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ON A GLOBAL UPPER BOUND FOR JESSEN’S
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Abstract
In two recent papers a global upper bound is derived for Jensen’s inequality for weighted
finite sums. In this paper we generalize this result on positive normalized functionals.
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1. Introduction and preliminaries

Let X = {x;} be a finite sequence of real numbers from the fixed closed interval I =
la, b],a < b, and p = {p;}, with }_ p; = | a sequence of positive weights associated
with X. If we have a convex function f : I — R, from Jensen’s inequality we have

0= pif(xi)— f(Z pixi>.

The following was proved in [6].

THEOREM 1.1. Let X, p be as above. Then, if f is convex on I = [a, b], we have that

Y pifi) - f(Z p,-x,-) < Sy(a. b), (1.1)

where

a+b
Sf(a,b)i=f(a)+f(b)—2f< 5 )

However, this fact can be derived from the following two theorems published earlier
in [4, Page 50].
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THEOREM 1.2. LetX, p be as above. Then, if f is convex on I = [a, b], we have that
f(a+b—2pl-xi> <@+ fb) = pifx). (1.2)

THEOREM 1.3. LetX, p be as above. Then, if f is convex on I = [a, b], we have that
f(a th-3 p,-x,-) > 2f(“ ;b) - f(Z pixi>

b
sz(a; )—Zpiﬂxi). (1.3)

Combining (1.2) and (1.3) it is clear that we also have (1.1).
The purpose of this paper is to generalize the above results for normalized positive
functionals.

Let E be a nonempty set and L be a linear class of real-valued functions f : E — R
having the properties

(af +bg)e L Va,beR (Ly)

ifleL, thatis, f()=1L VtecE, then felL. (L»)

We also consider positive linear functionals A : L — R. That is, we assume that
A(af +bg) =aA(f)+bA(g)eL VY f,gelL, a,beR, (Ap)

if feL, f¢() >0 onE then A(f)>0 (A ispositive). (A2)

If A(1) =1, we say that A is a normalized functional. The following generalization of
the Jensen’s inequality for convex functions is known (see [5, Page 47]).

THEOREM 1.4. Let L satisfy L1 and Ly on a nonempty set E, and assume that ® is
continuous convex function on an interval I C R. If A is a normalized linear positive
functional, then for all g € L such that ®(g) € L we have A(g) € I and

P(A(g)) = A(P(g)). (1.4)

Also, the proof of the following theorem can be found in [5, Page 98].

THEOREM 1.5. Let ® be convex on I =[a, b], (—oo0 <a < b < o0), let L satisfy
conditions L1 and Ly and let A be a positive normalized functional on L. Then for
every g € L such that ®(g) € L (so that a < g(t) <b), we have

A (g)) < qumjtwmm. (15)
—a b—a
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2. Main results

THEOREM 2.1. Let L satisfy L1 and Ly and let ® be a convex function on I = [a, b].
Then for any positive normalized linear functional A on L and for any g € L such that
®(g) € L we have

A(<I>(g))—<I>(A(g))5q>(a)+<l>(b)—2©(a;b)- 2.1)

If @ is concave, the inequality in (2.1) is reversed.

PROOF. From inequality (1.5) we have

b— A(g) Oa) + A(g) ;acb(b) —®(AR). (2.2)

A(P(g) — ©(Ag) = —— h—

Now, using (2.2) we deduce (2.1) showing that

D= A8 g0y + A8 44— wAcg)) < Bla) + D) - m(ﬂ '
b—a b-a 2
2.3)

It is easy to see that (2.3) is equivalent to

dD(a)(l — m) + d>(b)<1 — M) + ®(A(g)) = 24)(@). 2.4)
b—a b—a 2

Applying Jensen’s inequality to the left-hand side of (2.4) we obtain

l[cp(a)<1 _ w) + d>(b)(1 _ M) n <I>(A(g)):|
2 b—a b—a

a+b 1 b— A(g) A(g) —a _ a+b
zcb( 2 +E[A(g)_ b—a ° b—a bD_QD( 2 )

The last equality proves inequality (2.4) which is equivalent to (2.1).
The concave case can be proved by the same arguments using the fact that —® is a
convex function. O

The following theorem is an extension of Theorem 1.2.

THEOREM 2.2. Let ® be convex on I =|a, b], (—00 <a < b < o0); let L satisfy
conditions L1 and L, and let A be a positive normalized functional on L. Then for
every g € L such that ®(g) € L (so that a < g(t) <b), we have

Pa+b—Ag) = Pla) + D) — A(P(g)).

