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Abstract
In two recent papers a global upper bound is derived for Jensen’s inequality for weighted
finite sums. In this paper we generalize this result on positive normalized functionals.
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1. Introduction and preliminaries

Let x̃ = {xi } be a finite sequence of real numbers from the fixed closed interval I =
[a, b], a < b, and p̃ = {pi }, with

∑
pi = 1 a sequence of positive weights associated

with x̃ . If we have a convex function f : I → R, from Jensen’s inequality we have

0≤
∑

pi f (xi )− f

(∑
pi xi

)
.

The following was proved in [6].

THEOREM 1.1. Let x̃ , p̃ be as above. Then, if f is convex on I = [a, b], we have that∑
pi f (xi )− f

(∑
pi xi

)
≤ S f (a, b), (1.1)

where

S f (a, b) := f (a)+ f (b)− 2 f

(
a + b

2

)
.

However, this fact can be derived from the following two theorems published earlier
in [4, Page 50].

1Technical University of Cluj-Napoca, Department of Mathematics, Romania;
e-mail: bogdan.gavrea@math.utcluj.ro.
2University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia;
e-mail: julije@math.hr.
3University Of Zagreb, Faculty Of Textile Technology, Zagreb, Croatia;
e-mail: pecaric@mahazu.hazu.hr.
c© Australian Mathematical Society 2009, Serial-fee code 1446-1811/2009 $16.00

246

https://doi.org/10.1017/S1446181109000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000091


[2] On a global upper bound for Jessen’s inequality 247

THEOREM 1.2. Let x̃ , p̃ be as above. Then, if f is convex on I = [a, b], we have that

f

(
a + b −

∑
pi xi

)
≤ f (a)+ f (b)−

∑
pi f (xi ). (1.2)

THEOREM 1.3. Let x̃ , p̃ be as above. Then, if f is convex on I = [a, b], we have that

f

(
a + b −

∑
pi xi

)
≥ 2 f

(
a + b

2

)
− f

(∑
pi xi

)
≥ 2 f

(
a + b

2

)
−

∑
pi f (xi ). (1.3)

Combining (1.2) and (1.3) it is clear that we also have (1.1).
The purpose of this paper is to generalize the above results for normalized positive

functionals.
Let E be a nonempty set and L be a linear class of real-valued functions f : E→ R

having the properties

(a f + bg) ∈ L ∀a, b ∈ R (L1)

if 1 ∈ L , that is, f (t)= 1L ∀t ∈ E, then f ∈ L . (L2)

We also consider positive linear functionals A : L→ R. That is, we assume that

A(a f + bg)= a A( f )+ bA(g) ∈ L ∀ f, g ∈ L , a, b ∈ R, (A1)

if f ∈ L , f (t)≥ 0 on E then A( f )≥ 0 (A is positive). (A2)

If A(1)= 1, we say that A is a normalized functional. The following generalization of
the Jensen’s inequality for convex functions is known (see [5, Page 47]).

THEOREM 1.4. Let L satisfy L1 and L2 on a nonempty set E, and assume that 8 is
continuous convex function on an interval I ⊂ R. If A is a normalized linear positive
functional, then for all g ∈ L such that 8(g) ∈ L we have A(g) ∈ I and

8(A(g))≤ A(8(g)). (1.4)

Also, the proof of the following theorem can be found in [5, Page 98].

THEOREM 1.5. Let 8 be convex on I = [a, b], (−∞< a < b <∞); let L satisfy
conditions L1 and L2 and let A be a positive normalized functional on L. Then for
every g ∈ L such that 8(g) ∈ L (so that a ≤ g(t)≤ b), we have

A(8(g))≤
b − A(g)

b − a
8(a)+

A(g)− a

b − a
8(b). (1.5)
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2. Main results

THEOREM 2.1. Let L satisfy L1 and L2 and let8 be a convex function on I = [a, b].
Then for any positive normalized linear functional A on L and for any g ∈ L such that
8(g) ∈ L we have

A(8(g))−8(A(g))≤8(a)+8(b)− 28
(

a + b

2

)
. (2.1)

If 8 is concave, the inequality in (2.1) is reversed.

PROOF. From inequality (1.5) we have

A(8(g))−8(A(g))≤
b − A(g)

b − a
8(a)+

A(g)− a

b − a
8(b)−8(A(g)). (2.2)

Now, using (2.2) we deduce (2.1) showing that

b − A(g)

b − a
8(a)+

A(g)− a

b − a
8(b)−8(A(g))≤8(a)+8(b)− 28

(
a + b

2

)
.

