two additional
objectives of disentangling a scalar target variable and fitting probabilistic clusters.

The results highlight two trade-offs in identifying weather regimes targeted to a local-scale impact
variable. First, regimes that are more predictive of an impact variable risk compromising their physical
robustness are assessed here through regime persistence and separability (compare Figures 8 and 9).
Although the R-VAE + k-means method identifies the most targeted regimes, the method performs
worst in terms of cluster persistence and separability. This loss of physical robustness can imply that
the predictability of the regimes themselves is reduced, which is undesirable for their use in
applications such as extended-range forecasting. This trade-off was encountered by Bloomfield
et al. (2021), who found that clustering their target variable directly maximized information about
the impact (Bloomfield et al., 2020) but came at the cost of significantly reduced regime predictability
(Bloomfield et al., 2021). The second trade-off is that more predictive clusters can be achieved by
focusing the dimensionality reduction on a subset of the input space, as we see in Figure 12 in the case
of CCA, as well as the two VAE methods if the reconstruction loss is down-weighted using the β
parameter. However, the resulting regimes do not contain information on the full atmospheric phase
space, which implies a loss of information on transition dynamics. This trade-off is implicitly
encountered in methods that filter input days to the occurrence of extremes, thereby manually
subsetting the input space (Rouges et al., 2023).

The RMM-VAE method performs well in navigating these trade-offs. Among the targeted clustering
methods, it identifies the most robust clusters, while performing second-best only to the other VAE
method in terms of predictive skill. In contrast, the CCA + k-means method identifies clusters that attain a
similarly low separability score as the R-VAE + k-means method, while achieving a significantly lower
predictive skill. This result highlights the benefit of using a probabilistic machine learning method to fit a
non-linear dimensionality reduction that also allows incorporating a prediction target in a statistically
coherent model. Furthermore, the RMM-VAE method makes the trade-offs involved in identifying
targeted weather regimes explicit and allows their expression as part of the loss function of the model
(equation 4), rather than addressing them implicitly through the choice of cluster number (Gadouali et al.,
2020) or pre-filtering (Rouges et al., 2023). In addition, the RMM-VAE method identifies probabilistic
weather regimes that can give valuable information on transitional states, to be investigated in
future work.

The proposed RMM-VAE method has limitations that should be addressed in future work. For
example, we find that by using the full precipitation field as input, CCA is able to identify different
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spatial patterns of extreme precipitation associated with different regimes. This stands in contrast to the
VAE methods that are trained using total precipitation over Morocco as a scalar target variable, and
therefore, primarily disentangle the dynamical drivers of rainfall over regions along the coast that
contribute more to total rainfall. To address this, the RMM-VAE method could be further developed to
incorporate higher-dimensional target variables.

The RMM-VAE method could also be applied to other regions and target variables, including more
realistic and decision-relevant impact variables. In particular, precipitation based on ERA5 reanalysis
data, the target variable used here, has known biases, especially in the pre-satellite era (Lavers et al., 2022).
While the impact variable explored here is 3-day precipitation overMorocco, any impact variable that has
a justifiable link to the large-scale meteorological variables, such as renewable energy supply or the
number of people impacted by an extreme event, could be used. Furthermore, the sensitivity of the
regimes to pre-processing steps such as the choice of geographical region and the lowpass filter applied to
the data could also be further investigated. Future work could also assess the predictability of the regimes
themselves, their decadal variability, as well as their relationship to known teleconnections. This would
improve the understanding of their usefulness for applications such as sub-seasonal to seasonal forecast-
ing, dynamical adjustment and statistical downscaling of climate models.

