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The purpose of this note is to present certain aspects of the theory of spectral
operators in Grothendieck spaces with the Dunford-Pettis property, briefly, GDP-spaces,
thereby elaborating on the recent note [10].

For example, the sum and product of commuting spectral operators in such spaces
are again spectral operators (cf. Proposition 2.1) and a continuous linear operator is
spectral if and only if it has finite spectrum (cf. Proposition 2.2). Accordingly, if a spectral
operator is of finite type, then its spectrum consists entirely of eigenvalues. Furthermore,
it turns out that there are no unbounded spectral operators in such spaces (cf. Proposition
2.4). As a simple application of these results we are able to determine which
multiplication operators in certain function spaces are spectral operators.

One approach to the theory of operator algebras generated by a-complete Boolean
algebras of projections in a Banach space X is via weakly compact homomorphisms with
domain a C(Q)-space, where Q is a compact Hausdorff space, and mapping into the space
of continuous linear operators on X (i.e. operational calculi). Such weakly compact
homomorphisms, in the particular case when the underlying Banach space I is a
GDP-space, are considered in §3. It turns out that such homomorphisms are of a very
restricted type and exhibit some rather strong properties (cf. Proposition 3.2).

1. Preliminaries and notation. Let A' be a Banach space and L{X) the vector space
of all continuous linear operators of X into X. Then LS(X) and LU(X) will denote the
space L(X) equipped with the strong and uniform operator topologies, respectively. Of
course, LU{X) is then a Banach space and LS{X) a quasicomplete locally convex space,
[11, p. 85 Corollary].

A continuous linear operator 5 in a Banach space A' is a scalar-type operator, briefly,
a scalar operator, if S = J c z dP(z) where P: 58—* LS(X) is a spectral measure defined on
the Borel sets 38 of the complex plane C; see [3, Chapters XV, XVII], for example. Of
course, to say that P is a spectral measure means that P is a-additive in the strong
operator topology, P(E HF) = P(E)P(F) for each E e S3 and F e 38, and P(C) = /, the
identity operator on X. An operator T e L{X) is said to be a spectral operator if there
exist a scalar operator 5 e L{X) and a quasinilpotent operator N e L{X) such that
NS = SN and T = S + N. This agrees with the original definition due to N. Dunford,
[3, XV Theorem 4.5].

A Banach space X is called a Grothendieck space if every sequence {x'n} in the
continuous dual space, X', of X, which converges for the weak-star topology to zero
converges weakly to zero. Since X' is quasicomplete for the weak-star topology, [11, IV
Proposition 6.1], it follows that X' is weakly sequentially complete whenever A' is a
Grothendieck space. A Banach space X is said to have the Dunford-Pettis property if

Glasgow Math. J. 28 (1986) 215-222.

https://doi.org/10.1017/S0017089500006534 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006534


216 W. RICKER

lim {xn, x'n) =0 whenever {*„} c X tends weakly to zero and {x'n} c.X' tends weakly to

zero. Well known examples of GDP-spaces include L^-spaces, H*"(D), injective Banach
spaces and certain C(fi)-spaces; see [9], for example.

LEMMA 1. (cf. [10]). Let X be a GDP-space and P: 2-» LS{X) be a spectral measure
with domain a o-algebra 2. Then there exist finitely many disjoint commuting projections

n

Pu . . . , Pn, in the range of P, each one an atom, such that I = £ Pi and each operator

P(E), Eel., is a partial sum of {Pls . . . , Pn}. In particular, P assumes only finitely many
values and is o-additive with respect to the uniform operator topology. Furthermore, if
S e L(X) is a scalar-type spectral operator, then o(S) is a finite set.

REMARK. It is well known that any Bade cr-complete Boolean algebra of projections
(cf. [3, p. 2195] for the definition) in a separable Banach space is necessarily a Bade
complete Boolean algebra, [3, XVII Lemma 3.21]. It follows from Lemma 1.1 and [3,
XVII Corollary 3.10] that there are other classes of Banach spaces, not necessarily
separable, for which the same statement is true; any GDP-space is such a space.

