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Abstract

A dihedral number field is a non-normal quartic field K which possesses a quadratic subfield k. That
is, K = k(Ya) for some integer a of k. Integral bases of these fields were known by Sommer (1907),
but the form in which they were known was of little use for computational purposes. In this paper we
construct integral bases of those dihedral fields with quadratic subfield of the form oWd), d =1
(mod 8), for which only rational quantities need be determined. Although the general theory may
easily be generalized to the case d = 1 (mod 8), the actual determination of integral bases in this case
is left to a later paper.

1980 Mathematics subject classification (Amer. Math. Soc.): 12 A 30.

1. Introduction

A dihedral number field K is a non-normal quartic extension of Q which
possesses a quadratic subfield k. That is, K = k(\/t_x_ ) for some integer a of k.
Integral bases of these fields have been known for some time, indeed the
following result is quoted by Sommer (1907):

“Let

(2) = )‘If)\li’

where one of the factors may be absent and /;, /, are non-negative integers such
that0 </, + 1, < 2 and

(a) = NPNgpyp3 - - - B

© 1985 Australian Mathematical Society 0263-6115/85 $A2.00 + 0.00

351

https://doi.org/10.1017/51446788700023648 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700023648

352 Walter Ledermann and Carol van der Ploeg [2]

be prime decompositions of (2) and (a) in k. For n € Z denote by n’ the greatest
integer < n/2 and let g, and g, be the greatest rational integers for which the
congruence

a=p? (mod N +a{))\22(gz+a’z))
is solvable for some integer » of k. Let b = (8,, B,) be relatively prime to N\, and
N, in k and such that

NPeNgepi - b = (7)
is a principal ideal. Finally, let » be chosen so that

(v) =pi - pin.

Then &, = B,((» + \/t;)/y) and @, = B,((» + Va)/y) are integers of K and, if
[1, @] is an integral basis of k, the four integers [1, w, £, §2,] form an integral
basis of K.”

In this paper we construct integral bases of dihedral number fields with
quadratic subfields Q(Vd), where d is a square-free positive (rational) integer such
that 4 # 1 (mod 8). Our method will be elementary in the following sense: if [1, @]
is an integral basis for k = Q(Vd), then the dihedral number field can be written
K = k(Ja), where @ = A + Bw with suitable rational integers 4, B. It is our
object to express the integral basis of K in rational terms, involving arithmetic
properties of A, B, and d, and without recourse to p-adic arguments.

W. E. H. Berwick (1927) has devoted a monograph to the construction of
integral bases. His introductory chapters bear some resemblance to our treatment,
but the bulk of his applications refer to number fields of a different kind. In our
theoretical approach we follow more closely Mann (1955). It goes without saying
that all writers on this topic are decisively influenced by the monumental work of
Hilbert (1897).

2. Definitions and notation

We employ the standard notations n( ), tr( ) for the absolute norm and trace
of an integer or ideal and n,( ), tr,( ) for the relative norm and trace over k. I,
and I, denote the rings of integers of K and & respectively. For a rational prime p
and integer n, p°|ln means that n = 0 (mod p°) but n = 0 (mod p¢*!). For
n-tuples of rational integers (ry,...,7,), (s1,...,s,) the notation [r,...,r,]=
[s1,...,s,] (mod m) means that r, = s, (mod m) for i = 1,...,n. This should not
be confused with the highest common factor such as (A4, B) below.

Let [1, @] be an integral basis for k = Q(Vd), so that

Vd if d = 2,3 (mod4),
w:
(1+Vd)/2 ifd=1(mod4),
and let K = k(\/a—)wherea =A+ Bw,A,Be Z.
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It is easily shown that we may assume, without loss of generality, that the
highest common factor (A4, B) is square-free and that B > 0. The validity of the
first assumption is seen immediately; for if &« = m?8 where m € Z and 8 € I, has
no squared rational divisors, then K = k(\/,E ) and so we may assume from the
outset that a has no squared divisors. For the second assumption, consider the
conjugate w of w in k. We shall use the notation

_ {d ifd = 2,3 (mod4),
D

(2.1) T T\ (d-1)/4 ifd=1(moda),

0 ifd=2,3(mod4),

22 E=w+a=
(2.2) ere {1 ifd = 1 (mod 4)

so thatif &« = 4 + Bw where B < 0 then a = (A4 + EB) — Bw and the coefficient
of @ is positive. Thus we may choose our notation for w and & so that B > 0.
Suppose that («) has prime decomposition

(a) = )\21ﬂ1+81x22"2+82.n21e1+"1 - ﬂf28/+0/Q

in k, where N\ ;|(2), the m, are distinct prime ideals of degree one, Q is a product of
primes of degree two and ¢,, ¢, = 0 or 1. Since (A4, B) is square-free note that if
e, > 0 then either m’|(a) or #2%|(a), where the bar denotes conjugation in k. We
choose our notation for m, and 7, so that n?%|(«). If m, = & then ¢, = 1. Let
n(m) = p, where (d/p,) # —1 and put C =T1/_, pf.

3. Minimal integers

We employ a general method for constructing integral bases of algebraic
numberfields based on a construction of Hilbert (1897); let Q(#) be an arbitrary
numberfield of degree n. Then any integer 8 of Q(¥#) may be written in the form
gt e+t + -+

t

B=

where ¢g, ¢,...,¢, t €Z,t >0and 0 < i< n~ 1 If ¢, # 0 then B is called an
integer of degree / in ¢ and a minimal integer of degree / in ¢ is one which, of all
integers of degree i in ¥, has least coefficient of &' in absolute value. It can be
shown that every minimal integer of degree / in ¢ may be written in the form

o+ o+, + o+ Y
t.

t

B =

where ¢y, ¢,...,¢;_1, t; € Z and ¢, > 0 and that any set {8, 8,,...,8,_,] forms
an integral basis for Q(#): see Mann (1955). We therefore seek minimal integers
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of degrees one, two and three and in ya and for this the following observation is
of fundamental importance:
If B € K then B € I if and only if n, (), tr,(B) € I,.