(2.3)
It is easy to see that (2.3) is equivalent to

8(a)

(
1−

b − A(g)

b − a

)
+8(b)

(
1−

A(g)− a

b − a

)
+8(A(g))≥ 28

(
a + b

2

)
. (2.4)

Applying Jensen’s inequality to the left-hand side of (2.4) we obtain

1
2

[
8(a)

(
1−

b − A(g)

b − a

)
+8(b)

(
1−

A(g)− a

b − a

)
+8(A(g))

]
≥8

(
a + b

2
+

1
2

[
A(g)−

b − A(g)

b − a
a −

A(g)− a

b − a
b

])
=8

(
a + b

2

)
.

The last equality proves inequality (2.4) which is equivalent to (2.1).
The concave case can be proved by the same arguments using the fact that −8 is a

convex function. 2

The following theorem is an extension of Theorem 1.2.

THEOREM 2.2. Let 8 be convex on I = [a, b], (−∞< a < b <∞); let L satisfy
conditions L1 and L2 and let A be a positive normalized functional on L. Then for
every g ∈ L such that 8(g) ∈ L (so that a ≤ g(t)≤ b), we have

8(a + b − A(g))≤8(a)+8(b)− A(8(g)).

PROOF. For a proof of this result see [1, Page 2]. 2

The next theorem is an extension of Theorem 1.3.
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THEOREM 2.3. Let 8 be convex on I = [a, b], (−∞< a < b <∞); let L satisfy
conditions L1 and L2 and let A be a positive normalized functional on L. Then for
every g ∈ L such that 8(g) ∈ L (so that a ≤ g(t)≤ b), we have

8(a + b − A(g))≥ 28
(

a + b

2

)
−8(A(g)).

PROOF. From the reversed Jensen’s inequality [5, Page 83] we have

8

(
px + qy

p + q

)
≥

p8(x)+ q8(y)

p + q
for q < 0, p > 0, p + q > 0. (2.5)

Putting p = 2, q =−1, x = (a + b)/2 and y = A(g) in (2.5) we obtain the desired
result. 2

Let us observe that with the combination of Theorems 2.2 and 2.3 we can obtain an
alternative proof of Theorem 2.1, just by eliminating the expression8(a + b − A(g)).

Now we show that we can improve the upper bound for Jensen’s inequality.

THEOREM 2.4. Let L satisfy L1 and L2 and let8 be a convex function on I = [a, b].
Then for any positive normalized linear functional A on L and for any g ∈ L such that
8(g) ∈ L we have

A(8(g))−8(A(g))≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
− A(g)

∣∣∣∣} · S8(a, b). (2.6)

If 8 is concave, the inequality in (2.6) is reversed.

For the proof of this theorem we need following lemma.

LEMMA 2.5. For a convex function f : D f → R, x, y ∈ D f , 0≤ p, q ≤ 1,
p + q = 1, we have that

min{p, q}S f (x, y)≤ p f (x)+ q f (y)− f (px + qy)≤max{p, q}S f (x, y).

PROOF. For a proof of this result see [6]. 2

PROOF OF THEOREM 2.4. Using Theorem 1.5 we have

A(8(g))≤
b − A(g)

b − a
8(a)+

A(g)− a

b − a
8(b).

Denote

p =
b − A(g)

b − a
,

so p ∈ [0, 1] and A(g)= p · a + (1− p) · b.

https://doi.org/10.1017/S1446181109000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000091


250 B. Gavrea, J. Jakšetić and J. Pečarić [5]

Hence, we have

A(8(g))−8(A(g))

≤
b − A(g)

b − a
8(a)+

A(g)− a

b − a
8(b)−8(A(g))

= p8(a)+ (1− p)8(b)−8(p · a + (1− p) · b)

≤max{p, 1− p}S8(a, b)=

{
1
2
+

1
b − a

∣∣∣∣a + b

2
− A(g)

∣∣∣∣}S8(a, b).

The third line follows from Lemma 2.5. At the end, if 8 is concave, then −8 is
convex, so that the conclusion follows. 2

We can also restate Theorem 2.4 in the following form.

THEOREM 2.6. Let L satisfy L1 and L2, let 8 be a convex function on I = [a, b],
and let A be a positive linear functional on L. Suppose that k ∈ L, k ≥ 0 on E and
A(k) > 0. Then for any g1 ∈ L such that kg1 ∈ L and k8(g1) ∈ L we have

A(k8(g1))

A(k)
−8

(
A(kg1)

A(k)

)
≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
−

A(kg1)

A(k)

∣∣∣∣} · S8(a, b). (2.7)

If 8 is concave, the inequality in (2.7) is reversed.