2. Spectral operators. There are many classes of Banach spaces, including Hilbert
spaces, V -spaces for Kp < °° and complemented subspaces of If -spaces, 1 < p < <», for
example, with the property that the sum and product of commuting spectral operators are
again spectral; an example due to S. Kakutani shows that this is not the case for all
Banach spaces (see [3, pp. 2098-2101] for a more detailed discussion of these remarks,
including the relevant references). A further result in this direction is the following

PROPOSITION 2.1. The sum and product of commuting spectral operators in a GDP
space are again spectral operators.

Proof. It suffices to establish the result for commuting scalar operators; see the
remark on p. 64 of [5]. But, then Lemma 1 implies that the hypotheses of Theorem 8 in
[8] are satisfied, from which the result follows.

PROPOSITION 2.2. Let X be a GDP-space and T eL(X). Then T is a spectral operator
if and only if its spectrum, o(T), is a finite set.

Proof. Suppose o(T) = {A,,. . . , kk}. It follows from Theorem 5.6.1 and its
Corollary in [7] that

1=1 /=i

where the operators £„ 1 < i < k, are pairwise disjoint projections commuting with T
k

such that / = E Ei and the pairwise commuting operators Nj = E^T - A,/), 1 < i < k, are
i

quasinilpotent and satisfy EtNj = NjEt = d^Nj. Since a(A0 = {0} for each 1 < / < k it
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k
follows that N= E Nt also satisfies o(N) = {0}, [3, XV Lemma 4.4], and hence, is

1=1

quasinilpotent. Since S = E A,̂ , is a scalar operator commuting with N the operator
i=i

T = S + N is spectral.
Conversely, suppose that T is spectral, say T = S + N, where N is a quasinilpotent

operator commuting with S. Lemma 1 implies that o(S) is finite (cf. its proof in [10]) and
hence, also o(T) = o(S) is finite, [3, XV Lemma 4.4].

REMARK. The proof of the finiteness of o(T) implying the spectrality of T does not
require X to be a GDP-space; it is valid in any Banach space.

Proposition 2.2 shows that the classification of spectral operators in GDP-spaces is
very close to that of linear operators in finite dimensional spaces. Of course, in finite
dimensional spaces the spectrum of any linear operator (necessarily a spectral operator by
the Jordan decomposition theorem) consists entirely of eigenvalues. It is natural to ask
whether this is also the case for spectral operators in GDP-spaces. For spectral operators
of finite type (cf. [3, pp. 1943-1944] for the definition) this is indeed the case.

PROPOSITION 2.3. Let X be a GDP-space and T e L(X) be a spectral operator of finite
type. Then o(T) is finite and consists entirely of eigenvalues.

Proof. Suppose that o(T) = {A1;. . . , A^}; see Proposition 2.2. If P is the resolution
of the identity for T, then P({A,}) =f 0 for each 1 < / < &, [3, p. 2076, Ex. 15], and hence,
each A,, 1 < i £ fc, is an eigenvalue of T, [3, XV Theorem 8.3].

It is always the case in any Banach space X that if T e L(X) is a spectral operator of
finite type, then its residual spectrum is empty, [3, XV Theorem 8.3]. If X is a
GDP-space, then Proposition 2.3 shows that the continuous spectrum of T is also void.
So, the natural question to ask is whether there exist spectral operators in GDP-spaces
which are not of finite type and if so, whether they have spectral points other than
eigenvalues? The answer is affirmative for both questions.

EXAMPLE 1. Let X=L~([0, 1]) and T e L{X) be the operator defined by Tf = g,
feX, where ,f

g(t)=\f(s)ds> te[0,l].
Jo

It can be verified that T is quasinilpotent (and hence, is a spectral operator, which is
clearly not of finite type) and that zero belongs to the residual spectrum of T.