PROOF. For a proof of this result see [1, Page 2]. O

The next theorem is an extension of Theorem 1.3.
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THEOREM 2.3. Let ® be convex on I =[a, b], (—o0 <a < b < 00), let L satisfy

conditions L| and Ly and let A be a positive normalized functional on L. Then for
every g € L such that ®(g) € L (so that a < g(t) < b), we have

¢m+b—A@»zN(3§f)—®mw»

PROOF. From the reversed Jensen’s inequality [5, Page 83] we have

Cb(px + qy) _ PP +4q2()
p+q p+q

forg <0,p>0,p+4q>0. (2.5)

Putting p=2, g=—1, x =(a+b)/2 and y = A(g) in (2.5) we obtain the desired
result. O

Let us observe that with the combination of Theorems 2.2 and 2.3 we can obtain an
alternative proof of Theorem 2.1, just by eliminating the expression ®(a + b — A(g)).
Now we show that we can improve the upper bound for Jensen’s inequality.

THEOREM 2.4. Let L satisfy L1 and Ly and let ® be a convex function on I = [a, b].
Then for any positive normalized linear functional A on L and for any g € L such that
®(g) € L we have

1

1
A(P(g)) — P(A(g)) = {5 +o—

a+b
2

— A(g)‘} -So(a, b). (2.6)

If ® is concave, the inequality in (2.6) is reversed.
For the proof of this theorem we need following lemma.

LEMMA 2.5. For a convex function f:Dy—R, x,yeDy, 0<p,q=<]1,
p +q =1, we have that

min{p, q}Sr(x, y) < pf(x) +qf(y) — f(px +qy) <max{p, g}Sr(x, y).

PROOF. For a proof of this result see [6]. O

PROOF OF THEOREM 2.4. Using Theorem 1.5 we have

— A A(o) —
Mé@»séz—§9¢wrwlﬁ—ﬁ¢wy
—a b—a
Denote
)
p= b—a ’

sopel0,1]and A(g)=p-a+ (1 —p)-b.
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Hence, we have

A(P(g)) — P(A(g)

< wc{)w) + M@(b) — d(A(g))
—a b—a
=p®P@)+0—-p)®Db)—P(p-a+(1—-p)-b)
1 1 |la+b
<max{p, 1 — p}Se(a, b) = {— + — - A(g)‘ }Sm(a, b).
2 b—al| 2

The third line follows from Lemma 2.5. At the end, if ® is concave, then —® is
convex, so that the conclusion follows. O

We can also restate Theorem 2.4 in the following form.

THEOREM 2.6. Let L satisfy L1 and L», let ® be a convex function on I = [a, b],

and let A be a positive linear functional on L. Suppose thatk € L, k >0 on E and
A(k) > 0. Then for any g1 € L such that kg, € L and k®(g1) € L we have

AR _ (A0 {24
12 b-a

A(k) A(k)
If ® is concave, the inequality in (2.7) is reversed.

a+b  Alkg)
2 Ak)

} -So(a, b). (2.7)

In [6] we can find a refinement of the inequality given in (1.1) introducing the
characteristic c(f):

> pif(xi) — f(X pixi)
Sy(a, b)

c(f) :=sup

’

where the supremum is taken over all p, X € [a, b], a, b € D . Hence, we have

}:mﬂm%q(ihmjsaﬁ&mw»

The refinement of the bound is described by the next theorem (see [4]).

THEOREM 2.7. For any convex function f,

1
—<c <1.
;=)=
In our new terms the characteristic for a convex function @ is described by

A(®(g)) — B(A(g))
d) = , 2.8
C®)y=sup = @ b) (2.8)

where the supremum is taken over all positive normalized linear functionals A on L
and over all g € L.
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Here, we give a proof of Theorem 2.7 in our new terms.
First, it is obvious that C(®) < 1.
To show C(®) > 1/2, we first define the positive, normalized functional A; by

A1(g) = pog(x) + (1 — po)g(y),
where x, y are some points in the starting set £ and 0 < pg < 1. Finally,

A(P(g) — P(AR)

C(P) = sup

Ag Se(a, b)
A1(P(g)) — P(A1(8))
T posx,y So(a, b)
— sup po®(g(x)) + (1 — po)®(g(y)) — P(pog(x) + (1 — po)g(y))
D0X,Y So(x,y)
1
> sup [min{po, 1 — po}] = >
Po
by Lemma 2.5.

3. The Hadamard inequality
Let us note that from (2.6) we have in the case A(g) = (a + b)/2 that

+b +b 1
<1><" : ) < A@() < cb(“T) + 5 So(a. b).

®(a) + ®(b)
- 5

a+b (3.1
¢<T) <A(P(g) <

which is a generalization of the well-known Hadamard inequality (see [5, Page 146]).
In what follows we denote by ¢; (i € N) the function ¢; : [a, b] — R defined by

ei(x)zxi, x €la, b].
Let A : Cla, b] — R be a linear positive functional and let a; be defined by
a; .= A(e,-), ieN.