4. Minimal integers of degree one

We seek the largest positive t € Z for which 8 = (¢, + va)/t is an integer for
some ¢, € Z. Since tr,(B) = 2¢,/t and

n(B)=(ct—a)/t>=(c2—A4)/1* - (B/t?)w,

B is an integer if and only if the following congruences are solvable:

(4.1) 2¢y =0 (mod ),
(4.2) A = ¢} (mod £?),
(4.3) B =0 (mod t?).

Let ¢, be the largest positive value of ¢ for which (4.1)-(4.3) are solvable and
denote by B, the corresponding minimal integer. If ¢, = 0 (mod p) for some odd
prime p then by (4.1) ¢, = 0 (mod p) and so 4 = B = 0 (mod p?) by (4.2) and
(4.3). This is impossible since (A, B) is square-free and so ¢, = 2*. Clearly x < 1,
for otherwise (A4, B) = 0 (mod 4). Suppose x = 1: Since (A4, B) # 0 (mod4) c,
must be odd and (4.1)-(4.3) are solvable provided that [ A4, B] = [1, 0] (mod 4).
Thus we have

LEMMA 1. A minimal integer of degree one in Va is given by

8, = {(1 +Va)/2 if[A, B} =[1,0] (mod4),

va otherwise.

5. Minimal integers of degree two

The following result provides a lower bound for the denominator of a minimal
integer:

LEMMA 2. Let B, = (co + ;3 + -+ + ¢;,_19' "1 + &) /t, be a minimal integer.

Ify=(dy+dd+ -+ +d,_ %1+ 8"/t is an integer, where d,, d,,...,d,_,,
te Zandt > 0thent, = 0(modt).
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PrOOF. Let m = l.em.(¢,¢t,) and put m = st = rt, where (r,s) = 1. Let u,

v € Z be such that ur + vs = 1. Then
u, +vy= (e, +ed+ - +e_ 31+ 9)/m

is an integer. Since B, is minimal ¢, > m, so we must have r = 1 and ¢, = sz.

Since w = (—A + a)/B is an integer of degree two in V&, Lemma 1 shows that
every minimal integer of degree two in Ya takes the form

B= (Co + epfa + a)/nB
for some positive integer n. Since
tr,(B) =2(co + A)/nB +(2/n)w

and n,(B) = ((co + A)* = c}A + DB*)/n*B? + [(2c, + A) — ¢} + EB)/n’Blw
the number 8 is an integer if and only if the following four congruences are
solvable for some ¢y, ¢;, n € Z:

(5.1) 2 =0 (mod n),

(5.2) 2(¢y + A) = 0 (mod nB),

(5.3) 2(cy + A) — ¢ + EB = 0 (mod n2B),
(5.4) (co+ AY — ¢34 + DB? = 0 (mod n?B?).

We seek the largest positive value of » for which the congruences (5.1) and (5.4)
are solvable. By (5.1) n = 1 or 2. Suppose n = 2. By (5.2) ¢, + A = 0 (mod B)
and (5.3) and (5.4) yield ¢? = 0 (mod B) and ¢? 4 = 0 (mod B?). Putting ¢} = /B
gives /A =0 (mod B). Let m = (A, B) and put 4 = mA,, B = mB, where
(A, B;)=1. Then I4; = 0 (mod B,) and so / = 0 (mod B,), say / = [, B,. Thus
¢2 = I,;mB? and this implies that /; = 0 (mod m) because m is square-free. Hence
¢, = 0 (mod B). Now putting ¢, + A = xB and ¢; = yB in (5.3) and (5.4) yields
(5.5) 2x —y’B + E = 0 (mod4),

(5.6) x*~y?4 + D = 0 (mod4).

We seek conditions on A and B for (5.5) and (5.6) to be solvable. Note that

they are not solvable for even y; for if y is even they become
E=2x(mod4), D= —x?(mod4)
but when d = 1 (mod 4) then E = 1 and the first is not satisfied and when d = 1

(mod 4) then E = 0 so that x must be even and the second is not satisfied. Thus y
is odd and (5.5) and (5.6) are solvable provided that

[4,B]=[D + x2, E + 2x] (mod 4).
Conversely if A, B satisfy the above then
B=((—A4+xB)+yB/a + a)/2B
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is an integer. Note that x and y need only be determined modulo 2; for if
x=xg+2Xandy =y, + 2Y where x, = 1 or 0 and y, = 1, then

B=((~A4+ x,B) +y,B/a + a)/2B +(X + Y/a).
But X + Y\/E € I, and so we may assume that x =1 or 0 and y = 1, without
loss of generality. Thus if [4, B] = [ D, E] (mod 4) then (5.1)-(5.4) are solvable
for n=2,c,= ~A, ¢, =B and so (—4 + B/a + a)/2B = (w + Va)/2 is a
minimal integer of degree two in Va; and if [4,B]=[D + 1, E + 2] (mod 4)
then (5.1)-(5.4) are solvable forn = 2, ¢, = B — 4, ¢, = B and so
((B-4)+Bla +a)/2B=(1+w + Va)/2

is a minimal integer of degree two in Va . Finally, if [4, B] 2 [D, E]or[D + 1, E
+ 2] (mod 4) then (5.1)-(5.4) are not solvable for n = 2, but are clearly solvable
for n = 1 because w = (—A4 + a)/B is an integer, which is minimal in this case.
We summarize our results in the following:

LEMMA 3. A minimal integer of degree two in Va is given by

(0 + Va)/2 if[A, Bl = [D, E] (mod4),
Bo={(Q+w+vVa)/2 if[A,B]=[D+1,E + 2] (mod4),
W otherwise.

6. Minimal integers of degree three

We use Lemma 2 to obtain a lower bound for the denominator of a minimal
integer of degree three, using the following result:

THEOREM 1. (i) There exist rational integers r, s, u, v such that

(6.1) A+ rB=sC,
(6.2) D—r(r—E)=uC,
(6.3) (2r — E)s + uB = vC.

