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Abstract
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1. Introduction

I should like to speak today about some of the latest developments that have taken
place in connexion with the theory of linear forms in the logarithms of algebraic
numbers. This is, of course, just one aspect of transcendence theory, but it has been
an especially active area of development throughout the past decade, and it has
found many applications relating to a wide variety of Diophantine problems.
I shall discuss some of these applications later in my talk, but let me begin with
some basic definitions.

2. Definitions

An algebraic number is a zero of a polynomial with integer coefficients; thus
if a. is algebraic we have

for some integers a0, ...,an. We can suppose that the polynomial on the left is
irreducible, and that ao,...,an are relatively prime; then n is called the degree of
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[2] Transcendence theory 439

a. and max(|ao|, ..., |an|) is called the height of a. In particular, the height of a
positive rational p/q, in lowest terms, is simply the maximum of p and q. A real
or complex number that is not algebraic is said to be transcendental.!

We shall be concerned with linear forms

where the a's and /J's denote algebraic numbers. We shall assume that the a's
are not 0 or 1, that the jS's are not all 0, and that the logarithms have their principal
values; the latter assumption involves no real loss of generality.

3. Linear forms in logarithms

The first result on the non-vanishing of A goes back to the famous work of
HermiteJ of 1873 in which he proved that e, the natural base for logarithms, is
transcendental; this implies that A^O when « = 1, j30 = 1, ^ = — 1. Hermite's
work rested on the construction of simultaneous approximations to the exponential
function, and it can be regarded as the main source of modern transcendence theory.
The work was generalized by Lindemann in 1882; in his classic memoir, he proved
that A^O when n = 1 for all j80,j81} not both 0, and this furnished, in particular,
the transcendence of TT = —/log(— 1). The next major step was taken by Gelfond
in 1929; he showed that A^O when n = 2, j30 = 0 and /S^a *s a n imaginary
quadratic irrational, whence, in particular, e" = (—1)~* is transcendental. Gelfond's
argument has its origins in earlier studies on integral integer-valued functions, and
it depends on an analysis of an extrapolation formula for the exponential function
similar to that occurring in some well-known papers of Polya and Hardy. In
fact Hardy sharpened an earlier result of Polya, or, as Hardy phrased it, put a
result of Polya in more pregnant form, by showing that among all transcendental
integral functions which assume integer values for all non-negative integer values
of the variable, that of least increase is the function 2Z. Analogous results relating
to integers in the Gaussian field were proved by Fukasawa in 1926, and it was
Gelfond's subsequent studies in this connexion that gave rise to his striking
discovery. Gelfond's result was extended to real quadratic irrationals J8X/J82 by
Kuzmin in 1930, and this implied, in particular, that 2V2 is transcendental. The
result was further extended by Gelfond and Schneider independently in 1934;

t For an introduction to the properties of transcendental numbers, see, for instance, the
author's monograph Transcendental Number Theory (Cambridge University Press, 1975).

X Unless otherwise stated, references throughout this article can be found in the lists at the
ends of the chapters of the book Transcendence Theory: Advances and Applications (Academic
Press, London and New York, 1977). Proceedings of a conference held in Cambridge in 1976,
edited by A. Baker and D. W. Masser.
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they succeeded in covering all ft,/^ with PJfS2 irrational and thereby solved the
famous seventh problem of Hilbert. One of the main features of the work is the
construction, by means of Dirichlet's box principle, of an auxiliary function that
vanishes to a high order at certain extrapolation points; some antecedents of the
method can be found in the writings of Siegel and Mahler, and it has proved to be
remarkably powerful.

In 1966, I generalized the Gelfond-Schneider Theorem to arbitrarily many
logarithms; I showed in fact that A^O when jS0 = 0 and either £a, ...,jSn or
logaj, ...,logam are linearly independent over the rationals, and, in 1967,1 showed
further that A^O when j80^0. The work depended on the construction of an
auxiliary function of several complex variables in place of a function of a single
variable as employed by Gelfond, and it also involved a new extrapolation technique.
Here the range of extrapolation was extended and the order of the derivatives
reduced, whereas, in previous work, the range was essentially fixed while the
differential order increased.