In what follows we assume that ag = 1. For such a functional, Jessen’s inequality is
well known and it states that for any convex function ® we have

b—a
A(P) > ®(a;) and A(P) < b

1 ay—a
)
@+ 2=

—da

(D).
a

The following result was obtained by Lupas in [3].
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THEOREM 3.1 (Lupas [3]). Let A : Cla, b] — R be a positive linear functional with
A(eg) = 1. Then, for any convex function ® € Cla, b), there exist distinct points
&1, & € la, b] such that

&1+ &

2 9
where the divided difference of a function ® on the nodes xi, . . ., xj is denoted by
[x1, ...y x5 @

A(®) — D(a)) = (a2 —a%)[a, £; @],

THEOREM 3.2. For any convex function ® € Cla, b] the following inequality holds:

A(cb)—cb(al)s[lJr L |et?b

—daj
2 b—al|l 2

PROOF. Set g = ¢ in Theorem 2.4. O

:|Sq>(a, b).

REMARK 3.3. In fact, Theorems 2.4 and 3.2 are equivalent. Indeed, let B: L — R
defined by
B(P)=A(Poyg),
where A is a positive normalized linear functional and g € L such that o ge L. It
follows from Theorem 3.2 that for any convex function ® : [a, b] — R we have
1 |a+b

1
B(q))_B(el)f[E"Fm 2

Since B(e1) = A(g) we obtain Theorem 2.4.

—ay

}&p(a, b).

COROLLARY 3.4. Let A be a normalized linear positive functional. If A(®) =
A(®(a + b —-)) for every ® € Cla, b], then for any convex function ® € Cla, b] we

have b ® o0
® atb < A(®) < M. (3.2)
2 2
PROOF. We have A(a + b —e;) = A(e1), which implies that A(e;) = (a + b)/2.
Therefore, from (3.1) we obtain (3.2). 0

REMARK 3.5. Let ®:[a, b] > R be a convex function and p:[a, b)] > R be
a nonnegative integrable function which is symmetric with respect to the point
(a + b)/2, thatis, p(x) = p(a + b — x). If we consider the normalized linear positive
functional

Ji pe)®(x) dx

A(D) =
(®) fabp(x)dx

in (3.2), we obtain

b b b
@(“;b)/ P(x)dxif p(x)cb(x)dxsw/ p(x) dx

which is a well-known inequality due to Fejér [2].
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3.1. A functional specific characteristic number In what follows the characteristic
number defined in (2.8) is specialized to a particular normalized linear positive
functional. Let ®: D — R be a convex function which is not an affine function
and let A be a positive linear functional defined on a linear set of functions F, with
domain D. We assume [a, b] C D and denote by x4 5] the characteristic function of
the interval [a, b]. We further assume that for any a < b, the condition

A(X[a,p1) >0

is satisfied.

If ® is not an affine function and ® is continuous and convex, we define the number
Ca(®P) by
Al (@) — @ (al?)

®(a) + ®(b) — 20((a + b)/2)

Cp(D) :=sup

where
A(X[a,p1P) gl

A(X(ap) !

and the supremum is taken over all values a, b, a < b, [a, b] C D. From the definition
of C4(P) we have

Alebl(@) = = Al®l)(ey)

Al (@) — o (al?) < CA(<I>)<<I>(a) + ®(b) — 2d><a ; b)).

From Theorem 3.2 it follows that

a—+b [a,b]
2 4

1 1
Ca(d) < =
a( )_2+lelipbb_a

Now let us consider the functional A : C[a, b] — R given by

1 b

From Theorem 3.1 we obtain

PRy
A(<I>)—<I><aJ2rb)=(b 2) [Sl,leréz,Ez; <I>],

12 2

which gives

A(P) — P((a+b)/2) _ LI, G+ 6)/2, 65 @)
O(a) + D) —20(a+b)/2) 6 [a,(a+b)/2, b, d]

Letb =a + h. Then

C.(®) > lim A(D) — D((a+b)/2) .
h—0 ®(a) + ©(b) —2®((a + b)/2)
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If ® € C%(D), then
i A(P) — ®((a +b)/2) 1
h—0 ®(a) + D) —20((a+b)/2) 6

= Ca(e2).

We summarize the result obtained as follows.
For the functional A defined by

1 b
A(D)= —— / d(x)dx
b—a J,
and any function ® € C?(D) we have

1
Ca(er) <Cp(P) < 3

We conclude the discussion on the characteristic c4(cot) by stating the following
conjecture.

CONJECTURE 3.6. Let A be a normalized linear positive functional on a linear class
of functions L, A: L — R and let ® € L be a convex, nonaffine function. Then the
following inequality holds

Ca(e2) =Ca(®) < 1.

4. Applications to means

In this section we give some applications of Theorem 2.4 to some well-known
means.
We start with the generalized mean with respect to the operator A and W:

My(g, A) =y HAW(g)), gelL.