(i) The number w = (—=A + (r — E)B + a)\/E/BC is an integer of K.

PROOE. (i) Let p*||C where e > 0. If d = 0 (mod p) then e = 1 and so we may
put

r} (mod p©) ifd = 1 (mod 4),

(6.4) d= 2 .
(2r, — 1) (mod4p®) ifd =1 (mod4)
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for some r, € Z. (Clearly r, = 0 (mod p) when d # 1 (mod4) and 2r, - 1 =0
(mod p) when d =1 (mod4).) Since in this case pj(a) we have (4, B)=0
(mod p) and so we may straight away put

(6.5) A +r,B =0 (mod p°).
We show that (6.4) and (6.5) hold for some r, also when d # 0 (mod p). So

henceforth suppose that d # 0 (mod p). Then d is a quadratic residue modulo
every power of p and so (6.4) is immediate. Substituting for 4 in (6.4) using (2.1)
and (2.2) yields

(6.6) D= rp(rp ~ E) (mod p¢).

Now let (p) = =¥ in k, where the notation for « and & is chosen so that 7 %°|(a).
Factorizing (6.6) in k gives

(r, - w)(rp — @) = 0(mod n°7°)

and so either r, — w = 0 (mod ©°) or r, — @ = 0 (mod =), since neither factor
has a rational divisor. But r, — & = 0 (mod =°) if and only if (E — r,) —@w =0
(mod m¢). Moreover r, satisfies (6.6) if and only if (E — r,) does, and r, # (E — r,)
(mod p) so we may choose our notation for r, and (E — r,) so that

(6.7) r, =« (mod 7°)

without loss of generality. We now consider two separate cases:

(a) (4, B) = 0 (mod p):

Since 4 + Bw = 0 (mod m2¢), (6.7) yields 4 + r,B =0 (mod n°). But4 + r,B
€ Z and s0 (6.5) holds.

(b) (4, B) = 0(mod p):

Put A = A,p and B = B,p where (4, B;) # 0 (mod p) because (A4, B) is
square-free. Then 4, + B,w = 0 (mod w2¢~') and, since 2e — 1 > e, (6.7) yields
A, +r,B, =0 (modw°). But 4, +r,B; € Z and so 4, + r,B, =0 (mod p°).
Thus

(6.8) A+ r,B=0(mod p°*?)

and (6.5) follows a fortiori.
Now for a prime p/|C let N, = T/ iwjy PEH Since (N,, p,) =1 there exists
a rational integer Nl;/ such that Np/ NI;, = 1 (mod pf/* 1), If we now put

r= ) r,NN,
piC
then
(6.9) r=r,(mod pe*')

and (6.5) yields A + rB = 0 (mod p¢). This holds for all primes p such that p¢||C
and so we have proved (6.1). Similarly (6.2) follows from (6.6).
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To prove (6.3) note that
(6.10) n(a) = A> + EAB — DB?
=(A—-rB)(A+rB)+ EB(A + rB) — uB*C
by (6.2), so by (6.1)

(6.11) n(a) = s’C*—((2r — E)s + uB) BC.
If d =0 (mod p) then B = 2r — E = 0 (mod p) and since ¢ = 1 we may put
(6.12) (2r — E)s + uB = 0 (mod p°).

If d = 0 (mod p) we consider cases (a) and (b) above separately:

(a) (A4, B) # 0 (mod p):

By (6.1) p + B and so p°||BC. But by definition of C we have

n(a) = C? = 0 (mod p°¢)

and so by (6.11), (6.12) holds.

(b) (4, B) = 0 (mod p):

By (6.8) and the fact that (A4, B) is square-free we have p|| B, and so p*!||BC.
Further, by (6.8) and (6.9), 4 + rB =0 (mod p¢*!) and so (6.1) yields s = 0
(mod p). Thus in this case

n(a) = s2C? = 0 (mod p?*!)

and so by (6.11), (6.12) holds.
Thus (6.12) holds for all primes p such that p¢||C and this proves (6.3). Notice
that (6.3) and (6.11) yield the useful identity

(6.13) n(a) = (s - vB)C?.

(ii) We show that n,(7n) and tr, () are integers of k: since @« = 4 + Bw we may
write n = (0 + r — E)v/z;/C from which it follows that tr,(n) = 0. A short
calculation using (6.1)—(6.3) yields

(6.14) n(n)=—(us+(r— E)v + vw)
and clearly n,(n) € I,.

We use the integer n of this theorem to provide a lower bound for the
denominator of a minimal integer of degree three in Ya, that is, an integer of the
form B = (¢4 + eV + ca + afa )/t where ¢, ¢y, c, and t € Z and ¢ > 0 is
maximal. In the usual manner, computation of the relative norm and trace yields
four congruences, the simultaneous solvability of which is a necessary and
sufficient condition for the number B to be integral:

(6.15) 2Bc, = 0 (mod ¢),
(6.16) 2(c + Acy) = 0 (mod ¢),
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(6.17) (co + Ac,)’ — A(¢, + A4)* — B>DF = 0 (mod 12),

(6.18) B(2c,(cy+ Acy) = (34 + ¢;)(A + ¢;) — B(EF + BD)) = 0 (mod ¢?)

where F = 34 + EB + 2¢, — ci.
In the consideration of the solution of these congruences we make use of the
following result:

LEMMA 4. If a, b, ¢ € Z and (a, b) is square-free, and if
(c — b)’b=0(moda®) and (c— b)(c — 3b) =0 (mod a),
then ¢ = b (mod a).

PRrROOF. Let (a, b) = m so that a = ma, and b = mb, where (a,, b;) = 1. Our
first supposition becomes (¢ — b)%b, = 0 (mod a?), which yields ¢ = b (mod a,).
Putting ¢ — b = /,a, yields IZb, = 0 (mod m), but /Za, = 0 (mod m) by our
second assumption. Since m is square-free and (a,, b;) = 1 we must have /, = 0
(mod m). Putting /, = ml gives ¢ = b + la as required.

THEOREM 2. Every minimal integer of degree three in Yo has denominator 2°BC
where a is a non-negative rational integer.