In [6] we can find a refinement of the inequality given in (1.1) introducing the
characteristic c( f ):

c( f ) := sup

∑
pi f (xi )− f

(∑
pi xi

)
S f (a, b)

,

where the supremum is taken over all p̃, x̃ ∈ [a, b], a, b ∈ D f . Hence, we have∑
pi f (xi )− f

(∑
pi xi

)
≤ c( f )S f (a, b).

The refinement of the bound is described by the next theorem (see [4]).

THEOREM 2.7. For any convex function f ,

1
2
≤ c( f )≤ 1.

In our new terms the characteristic for a convex function 8 is described by

C(8)= sup
A,g

A(8(g))−8(A(g))

S8(a, b)
, (2.8)

where the supremum is taken over all positive normalized linear functionals A on L
and over all g ∈ L .
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Here, we give a proof of Theorem 2.7 in our new terms.
First, it is obvious that C(8)≤ 1.
To show C(8)≥ 1/2, we first define the positive, normalized functional A1 by

A1(g)= p0g(x)+ (1− p0)g(y),

where x, y are some points in the starting set E and 0< p0 < 1. Finally,

C(8) = sup
A,g

A(8(g))−8(A(g))

S8(a, b)

≥ sup
p0,x,y

A1(8(g))−8(A1(g))

S8(a, b)

= sup
p0,x,y

p08(g(x))+ (1− p0)8(g(y))−8(p0g(x)+ (1− p0)g(y))

S8(x, y)

≥ sup
p0

[min{p0, 1− p0}] =
1
2

by Lemma 2.5.

3. The Hadamard inequality

Let us note that from (2.6) we have in the case A(g)= (a + b)/2 that

8

(
a + b

2

)
≤ A(8(g))≤8

(
a + b

2

)
+

1
2

S8(a, b),

8

(
a + b

2

)
≤ A(8(g))≤

8(a)+8(b)

2
,

(3.1)

which is a generalization of the well-known Hadamard inequality (see [5, Page 146]).
In what follows we denote by ei (i ∈ N) the function ei : [a, b] → R defined by

ei (x)= x i , x ∈ [a, b].

Let A : C[a, b] → R be a linear positive functional and let ai be defined by

ai := A(ei ), i ∈ N.

In what follows we assume that a0 = 1. For such a functional, Jessen’s inequality is
well known and it states that for any convex function 8 we have

A(8)≥8(a1) and A(8)≤
b − a1

b − a
8(a)+

a1 − a

b − a
8(b).

The following result was obtained by Lupaş in [3].
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THEOREM 3.1 (Lupaş [3]). Let A : C[a, b] → R be a positive linear functional with
A(e0)= 1. Then, for any convex function 8 ∈ C[a, b], there exist distinct points
ξ1, ξ2 ∈ [a, b] such that

A(8)−8(a1)= (a2 − a2
1)

[
ξ1,

ξ1 + ξ2

2
, ξ2;8

]
,

where the divided difference of a function 8 on the nodes x1, . . . , xk is denoted by
[x1, . . . , xk;8].

THEOREM 3.2. For any convex function 8 ∈ C[a, b] the following inequality holds:

A(8)−8(a1)≤

[
1
2
+

1
b − a

∣∣∣∣a + b

2
− a1

∣∣∣∣]S8(a, b).

PROOF. Set g = e1 in Theorem 2.4. 2

REMARK 3.3. In fact, Theorems 2.4 and 3.2 are equivalent. Indeed, let B : L→ R
defined by

B(8)= A(8 ◦ g),

where A is a positive normalized linear functional and g ∈ L such that 8 ◦ g ∈ L . It
follows from Theorem 3.2 that for any convex function 8 : [a, b] → R we have

B(8)− B(e1)≤

[
1
2
+

1
b − a

∣∣∣∣a + b

2
− a1

∣∣∣∣]S8(a, b).

Since B(e1)= A(g) we obtain Theorem 2.4.