The RMM-VAE method presented in this paper contributes a novel probabilistic machine learning
method to statistically relate large-scale atmospheric dynamics to regional extremes in local-scale impact
variables. The method shows promise in identifying weather regimes that disentangle the dynamical
drivers of the target variable while maintaining the physical robustness of the regimes better than other
methods, indicating its potential usefulness for a range of climate applications. The results also give
further insight into the trade-offs involved in targetingweather regimes to a local impact variable. Overall,
this contribution aims to highlight the benefits ofmotivating and guidingmethod development inmachine
learning with a physical research question and understanding of atmospheric dynamics, hopefully
contributing to the further development of suitable machine-learning methods in this field.
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A. Appendix - loss function derivations for R-VAE and RMM-VAE

A.1. R-VAE
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A.2. RMM-VAE
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B. Appendix - sensitivity analysis
To analyse the robustness of the results, the sensitivity of the results to two pre-processing steps is analysed:

• Averaging z500 over 3 days vs 5 days: qualitatively similar results, very similar predictive skill, ordering of latent space and
reconstruction error. 3-day clusters have a slightly decreased persistence and silhouette score, as expected.

• Selecting a slightly larger geographical region (westward shift and overall larger region tried). This influences all evaluated
metrics, however, the ranking of different methods in the different evaluation categories remains the same.

Sowhile these choices do affect the precise values of different evaluationmetrics, they do not affect the overall ordinal findingswhen
comparing the methods.

Furthermore, the sensitivity of cluster centers to subsampling the data is analyzed. This is important because it is not desirable for
the cluster centers to change drastically with new data. Figure A-1 shows the anomaly correlation coefficient (ACC) between the
cluster centers computed from subsamples of the data and the cluster centers computed from the full data.We find that the sensitivity
of the cluster centers to subsampling depends on themethod and cluster number. Overall, the PCA+ k-means and R-VAE + k-means
methods produce very robust clusters (ACC > 0.95) to subsampling up to a cluster number of 5. Beyond k = 5 the robustness to
subsampling degrades consistently for R-VAE + k-means, while it peaks again at k = 8 for PCA + k-means. Although the robustness
of cluster centres is overall slightly lower for the RMM-VAE method, the most robust cluster numbers are consistent with the
PCA + k-means method. The cluster centres identified by the CCA + k-means methods are the least robust to subsampling, with an
ACC smaller than 0.7 for all cluster numbers analysed. This analysis justifies illustrating the resulting cluster centres for k = 5 in the
results section and highlights that the choice of k depends on the method chosen.
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Figure A-1. 50 subsamples containing 80% of data points each are created, and cluster centres are
computed. The two sets of cluster centres are then paired by matching centres with the lowest Anomaly
Correlation Coefficient (ACC). The lowest of these maximum ACC values is recorded, corresponding to
the ACC of the least well-correlated cluster pair.
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C. Appendix - sample cluster timeseries

Figure A-2. Sample time series of cluster assignment in different methods.
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D. Statistical glossary

Cite this article: Spuler FR, Kretschmer M, Kovalchuk Y, Balmaseda MA and Shepherd TG (2024). Identifying probabilistic
weather regimes targeted to a local-scale impact variable. Environmental Data Science, 3: e25. doi:10.1017/eds.2024.29

Table A-1. Glossary of selected statistical and machine learning terminology based on
Murphy (2022)

Backpropagation Algorithm to calculate the gradient of a loss function and implement gradient descent
used to train neural networks. Part of the two-step cycle used to train neural networks:
during the forward pass, the output of the neural network is computed given the current
weights of the network. During the backward pass or backpropagation, the weights of
the hidden layers of the network are adjusted to reduce the loss function.

Divergence Distance metric between two probability distributions p and q, required to satisfy
D p,qð Þ≥ 0 with equality iff p = q, symmetry and triangle inequality. The Kullback–
Leibler divergence can be interpreted as the information lost by representing p with
q, and is defined as the difference between the negative entropy of p and the
crossentropy between p and q (Kullback and Leibler, 1951).

Latent space Also known as embedding space. A d-dimensional vector space that encodes
information about a higher-dimensional space in a meaningful representation.

Prior probability In Bayesian statistics, the prior probability refers to the assumed probability of a
variable before selected data or evidence are considered.

Posterior
probability

In Bayesian statistics, the posterior probability corresponds to the conditional
probability of statistical model parameters given the likelihood of the data and the
selected prior.

Regularization Penalty term added when fitting a statistical model used to prevent overfitting.
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