PrROOF. Applying Lemma 2 to n shows that the denominator of such an integer
is of the form nBC where n is a non-negative rational integer. Suppose there exists
an odd prime g for which n = 0 (mod g). Then there exist ¢y, ¢;, ¢, € Z which
satisfy (6.15)-(6.18) with ¢ = ¢BC (and so also with ¢t = B and t = BC). We
consider two separate cases according to the parity of B:

(a) B odd: Considering (6.16)—(6.18) with ¢t = B yields

A(c, + A)* =0(mod B?) and (34 + ¢;)(A4 + ¢,) = 0 (mod B)
and so ¢, = —A (mod B) by Lemma 4. Put
(6.19) ¢, =1IB— 4,
Considering (6.15)—(6.18) with t = ¢BC, we first note that
¢, = 0 (mod ¢C)
by (6.15) and so F = A + (2/ + E)B (mod ¢*C?), and that
¢o + Ac, = 0 (mod ¢BC)
by (6.16). Thus (6.17) and (6.18) become
(6.20) A(I*+ D) + BD(2! + E) = 0 (mod ¢*C?),
(6.21) AQ21+ E) + B(D +(I + E)*) = 0 (mod ¢°C?).
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(b) even: Considering (6.16)—(6.18) with ¢t = B = 2B, and using Lemma 4
yields ¢; = —A4 (mod B,) and so we may put

¢, =14By— A.
Considering (6.15)-(6.18) with r = gBC, we first note that
¢, = 0 (mod gC)
as before, so F = A + (I, + E)B (mod ¢*C?), and that
¢o + Ac, = 0 (mod ¢B,C,)
by (6.16). Now (6.17) and (6.18) become .
A(12 + 4D) + 8B,D(l, + E) = 0 (mod ¢2C?),
2A(ly + E) + By(4D + (I, + 2E)*) = 0 (mod ¢7C?).
Now define the rational integer 2’ such that 22’ = 1 (mod ¢%C?2) and put / = 21,
Then the above congruences are transformed into (6.20) and (6.21) respectively
when the first is multiplied by (2')? and the second by 2’. We therefore proceed
from (6.20) and (6.21) in the general case.
Addition of suitable multiples of these yields
A(I(1 + E) — D)* = 0 (mod ¢°C?),
B(I(1 + E) — D)* = 0 (mod ¢C?)

and so D = [(l+ E) (mod ¢C) because (A, B) is square-free. Putting D =
I(I + E) + wgqC in (6.20) and (6.21) gives

(6.22) (21 + E)(A+(I+ E)B)+(A4 +(2/ + E)B)wqC = 0 (mod ¢*C?),
(6.23) (21 + E)(A +(I + E)B) + BwgC = 0 (mod ¢°C?).

We show that there exists no odd prime g for which (6.22) and (6.23) are

solvable. Since

D =1%+ wgC ifd = 1 (mod4),
(6.24)  d= - (mod 4)
4D + 1= (21+1)" + 4wgC ifd =1 (mod4)

either d = 0 (mod q) or (d/q) = 1; we consider these two cases separately.

(i) d = 0 (mod ¢q). Putting (6.23) in (6.22) gives (4 + (! + E)B)w = 0 (mod ¢q),
that is
(6.25) A+(l+ E)B=0(modq)
because w = 0 (mod ¢) as d is square-free. But 2/ + E = 0 (mod ¢) by assump-
tion and so (6.23) yields B = 0 (mod g). Thus by (6.25) (4, B) = 0 (mod q), that
is, g|(@). Hence 7 2|(«) where (¢) = % and so C = 0 (mod g), which is impossible
since d is square-free.
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(i) (d/q) = 1. Putting D = I(/ + E) + wqC in (6.10) gives
(6.26) n(a)= (A —IB)(A +(I + E)B) — B*wqC.
Since now 2/ + E # 0 (mod q), (6.25) follows from (6.23). Putting 4 + (! + E)B
= xq in (6.26) yields

n(a) = (x(A - IB) — wBZC)q.
But since by (6.23), 2/ + E)x + BCw = 0 (mod g), we have
x(A —IB) - wB*C=x(A+(I+ E)B)=0(modq)

and so n(a) = 0 (mod ¢g2). Thus either C = 0 (mod ¢q) or (4, B) = 0 (mod g).
But if (4, B) = 0 (mod q) then by (6.23) 4 + (I + E)B = 0 (mod ¢?) and (6.26)
yields n(a) = 0 (mod ¢*): thus C = 0 (mod ¢) in any case.

Let ¢¢||C where e > 0. Then by (6.23) A + (/ + E)B = yg°*" for some y € Z.
Putting C = ¢°C, in (6.26), where (C,, q) = 1, gives

n(a) = (y(A4 — IB) — wB*C)q**L.
But since by (6.23), (2/ + E)y + BC;w = 0 (mod ¢g¢*!) we have
y(A — IB) = wB*C, = y(A +(1 + E)B) = 0 (mod g°*!)
and so n(a) = 0 (mod g*¢*V). Since ¢¢||C we must have (4, B) = 0 (mod ¢).
Now by (6.23) 4 + (I + E)B = zq°*?* for some z € Z and (6.26) yields
n(a) = (z(4, — IB,) — wBXC,)q°*?

where 4 = gA, and B = ¢B,. But since by (6.23) (2] + E)z + B,C,w = 0 (mod ¢°)
we have z(A4, — IB,) — wBIC, = z(A; + (I + E)B,) = 0 (mod ¢°¢) and so n(«)
= 0 (mod g2¢*3) which is impossible since it would imply that C = 0 (mod g°*!).

Thus there exists no odd prime g such that n = 0 (mod ¢) and Theorem 2 is
proved.

7. Determination of minimal integers of degree three

We use the results of Section 6 to determine minimal integers of degree three in
Va in the cases (i) d = 2,3 (mod4); (ii) d = 5 (mod 8). So from henceforth we
shall assume that d # 1 (mod 8).