COROLLARY 3.4. Let A be a normalized linear positive functional. If A(8)=
A(8(a + b − ·)) for every 8 ∈ C[a, b], then for any convex function 8 ∈ C[a, b] we
have

8

(
a + b

2

)
≤ A(8)≤

8(a)+8(b)

2
. (3.2)

PROOF. We have A(a + b − e1)= A(e1), which implies that A(e1)= (a + b)/2.
Therefore, from (3.1) we obtain (3.2). 2

REMARK 3.5. Let 8 : [a, b] → R be a convex function and p : [a, b] → R be
a nonnegative integrable function which is symmetric with respect to the point
(a + b)/2, that is, p(x)= p(a + b − x). If we consider the normalized linear positive
functional

A(8)=

∫ b
a p(x)8(x) dx∫ b

a p(x) dx

in (3.2), we obtain

8

(
a + b

2

) ∫ b

a
p(x) dx ≤

∫ b

a
p(x)8(x) dx ≤

8(a)+8(b)

2

∫ b

a
p(x) dx

which is a well-known inequality due to Fejér [2].
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3.1. A functional specific characteristic number In what follows the characteristic
number defined in (2.8) is specialized to a particular normalized linear positive
functional. Let 8 : D→ R be a convex function which is not an affine function
and let A be a positive linear functional defined on a linear set of functions F , with
domain D. We assume [a, b] ⊂ D and denote by χ[a,b] the characteristic function of
the interval [a, b]. We further assume that for any a < b, the condition

A(χ[a,b]) > 0

is satisfied.
If8 is not an affine function and8 is continuous and convex, we define the number

CA(8) by

CA(8) := sup
A[a,b](8)−8

(
a[a,b]1

)
8(a)+8(b)− 28((a + b)/2)

,

where

A[a,b](8) :=
A(χ[a,b]8)

A(χ[a,b])
, a[a,b]1 := A[a,b](e1)

and the supremum is taken over all values a, b, a < b, [a, b] ⊂ D. From the definition
of CA(8) we have

A[a,b](8)−8
(
a[a,b]1

)
≤ CA(8)

(
8(a)+8(b)− 28

(
a + b

2

))
.

From Theorem 3.2 it follows that

CA(8)≤
1
2
+ sup

a<b

1
b − a

∣∣∣∣a + b

2
− a[a,b]1

∣∣∣∣.
Now let us consider the functional A : C[a, b] → R given by

A(8)=
1

b − a

∫ b

a
8(x) dx .

From Theorem 3.1 we obtain

A(8)−8

(
a + b

2

)
=
(b − a)2

12

[
ξ1,

ξ1 + ξ2

2
, ξ2;8

]
,

which gives

A(8)−8((a + b)/2)
8(a)+8(b)− 28((a + b)/2)

=
1
6
[ξ1, (ξ1 + ξ2)/2, ξ2;8]

[a, (a + b)/2, b;8]
.

Let b = a + h. Then

CA(8)≥ lim
h→0

A(8)−8((a + b)/2)
8(a)+8(b)− 28((a + b)/2)

.
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If 8 ∈ C2(D), then

lim
h→0

A(8)−8((a + b)/2)
8(a)+8(b)− 28((a + b)/2)

=
1
6
= CA(e2).

We summarize the result obtained as follows.
For the functional A defined by

A(8)=
1

b − a

∫ b

a
8(x) dx

and any function 8 ∈ C2(D) we have

CA(e2)≤ CA(8)≤
1
2
.

We conclude the discussion on the characteristic cA(cot) by stating the following
conjecture.

CONJECTURE 3.6. Let A be a normalized linear positive functional on a linear class
of functions L, A : L→ R and let 8 ∈ L be a convex, nonaffine function. Then the
following inequality holds

CA(e2)≤ CA(8)≤ 1.

4. Applications to means

In this section we give some applications of Theorem 2.4 to some well-known
means.

We start with the generalized mean with respect to the operator A and 9:

Mψ (g, A) := ψ−1
{A(ψ(g))}, g ∈ L .

THEOREM 4.1. Let L satisfy conditions L1 and L2 and let A be a positive normalized
functional on L. Let χ, ψ : [a, b] → R be continuous and strictly monotonic
functions, such that the function 8= χ ◦ ψ−1 is convex. If, for every g ∈ L, the
functions ψ(g), φ(g) ∈ L, then 8(A(ψ(g))) is well defined and the inequality

χ(Mχ (g, A))− χ(Mψ (g, A))≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
− ψ(Mψ (g, A))

∣∣∣∣} · S8(a, b)

(4.1)
holds. The inequality in (4.1) is reversed if the function 8 is concave.