THEOREM 4.1. Let L satisfy conditions L and L, and let A be a positive normalized
functional on L. Let x,V :[a, b] > R be continuous and strictly monotonic
functions, such that the function ® = y oy~ is convex. If, for every g € L, the
functions ¥ (g), ¢(g) € L, then ®(A(Y(g))) is well defined and the inequality

1

1
X (My (g, A)) — x(My (g, A) < {5 S —

a+b
2

— ¥ (My (g, A))’} - So(a, b)
(4.1)

holds. The inequality in (4.1) is reversed if the function ® is concave.

PROOF. For g € L, we have both ¥/ (g), x(g) € L by assumption. Hence, ® (¥ (g)) =
x(g) € L. Thus, if ® is convex, then (4.1) follows from Theorem 2.4 with g replaced

by ¥ (g). 0

The next step is the application to generalized classical means:

A(ghHYr, r#0;

[r] ._
Mg, 4) = {exp(A(ln g)), r=0.
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THEOREM 4.2. Let L satisfy conditions L and Ly and let A be a positive normalized
functional on L. If, for every g € L, the functions g",Inge L, r#0, then
D (AP (g))) is well defined and the inequality

[MBl(g, A} — (Mg, Y

1 1 la+b a+b\*""
<— — [ plr] MV a5/ 2 psir 2 ’
_{2+b_a 5 {M"(g, )}‘} <a +

2
4.2)
holds for s >0, s >r or s <0, s <r. Inthe case s >0, s <r or s <0, s >r the
inequality (4.2) is reversed. Also

A(ln g) — In(M"(g, A))
1 1 la+b 4ab
5{§+b_a }'ln<<a+b)2>’ )

2
fors =0,r <O. Inthe case s =0, r > 0 the inequality (4.3) is reversed. Finally

— {M[r](g, A)}r

a+b
2

1 1
[5] S_ [0] N -
e

_ 1‘} . (esa/Z _ esb/2)2’

4.4)
forr =0, 5> 0. Inthe case r =0, s < 0 the inequality (4.4) is reversed.

PROOF. The proof of the theorem follows from application of Theorem 4.1 and the
cases given in the lines that follow. Let ¥ (x) =x", r #£0, x(x) =x%, s £0, ¥ (x) =
Inx,r=0, x(x)=Inx and s = 0. For s, r # 0 a function ® = (x o ¥ ") (x) = x*/"
isconvexif s >0, s >rors <0,s <r.

For s =0, r # 0 a function ®(x) = (x o 1//‘1)(x) = (1/r)Inx is convex if r < 0.

Forr =0, s # 0 a function ®(x) = (x o ¥~ 1) (x) = €** is convex if s > 0.

Now, using Theorem 4.2 we have proved (4.2). The last part of the theorem follows
from concavity of the function. o

The next application is Holder’s inequality of the first type.

THEOREM 4.3. Let L satisfy L1 and L, and let A be a positive linear functional on L.

Let p>1and q suchthat 1/p+1/q=1.If f,g>00n E, fP, g, fg € L, then we
have

A(fg) — (Ar™M) P (Agh) '

- {A(gq) Agh)|a+b _A(f_p)‘}<al/p+bl/p_2<a+b>1/1’)_
2 g4 2

2 b—a
4.5)

For 0 < p < 1 the inequality (4.5) is reversed.
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PROOF. Let us note that the function

s

D)= ———
V=1

s#0,1

is a convex function. Now, from (2.7) we obtain

1 [A(k(gl)s) B <A(k81)>s:|
ss—D| AW A(k)
1 1 |la+b A(kg) 1 s s _Afath §
5{§+b—a - }'s(s—n(a 0 2( 2 ))
(4.6)

2 A(k)

After we make substitutions, s = 1/p, k = g9/A(g?) and gy = fP /g4, we obtain the
desired inequality. The reverse of inequality in (4.5) for O < p < 1 follows from the
inequality given in (4.6). O

The second type of Holder’s inequality is as follows.

THEOREM 4.4. Let L satisfy L1 and L and let A be a positive linear functional on L.
Let pe R\ (0, 1) and q suchthat 1/p+1/qg=1.1f f,g>00n E, fP, g1, fgel,

then we have
((AFPNYP(Ag) ) — (A(fg))?
P
}(a”—i—b” —2(‘“2%) )
4.7

ADP  A@DPla+b 1—¢
5{ 5 b | 2 AU

For 0 < p < 1 the inequality (4.7) is reversed.

PROOF. Again, we consider the convex function

s

Ve — 1)

s#0,1
for s = p e R\ (0, 1), and Theorem 2.6. Using (2.7) with the substitutions £ = g9,
g1 = fg' ™% we obtain the desired result.

The reverse of this inequality follows by the same argument as in the previous
theorem. O
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