THEOREM 3. Suppose there exists an integer
B= (co +epfa + cya + ou/c;)/2“BC
where a € Z and a > 0. Then
(i) There exist h, I, m € Z such that

(7.1) co =2°"'C(hB — mA),
(7.2) ¢, =1IB - A,
(7.3) ¢, =27 Cm.
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(11) There exist x, y, z € Z such that

(7.4) A+(1+E)B=2""xC,
(1.5) D~ I(l+ E) = 2°"YyC,
(7.6) 21+ E)x + yB=2""2C.

(iii) Without loss of generality we may choose h and m modulo 2. Finally the
rational integers defined above satisfy

(7.7) h?> + Dm? — Iz — xy = 0 (mod 4),
(7.8) 2mh + Em? — z = 0 (mod 4).

PrOOF. The assumption that 8 be integral is equivalent to the simultaneous
solvability of (6.15)—(6.18) with t = 2°BC (a > 0).

(i) (7.1) and (7.3) follow immediately from (6.15) and (6.16). Putting t = 2B in
(6.16)—(6.18) and using Lemma 4 yields (7.2).

(ii) Substituting (7.1)-(7.3) in (6.17) and (6.18) yields
(7.9) 2%¢"DC*(h* + Dm?®) — A(I*> + D) — BD(2! + E) = 0 (mod 224C?),
(7.10) 2¥"DC2(2mh + Em?*) — A2 + E)

—B((/+ E)* + D) = 0 (mod 224C?)
and so
A(I* + D) + BD(2] + E) = 0 (mod 2X*-1C?)
and
AQ21+ E) + B((I + E)* + D) = 0 (mod 2%*-C?),

Addition of suitable multiples of these yields

A(I(1+ E) ~ D)* = 0 (mod 22«~1C?)
and

B(I(1+ E) — D)* = 0 (mod2%=~1C?)
so (7.5) follows from the fact that (A4, B) is square-free. Substituting (7.5) in (7.9)
and (7.10) yields
(7.11) 2%e=YC?*(h*+ Dm?) - 121+ E)(A +(I + E)B)

—2°71Cy(A + (21 + E)B) = 0 (mod 2%°C?)
(7.12) 2%4=DC?(2mh + Em*) — (21 + E)(A +(I + E)B)
—2°71CyB = 0 (mod 2%¢C?).
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We claim that
(7.13) A+(l+ E)B=0(mod2°7").

If d = 1 (mod 4) then 2/ + E is odd and (7.13) follows immediately from (7.12). If
d = 2,3 (mod 4) we note that (7.12) yields

— (21 + E)(4 +(1 + E)B) = 2°7'CyB (mod 2%*~C?)
which gives, on substitution in (7.11)
y(A +(l+ E)B)=0(mod2°7}).

If y is odd then (7.13) is immediate. Suppose then that y is even. Since D(= d) is
not a quadratic residue mod 4, (7.5) implies that a = 1 and so (7.13) is trivial. We
may now put 4 + ([ + E)B = 2°"x, in (7.12) and this yields (2/ + E)x, +
yBC = 0 (mod 2°~1C?), say

(7.14) (2 + E)x, + yBC = 229712,
Now by (6.10), (7.5) and (7.14) we have
n(a)=(A—-IB)(A+(l+ E)B)—2°"yB?C
=2%e=V(x2 - zBC?).
But n(a) = 0 (mod C?) s0 2°7 x, = 0 (mod C) and we may put x, = xC because
C is odd. This yields (7.4) and substitution in (7.14) gives (7.6).

REMARK. Substitution for x, in the above formula for n(a) yields the useful
identity

(7.15) A%* — DB? + EAB = 2%°~VC?(x? - zB).

(iii) Substitution of (7.4) and (7.6) in (7.11) and (7.12) gives (7.7) and (7.8)
respectively, To show that & and m need only be determined modulo 2, write
m=my+ 2M and h = hy+ 2H where M, H € Z and m, hy = 0 or 1. Then
putting (7.1) and (7.3) in the expression for B gives, after some calculation,

B = (22"'BC(hy + myw) +(c; + a)Va ) /2°BC +(H + Mow).
Since B is an integer if and only if 8 — (H + Mw) is an integer, we may assume

from the outset that m = mgand h = h,,.

COROLLARY. If the number 8 of Theorem 3 is an integer then
0 <a<2whend=2,3(mod4)
and

0 <a<1whend=5(mod8).
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PROOF. When d = 2,3 (mod 4) then D(= d) is not a quadratic residue modulo
4 and so it follows from (7.5) that a < 2. When d = 5 (mod 8) substituting (2.1) in
(7.5) yields

d= 1+ 1) +2%*YyC

from which it follows immediately that a < 1 because d is not a quadratic residue
(mod 8).

LEMMA 5. The value of the integer r in Theorem 1 may be chosen modulo 4
without loss of generality.

Proor. If (r, s, u, v) is a solution of (6.1)—(6.3) then so is
(r+nC,s —nC,u+Q2r— E)n+ n®C,v— 2ns + 2n’B)

for any n € Z. Since (r,r + C,r + 2C, r + 3C) is a complete set of residues
modulo 4, we may choose a solution to (6.1)-(6.3) so that r takes any value
modulo 4, without loss of generality.

We are now able to determine minimal integers of degree three in V& according
to the different values of A and B. We consider the two cases of the beginning of
this section separately:

Case (i) d = 2,3 (mod 4).

It turns out that the maximum value of a is 0, 1, 2 according as (a) B is odd, (b)
B is even and A is odd, (c) A and B are both even, respectively. We consider these
three cases separately:

(a) B odd. Assume there exists an integer 8 with denominator 2BC. Then
(7.1)—(7.8) hold with a = 1, and by (7.15)

A*— d = x* - zB (mod 4)

because C is odd. Using the above it is easy to verify that (7.4)-(7.8) cannot hold,
in fact, for any values of A and d. For example, when 4 is odd and d = 2 (mod 4)
then the above yields x2 ~ zB = 3 (mod4). Since by (7.8) we must have z = 0
(mod 2), this yields x = 1 (mod2) and z = 2 (mod 4). Thus by (7.8), m = h = 1,
so by (7.7) y = 1 (mod 2). But this contradicts (7.6) because B is odd. A similar
argument holds when 4 is odd and d = 3 (mod 4), and when A is even. Thus there
are no integers of degree three in Va with denominator 2 BC and therefore the
integer i of Theorem 1 is minimal in this case.