Now the results described so far may be regarded as essentially qualitative in
character, but the main applications of the theory rest on quantitative extensions
of the work giving positive lower bounds for | A | in terms of the degrees and heights
of the a's and /3's. The first results in this context were given by Morduchai-
Boltovskoj in 1923 in the case n = 1, and by Gelfond in 1935 in the case n = 2,
j80 = 0. In 1966, I obtained a positive lower bound for | A| of the desired kind in
the general case, and many refinements have followed subsequently. It will
suffice here if I simply record the latest results in this field; they include most of
the earlier results as special cases, and their proofs can be found in the proceedings
of the conference cited above. We shall suppose that ĉ  and j8}- have heights at
most Aj (>4) and B (>4) respectively and that the field generated by the a's and
jS's over the rationals has degree at most d. We put £l = \ogAx...\ogAn, and
Q' = Q/log^. We have then

THEOREM. If A J^O then \A\>(BD)-Cnloeii', where C = (I6nd)mn. Further, if
j80 = 0 andPi, ...,j8n are rational integers, then in fact \A\>B-°cltatia'.

When the latter hypotheses concerning the yS's are satisfied, we say that we are
dealing with the rational case; and this commonly arises in applications. As we
shall see later, a crucial feature of the result is that it is best possible with respect to
An; indeed it is also best possible with respect to B, and in fact likewise with
respect to the parameters A1,...,An_1, except for the second order term logQ'.
Moreover the dependence of C on « is the most precise established to date; here,
in particular, an idea of Shorey is utilized. On the other hand, no special significance
attaches to the constant 200 occurring in the expression for C, and it could certainly
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be substantially reduced if, for instance, one imposed minor restrictions on n or d;
this is especially relevant in connexion with computational work, and some useful
improvements have already been obtained by van der Poorten, Loxton and
others.f

There is also an extensive /?-adic theory of linear forms in logarithms. The
subject was initiated by Mahler in the 1930's when he obtained natural p-adic
analogues of both the Hermite-Lindemann and the Gelfond-Schneider Theorems;
indeed, in the course of these studies, Mahler laid the foundations of the />-adic
theory of analytic functions which has been fundamental to all later works in the
field. In fact most of the results referred to above have now been generalized
/>-adically; in particular, van der Poorten has recently established an estimate for
the /»-adic valuation of A of the same degree of precision as that quoted earlier in
the Archimedean case, though subject to a mild restriction on one of the yS's.
See his paper in the proceedings cited above.

4. Diophantine equations

The theory of linear forms in logarithms has now had a considerable influence
on the subject of Diophantine equations. First, some ten years ago, it was applied
to give bounds for all the solutions of the Thue equation f(x,y) = m, where/
denotes a binary form, the Mordell equation j 2 = x^+k, and more generally the
hyperelliptic equation ym =f(x), where/denotes a polynomial with at least three
simple zeros and m is an integer >2. A little later it was further applied to
determine effectively all the integer points on an arbitrary curve of genus 1, and,
moreover, all elliptic curves with a given conductor. The latter theorem is due to
Coates; it involved /?-adic analysis and it can be viewed as an effective version of a
well-known result of Mahler in the context of the Thue-Siegel theory.

Now all the work just described relates to equations in only two variables x and y,
which signify either integers or rationals with denominators composed solely of
powers of a fixed set of primes; and, for several years, it appeared that this binary
character would be an essential feature of all the results obtained in this field.
Recently, however, a remarkable new series of developments was begun; it arose
from the sharpened form of the estimates for A mentioned earlier, involving, in
particular, the best possible dependence on An. First it was noted that the estimates
yielded at once an explicit upper bound for all solutions in integers x> 1, y>\,
»>2 of the equation axn—byn = c, where a,b,c(^0) are any given integers.
Next Tijdeman succeeded in effectively resolving the famous Catalan equation
XP—yi = 1 in integers x,y,p,q (all > 1). Shortly afterwards, Schinzel and Tijdeman
showed that one could likewise resolve the equation ym =f{x), of hyperelliptic

t Compare the papers by Waldschmidt in this volume.
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type, in integers x, y > 1, m > 2; and many novel results have followed. For instance,
Shorey and Tijdeman have effectively dealt with the equation

in integers x,y,m,n (all > 1), when either x is fixed, or n+1 or y has a fixed prime
factor; and Gyory, Tijdeman and Voorhoevef have shown that, for any integer

the equation

has only finitely many solutions in integers *> 1, y^ 1, m> 1, all of which can, in
principle, be effectively determined. In another direction, van der PoortenJ has
used p-adic analysis to resolve effectively the equation xp—yq = zr in integers
x,y, z,p,q (all > 1), where z is composed solely of powers of a fixed set of primes
and r is the least common multiple of p and q. And recently Stewart§ has shown
that the Fermat equation xn+yn = zn has only finitely many solutions in positive
integers x,y,z and n (>2), provided only that \x—y\ is bounded.