PROOF. For g ∈ L , we have both ψ(g), χ(g) ∈ L by assumption. Hence, 8(ψ(g))=
χ(g) ∈ L . Thus, if 8 is convex, then (4.1) follows from Theorem 2.4 with g replaced
by ψ(g). 2

The next step is the application to generalized classical means:

M [r ](g, A) :=

{
A(gr )1/r , r 6= 0;

exp(A(ln g)), r = 0.
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THEOREM 4.2. Let L satisfy conditions L1 and L2 and let A be a positive normalized
functional on L. If, for every g ∈ L, the functions gr , ln g ∈ L, r 6= 0, then
8(A(ψ(g))) is well defined and the inequality{

M [s](g, A)
}s
−
{

M [r ](g, A)
}s

≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
−
{

M [r ](g, A)
}r
∣∣∣∣} · (as/r

+ bs/r
− 2

(
a + b

2

)s/r )
,

(4.2)

holds for s > 0, s > r or s < 0, s < r . In the case s > 0, s < r or s < 0, s > r the
inequality (4.2) is reversed. Also

A(ln g)− ln
(
M [r ](g, A)

)
≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
−
{

M [r ](g, A)
}r
∣∣∣∣} · ln( 4ab

(a + b)2

)
, (4.3)

for s = 0, r < 0. In the case s = 0, r > 0 the inequality (4.3) is reversed. Finally

{
M [s](g, A)

}s
−
(
M [0](g, A)

)s
≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
− 1

∣∣∣∣} · (esa/2
− esb/2)2,

(4.4)
for r = 0, s > 0. In the case r = 0, s < 0 the inequality (4.4) is reversed.

PROOF. The proof of the theorem follows from application of Theorem 4.1 and the
cases given in the lines that follow. Let ψ(x)= xr , r 6= 0, χ(x)= x s , s 6= 0, ψ(x)=
ln x , r = 0, χ(x)= ln x and s = 0. For s, r 6= 0 a function 8= (χ ◦ ψ−1)(x)= x s/r

is convex if s > 0, s > r or s < 0, s < r .
For s = 0, r 6= 0 a function 8(x)= (χ ◦ ψ−1)(x)= (1/r) ln x is convex if r < 0.
For r = 0, s 6= 0 a function 8(x)= (χ ◦ ψ−1)(x)= esx is convex if s > 0.
Now, using Theorem 4.2 we have proved (4.2). The last part of the theorem follows

from concavity of the function. 2

The next application is Hölder’s inequality of the first type.

THEOREM 4.3. Let L satisfy L1 and L2 and let A be a positive linear functional on L.
Let p > 1 and q such that 1/p + 1/q = 1. If f, g > 0 on E, f p, gq , f g ∈ L, then we
have

A( f g)−
(

A( f p)
)1/p(A(gq)

)1/q
≥

{
A(gq)

2
+

A(gq)

b − a

∣∣∣∣a + b

2
− A

(
f p

gq

)∣∣∣∣}(a1/p
+ b1/p

− 2
(

a + b

2

)1/p )
.

(4.5)

For 0< p < 1 the inequality (4.5) is reversed.

https://doi.org/10.1017/S1446181109000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000091


256 B. Gavrea, J. Jakšetić and J. Pečarić [11]

PROOF. Let us note that the function

8(x)=
x s

s(s − 1)
, s 6= 0, 1

is a convex function. Now, from (2.7) we obtain

1
s(s − 1)

[
A(k(g1)

s)

A(k)
−

(
A(kg1)

A(k)

)s]
≤

{
1
2
+

1
b − a

∣∣∣∣a + b

2
−

A(kg1)

A(k)

∣∣∣∣} · 1
s(s − 1)

(
as
+ bs
− 2

(
a + b

2

)s )
.

(4.6)

After we make substitutions, s = 1/p, k = gq/A(gq) and g1 = f p/gq , we obtain the
desired inequality. The reverse of inequality in (4.5) for 0< p < 1 follows from the
inequality given in (4.6). 2

The second type of Hölder’s inequality is as follows.

THEOREM 4.4. Let L satisfy L1 and L2 and let A be a positive linear functional on L.
Let p ∈ R \ (0, 1) and q such that 1/p + 1/q = 1. If f, g > 0 on E, f p, gq , f g ∈ L,
then we have(

(A( f p))1/p(A(gq))1/q
)p
− (A( f g))p

≤

{
A(gq)p

2
+

A(gq)p

b − a

∣∣∣∣a + b

2
− A( f g1−q)

∣∣∣∣}(a p
+ bp

− 2
(

a + b

2

)p )
.

(4.7)

For 0< p < 1 the inequality (4.7) is reversed.

PROOF. Again, we consider the convex function

8(x)=
x s

s(s − 1)
, s 6= 0, 1

for s = p ∈ R \ (0, 1), and Theorem 2.6. Using (2.7) with the substitutions k = gq ,
g1 = f g1−q we obtain the desired result.

The reverse of this inequality follows by the same argument as in the previous
theorem. 2
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