(b) A odd, B even. Since (7.4) is clearly not solvable for a > 2, the following
Lemma provides minimal integers of degree three in this case:
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LEMMA 6. Suppose that A is odd and B is even, and let the integer n be defined by
Theorem 1(i1), where the rational integer r is chosen so that r = d (mod 2). Then

O d + 1)/2 is an integer when d = 2 (mod 4),

() (1 + Vd + 1)/2 is an integer when d = 3 (mod 4).

PRrOOF. (i) trk((‘/g +1)/2) = 0 since tr,(n) =0, and using (6.14) we get
nk((ﬁ +7)/2)=(d—- (us + rv + v\/z))/4. Thus (Vd + 1)/2 is an integer if
and only if us = d (mod 4) and v = 0 (mod 4). But by Lemma 5 we may choose r
to be even, without loss of generality, and so (6.2) yields u = 2 (mod 4). Moreover
(6.1) yields s = 1 (mod 2) as A4 is odd, and so us = 2 (mod 4). Finally (6.3) gives
v=0 (mod4) and so (Vd + n)/2 is indeed an integer provided that d = 2
(mod 4).

(i) tr, (A + Vd +1)/2)=1+ Vd €I, and by (6.14) n, (1 + Vd + 1)/2) =
Q+d—-—us—rv+Q2-— v)\/g)/4. Thus (1 + Vd + %)/2 is an integer if and
onlyif us =1 + d + 2r (mod 4) and v = 2 (mod 4). But if we now choose r to be
odd (6.2) again yields u = 2 (mod 4), hence us = 2 (mod 4) as s is odd by (6.1).
Moreover (6.3) gives v = 2 (mod 4) and since when d = 3 (mod4) (1 + d + 2r)
= 2 (mod4), (1 + Vd + 1)/2 is indeed an integer in this case.

(c) A and B both even. If we still choose the integer r of Theorem 1 so that r = d

(mod 2) then the number 71/2 is an integer in this case. For tr (n/2) = 0 and
n,(n/2)= —(us + vr + m/Zi)/4 € I, if and only if us=v =0 (mod4). But
when 4 = B =0 (mod2), (6.1) yields s = 0 (mod2) and when r = d (mod?2),
(6.2) yields u = 0 (mod 2), and (6.3) yields v = 0 (mod 4). Now 7/2 is an integer
of degree three in ya with denominator 2 BC, which we now show to be minimal
unless
(7.16) [4, B] = [2(d? + 1),2d] (mod 4).
Suppose there exists an integer of degree three in ya with denominator 4BC, so
that (7.1)-(7.8) hold for a = 2: by (7.4) we have 4 + /B = 2x (mod4) and by
(7.5) we have y = 1 (mod2) and / = d (mod 2) and so by (7.6), 2dx + yB =0
(mod 4) because z = 0 (mod2) by (7.8). If x = 0 (mod 2) then the above imply
that {4, B] = [0, 0] (mod 4) which is impossible. Hence x = 1 (mod2) and [ 4, B}
= [2(d? + 1),2d] (mod 4).

Suppose now that (7.16) holds, and consider two separate cases according to
the value of d modulo 4:

I d =2 (mod4). By (7.16), [4, B, d] = [2,0,2] (mod4). From the above we
have /= z = 0 (mod 2) and x = y = 1 (mod 2). Thus by (7.7) A = 1. We consider
the solution of (7.4)-(7.8) in the two cases: m =0, h=1;, m=h=1. The
calculations are tedious but it may be verified that a solution exists if and only if
A + B =d(mod8),sothatif[A4, B,d] = [2,0,2] (mod4) but 4 + B # d(mod ),
the integer 1/2 is again minimal.
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LEMMA 7. Suppose that [A, B, d] = [2,0,2] (mod4) and A + B = d (mod 8). Let
the integer m be defined by Theorem 1(iii) where the integer r is chosen so that r = 0
(mod 4). Then

(1) (2 + m)/4 is and integer when B = 0 (mod 8),

(i) 21 + Vd) + n)/4 is an integer when B = 4 (mod 8).

PrROOF. Since B = 0 (mod4) we have 4 = sC (mod 16) by (6.2) and D = uC
(mod 16) by (6.1), on choosing r = 0 (mod 4), which is possible by Lemma 5.
Hence usC? = Ad (mod 16). Since s is even (6.3) yields vC = uB (mod 16) and we
have

_ [[4,0] (mod16)  when B = (mod8),
(7.17) [us,v] = {[12,8] (mod16)  when B = 4 (mod$).

@) tr,((2 + 1)/4) =1 € I, and by (6.14)
n (2 +n)/4) = (4 —(us + rv + v/d)) /16

and so by (7.17), (2 + ) /4 is an integer when B = 0 (mod 8).
(i) tr (21 + Vd) + )/4) = 1 + Vd € I, and by (6.14)

n (2 +Vd) +1)/4) = (41 + d) ~us — rv +(8 — v)/Vd ) /16

and by (7.17), 2(1 + Vd) + ) /4 is an integer when B = 4 (mod 8).

II d=3 (mod4). By (7.16), [4, B,d] = [0,2,3] (mod4). From the general
argument above we have z = 0 (mod2) and / = x = y = 1 (mod 2). Thus by (7.7),
m % h (mod 2) and the solution of (7.4)-(7.8) need only be considered in the two
cases: m =0, h = 1; m=1, h = 0. It turns out that a solution exists if and only
if A — 1 = d (mod 8): a verification of this is tedious and therefore omitted. Thus
if [4, B,d] =[0,2,3] (mod4) and 4 — 1 # d (mod 8) the integer n/2 is minimal,
and when 4 — 1 = d (mod 8) we have the following result:

LEMMA 8. Suppose that [A, B, d] = [0,2,3] (mod4) and A — 1 = d (mod 8). Let
the integer n be defined by Theorem 1(ii) where the integer r is chosen so that r = 1
(mod 4). Then

(1) (2 + m)/4 is an integer when B = 6 (mod 8),

(i1) (2\/3 + n)/4 is an integer when B = 2 (mod §).