To illustrate the latest advances, let us outline a proof of the last result. We
can plainly assume that x,y,z are relatively prime and that x<y<z; then
z—x = kXn, z—y = lYn for some integers X, Y and some rationals k, I of the form
1/rfor 2/d where dis a divisor of n. It follows that \kXn-lYn\ is bounded, and so

where
A =

and the implied constant is absolute. This gives log| A|<^ -wlogX+logn. But we
can assume that X> 1, and then, from the theorem quoted in Section 3, we obtain
log|A|> — (log w)3 log .ST. A comparison of estimates shows at once that n is
bounded; hence, in view of the work mentioned earlier on the hyperelliptic equation,
also x,y,z are bounded, and this establishes the result. Clearly, in principle, all
solutions can be determined by a finite amount of computation.

A similar argument applies to the Catalan equation xp—yv = 1. Here we can
assume that p,q are odd primes, and it will suffice to treat the case p>q. Then
x = kXa+1, y = IYP-1 for some integers X, Y, where k is 1 or l/p and / is 1 or
\\q. Plainly we have \p\o%x—q\o%y\^y~<l, and thus | A\<^(kXq)~1, where

A = p log k - q log l+pq log {Xj Y).

But now an application of the theorem quoted in Section 3 shows that q<^ (log/?)4.
Further it is clear that the linear form

A'=plog(x/Y")-qlogl

t To appear.
t Ada Arithmetica 33 (1977), 195-207.
§ Mathematika 24 (1977), 130-132. A similar result was obtained independently by Inkeri

and van der Poorten.
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satisfies | A'\^(JYP)~1, and hence, from a second application of the theorem, we
obtainp-4q(logp)s. Thus/? is bounded, and, as in the previous proof, the required
result now follows from the theorem referred to earlier on the hyperelliptic
equation. It is easy to write down explicit bounds for p, q,x,y, but they are large,
and there would seem to be no likelihood, at present, of dealing with the remaining
possibilities even with a computing machine. I might remark, however, that
examples in this field are known where bounds of the order of 1010500 have been
reduced to manageable figures by means of simple observations from the theory
of Diophantine approximation.!

5. Elliptic and Abelian functions

Finally, I should like to mention briefly some recent generalizations of the
theory of linear forms in logarithms in the context of elliptic curves.

We define now

A = /30+/3i"i+ •••+£»«»,

where the j8's are again algebraic numbers, not all 0, and uv...,un are algebraic
points of a Weierstrass elliptic function p(z) with algebraic invariants; by an
algebraic point of p we mean a number u such that either p(w) is algebraic or u
is a pole of p. Schneider proved in 1937 that A^O when n = 2, /Jo = 0, provided
that p(uxz), p(u2z) are algebraically independent. In 1968, I proved that A^O
when n = 2, /30^0 in the case when ux and «2 are fundamental periods of £>(z);
in 1975, Masser showed that A^ 0 in the case when p(z) has complex multiplication
and ux,...,un are linearly independent over the corresponding complex quadratic
field. Subsequently a number of authors have given quantitative refinements of
this result; see the paper by Anderson in the proceedings cited earlier. The estimates
at present, however, are somewhat weaker than those established in the case of
linear forms in logarithms. The main reason for the extra difficulty encountered in
the elliptic case is that the Weierstrass functions have order 2, and not 1 as for the
exponential function. Thus it is necessary to use a doubly-dense sequence of
extrapolation points, and not just the integers as suffices in the earlier context.
This leads one to some rather delicate questions relating, for instance, to the
division value properties of the Weierstrass functions; in particular, some recent
work of Bashmakov and Ribet on the subject has proved useful. The methods can
be generalized, as Masser, Lang and Coates have shown, to deal also with Abelian
functions, provided that one makes suitable assumptions concerning complex
multiplications; and, furthermore, the theory can be carried over to the /?-adic
domain for a wide class of primes/?, as has been demonstrated recently by Bertrand
and Flicker.

t See A. Baker and H. Davenport, Quart. J. Math. Oxford, Ser (2), 20 (1969), 129-137.
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Well, I should say before closing that I have touched upon only a few of the
topics to which transcendence theory has now been successfully applied. More
especially, I have made no mention of the penetrating role it has played in connexion
with class number problems or questions concerning divisor properties of arith-
metical sequences. Nevertheless, I hope that I have said enough to give you an
adequate impression of this fast-growing subject, which has plainly moved well
beyond the rudimentary researches of Liouville and Cantor with which it all
began.

Trinity College
Cambridge
England
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