PrOOF. By Lemma 5 we may choose r = 1 (mod 4) without loss of generality.
This gives 4 + B = sC (mod 8) by (6.1) and D — 1 = uC (mod 8) by (6.2). Hence
usC? = (A + BY D — 1) (mod 16), that is,

4 (mod16)  when B = 6 (mod8),
12 (mod16) when B = 2 (modS8).
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Moreover, since u = s (mod8) when B =6 (mod8) and u = s (mod8) when
B = 2 (mod 8) we have, by (6.3), v = 0 (nod 16).

(i) The integrability of (2 + 1) /4 is evident from the proof of Lemma 7(i): for
n,((2 + n)/4) € I, since [us, v] = [4,0] (mod 16) when B = 6 (mod 8).

(ii) tr,((2Vd + 1)/4) = Vd € I, and by (6.14)

n((2Vd +n)/4)=(4d - us —rv ~ v/d) /16 € I,

when [us, v] = [12,0] (mod 16), that is, when B = 2 (mod 8).

Since there are no integers of degree three in ya with denominator 2°BC, a > 2
(Theorem 3, corollary), the integers of Lemmas 7 and 8 are minimal. Thus we
have completed our search for minimal integers of degree three in Va in the case
d = 2,3 (mod 4). We summarize our results in the following:

LEMMA 9. Suppose that d = 2,3 (mod 4) and let n = (r + vd )\/; /C where the
rational integer r satisfies Theorem 1 and is chosen so that r = d + 2 (mod 4). Then
a minimal integer of degree three in Ja is given by
7 when B = 1 (mod 2),

(Vd +1)/2 when [A, B] = [1,0] (mod 2) and d = 2 (mod 4),

(1+Vd +7)/2 when [ A, B] = [1,0] (mod2) and d = 3 (mod 4),

B, = (20 + Vd) +m)/4 when[A, B,d]=[2,4,6] or [6,4,2] (mod38),
=

(2vd +9)/4 when [A, B, d] = [0,2,7] or [4,2,3] (mod 8),
(2 +n)/4 when [A, B, d] = [2,0,2] or [6,0,6],

or [0,6,7] or [4,6,3] (mod 8),
n/2 otherwise.

CasE (i) d = 5 (mod 8).

Suppose that there exists an integer of degree three in ya with denominator
2°BC, a > 0. Then, by Theorem 3, (7.1)-(7.8) are solvable for a = 1 (but not for
a > 1, by the corollary). We consider the solution for four separate cases
accordingas m, h = Qor 1:

(a) m = h = 0. There is no solution of (7.4)—(7.8). For by (7.8), z = 0 (mod 4)
and so (7.7) yields xy = 0 (mod 4). But D is odd and so y is also odd, by (7.5).
Hence x =0 (mod4) and (7.6) yields B =0 (mod4). Now by (74), A =0
(mod 4), which is impossible.

) m=1, h=0. By (78), z=1 (mod4) and so (7.7) becomes D =
! + xy (mod 4). This gives a solution of (7.4)—(7.6) for [ 4, B] modulo 4 as set out
below:
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D =1 (mod 4) D = 3 (mod 4)
/= 0(mod2) [1,0] {1,0]
[=1(mod2) [2,3] {0, 3]

Now if [4, B]is given in the above we have the following

LemMma 10. Suppose that d = 5 (mod 8) and that [A, B]=(1,0] or [D + 1, 3]
(mod 4). Let the integer m be defined by Theorem 1(ii) where the rational integer r is
chosen so that r = A (mod 4). Then (w + 1) /2 is an algebraic integer.

PROOF. That r may be chosen modulo 4 is clear by Lemma 5. Now
t,((w+1)/2)=wel,
and by (6.14)

n((w+m)/2)=(D-—us—(r—1)v +(1 —v)w)/4 € Iifv=1 (mod 4)

and us = D — r + 1 (mod4). It may easily be verified that v and us take the
above values when r = 4 (mod4), D is odd and [4, B)=[1,0] or [D + 1,3]
(mod 4). For example, if [4, B, D] = [2,3,1] (mod 4) then by (6.1) s = 0 (mod 4)
and so us = 0 (mod4). But D —r+1=1- 2+ 1 = 0 (mod4). Moreover mul-
tiplying (6.3) by C and using (6.2) yields
v=uBC =3B =1 (mod4).

Similar arguments hold for the other values of 4, B and D above, and the lemma
is proved.

When [4, B] = [1,0] or [D + 1, 3] (mod 4), (7.4)-(7.6) are not solvable and so
there exists no integer of degree three in ya with denominator 2 BC where the
coefficients ¢, and c, are given by (7.1) and (7.3) withm = 1 and h = 0.

(cym=0, h=1. By (7.8), z = 0 (mod4) and by (7.7), xy = 1 (mod 4). This
gives the unique solution of (7.4)-(7.8) for [ 4, B] modulo 4, according to the
different values of D and /, as set out below:

D =1 (mod4) D = 3 (mod 4)
= 0(mod2) 12,3] [0, 3]
I=1(mod2) (1,1 [3,1]

When [A4, Bl % [D + 1,3] or [D,1] (mod 4) there exists no integer of degree
three in Ya with denominator 2 BC where the coefficients c, and c, are given by
(7.1) and (7.3) with m = 0 and & = 1. Otherwise, we have the following:

LEMMA 11. Suppose that d = 5 (mod 8) and that [A, Bl = [D,1} or [D + 1,3]

(mod 4). Let the integer n be defined by Theorem 1(ii) where the rational integer r is
chosen so that r £ A (mod 2). Then (1 + n)/2 is an algebraic integer.

https://doi.org/10.1017/51446788700023648 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700023648

[19] Integral bases of dihedral numberfields. I 369

PRrOOF. That the parity of r may be chosen without loss of generality, is clear by
Lemma 5. Now tr,((1 + 9)/2) = 1 € I, and by (6.14)
n((1+n)/2)=Q-us—-(r—Dv—-vw)/del,
if and only if v = 0 (mod 4) and us = 1 (mod 4). It is easily verified that v and us
take the values when the conditions of the lemma are satisfied. For example,
when [4, B] = [D,1] (mod4) we have, by (6.1), sC= D + r (mod4) and, by
(6.2), uC = D + r (mod4), as r is even. Thus usC? = (D + r)? = 1 (mod 4), as D
is odd, so us = 1 (mod 4) because C is odd. Moreover, (6.3) yields, on multiplica-
tion by C,
v = uC — sC = 0 (mod 4).

A similar argument holds when [A4, B] =[D + 1,3] (mod4) and the lemma is
proved.

(d) m=h=1. By (78), z=1 (mod4) and by (7.7) 1+ D+ —xy =0
(mod 4). This gives the unique solution of (7.4)—(7.8) for [ 4, B] (mod 4) as set out

below:
D =1 (mod4) D =3 (mod4)
/=0 (mod?2) [1,1] [3,1]
/=1 (mod2) [1,0] [1,0]

When [ 4, B] # [D, 1] or [1,0] (mod 4) there exists no integer of degree three in
Va with denominator 2 BC and coefficients ¢y and ¢, given by (7.1) and (7.3) with
m = h = 1. But when [4, B] = [D,1] or [1,0] (mod4) we have already found
integers of degree three in with denominator 2 BC. This therefore completes our
search for minimal integers of degree three in Va, and our results are set out in
the following:

LEMMA 12. Suppose that d = 5 (mod 8) and let n = (r — 1 + w)a /C, where
the rational integer r satisfies Theorem 1 and so may be chosen modulo 4 without loss
of generality. Then a minimal integer of degree three in Ya is given by:

(1+7)/2 wherer £ A (mod?2),

if[4, B] = [D,1) or [D + 1,3] (mod 4);
(0 +1)/2 wherer =1(mod4),if[4, B] = [1,0] (mod4);
7 where r is arbitrary, otherwise.

B; =

8. Tables of integral bases

Having constructed minimal integers of degrees one, two and, when
d = 1 (mod8), degree three in va , we now have integral bases of the form
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{1, B,, B>, B;] as explained in Section 3, for all dihedral number fields with

quadratic subfield Q(Yd), d # 1 (mod 8).
Table 1: d = 2,3 (mod 4).

Let n = (r + Vd Wa /C where the rational integer r satisfies Theorem 1 and is
chosen so that r = d + 2 (mod 4).

A B d Integral basis
ODD (1,Va,Vd, 9]
1 (mod 4) 0 (mod 4) 2 (mod 4) [, + Ya)/2,yd,(/d + 1) /2]
1 (mod 4) 0 (mod 4) 3 (mod 4) 1, + Va)/2,¥d. (1 + Vd + n)/2]
1 (mod 4) 2 (mod 4) 2 (mod 4)
3 (mod 4) 0 (mod 4) 2 (mod 4) (1, Vo ,¥d,(/d + 1)/2]
3 (mod 4) 2 (mod 4) 2 (mod 4)
1 (mod 4) 2 (mod 4) 3 (mod 4)
3 (mod 4) 0 (mod 4) 3 (mod 4) .V, Vd, (1 + Vd + n)/2)
3 (mod 4) 2 (mod 4) 3 (mod 4)
0(mod2) 2 (mod 4 2 (mod 4)
2(modd) | 0 Eﬁod 2; 3 (mod 4) (Lo .Vd, /2]
2 (mod 8) 0 (mod 8) 6 (mod 8)
6 (mod 8) 0 (mod 8) 2 (mod 8) 1 2 n
2 (mod 8) ¢ (@odB) > (mod ) LV, (/d + Va)/2,1/2)
6 (mod 8) 4 (mod 8) 6 (mod 8)
0 (mod 8) 2 (mod 8) 3 (mod 8)
0 (mod 8) 6 (mod 8) 3 (mod 8)
4(mod 8) 2(mod8) | 7(mod8) (Ve (0 + Vd +Va)/2,0/2)
4 (mod 8) 2 (mod 8) 7 (mod 8)
2 (mod 8 2 (mod 8
6 god 8; 3§$ﬁ‘5§§ 6 E:od 8; [LVa,(Vd + Va)/2,2 + m)/4]
2 ((m(;'g 88)> j Em‘;:’i 2 62((2‘;‘; 88’) [1,Va,(/d + Va)/2,20 + Vd) +n)/4]
1 m

2 (mod 8) 7 (mod 8)
32{‘:;’22 22:0(18) gy | VT a)/2.00
0 (mod 8 6 (mod 8 7 (mod 8
4520(18: 6::od8; 3:ZM8: [LVer,(/d + Va)/2,2 + m)/4]
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Table 2: d = 5 (mod 8).

Let n=(r—1+ (1 + Vd)/2)Ya /C, where the rational integer r satisfies
Theorem 1 and is chosen so that:

r =1 (mod4)if [4, B] = [1,0] (mod 4);
r=0(mod2)if 4 =1(mod2) and B = 1 (mod 4);
r=1(mod2)if 4 = 0 (mod2) and B = 3 (mod 4).

A B Integral basis
1(mod 4) 0 (mod 4) L1+ Ya)/2,(1 +Vd)/2,((1 + Vd)/2 + m)/2)
1 (mod2) 1 (mod 4) [Lva, (1 + Vd)/2 + Va)/2,(1 + 9)/2]
0 (mod 2) 3 (mod 4) [Lva, (@ + 1 +Vd)/2 +Va)/2,d +1)/2)
otherwise [,Ve, + Vd)/2, 7]
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