Let A' be a Banach space and T be a spectral operator, possibly unbounded, in the
sense of N. Dunford, [3, Chapter XVIII], with resolution of the identity P:®-*LS(X),
necessarily unique, [3, XVIII Theorem 2.5]. It is a consequence of the definition of
spectral operator (cf. [3, p. 2228]) and the Closed Graph Theorem that if the support of
the measure P is a bounded subset of C, then necessarily T e L(X). This is precisely what
happens if X is a GDP-space. For, in this case it follows from Lemma 1 applied to the
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resolution of the identity P: %—> LS(X) that the support of P is necessarily a finite subset
of C. This establishes the following

PROPOSITION 2.4. There are no unbounded spectral operators in GDP-spaces.

We conclude this section by determining the spectrality of some familiar operators in
certain function spaces.

EXAMPLE 2. Let G be a locally compact abelian group and for each g eG, let Tg

denote the continuous translation operator in U°(G) defined by (Tgf)(y) =f(y + g) where
/ e LT{G) and y eG locally a.e. Then Tg is spectral if and only if g has finite order.

If g has finite order, say n, then Tg = I and so the spectral mapping theorem implies
that o(Tg) consists of at most the nth roots of unity. It follows from Proposition 2.2
that 7̂  is spectral. Conversely, if g has infinite order, then o(Tg) is the entire unit circle,
[6, Theorem 1], and so Proposition 2.2 shows that Tg cannot be spectral.

EXAMPLE 3. Let fi :2-» [0, °°] be a localizable measure, f e L°°(n) and Tf denote the
continuous operator in L°°(/i) of multiplication by /. Then 7} is a scalar operator if and
only if / i s a Z-simple function.

For, if/is a 2-simple function, then it is clear that 7} is a scalar operator. Conversely,
suppose that 7} is scalar. Let 5̂  denote the continuous operator in Ll(n) of multiplication
by /. Then 5/ is a scalar operator and Sf = jfdP where P :2-» L^L1^)) is the spectral
measure of multiplication by characteristic functions of elements of 2 , [1, Theorem 4].
Since P and /x have the same null sets it follows from [3, XVII Corollary 2.11(ii)] that

°(Sf) = H {/(£); E e 2, P(E) = /} = D {/(£); E € 2, ^Ec) = 0}, (1)

where Ec denotes the complement of the set E e 2. As Tf is the adjoint operator of 5/ (the
localizability of fi ensures that (L 1 ^) ) '= L°°(/x)) it is known that a(Tf) = o(Sf). Since
a{Tf) is finite (cf. Proposition 2.2) it follows that the right-hand side of (1) is finite and,
hence, that/ is a 2-simple function.

EXAMPLE 4. Let / e //™(D) and 7} denote the continuous operator in //°°(D) of
pointwise multiplication by/. Then 7} is spectral if and only if/is a constant function.

If/is constant, then Tf is a multiple of / and so is a scalar operator. Suppose now that
Tf is spectral, in which case o(Tf) is finite by Proposition 2.2. But, it is easily shown that
a{Tf) is precisely the closure in C of /(D) = {/(z); z e D} and, hence, /(ED) is a finite set.
Since / is analytic it follows that / is a constant function.

If Q is a compact Hausdorff space and / e C(Q), then 7} denotes the operator in
C(Q) of pointwise multiplication by/. It was shown by U. Fixman, [4, Example 2.2], that
a necessary condition for spectrality of Tf is that / be constant on the connected
components of Q. However, this condition is clearly not sufficient. For example, if Q is
the one-point compactification of the natural numbers, in which case the connected
components of Q are just the singleton subsets of Q, and/ e C(Q) is the function given by
/(oo) = 1 and f(n) = n~1 + l, n = l, 2 , . . . , then / is constant on the connected com-
ponents of Q, but Tf is not spectral. The problem is that/assumes too many values on the
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connected components. If / is replaced by any element of C(Q) which is constant in some
neighbourhood of infinity, in which case it assumes only finitely many values, then it is
clear that Tf is scalar. For GDP^spaces C(Q), it turns out that this is the only way that Tf

can be spectral.

EXAMPLE 5. Let Q be a compact Hausdorff space for which C(Q) is a GDP-space
and / e C(Q). Then 7} is spectral if and only if/ has finite range.

Indeed, if 7} is spectral, then a{Tf) =f(Q) is finite by Proposition 2.2 and, hence, /
assumes only finitely many values. Conversely, suppose that f(Q) = {Aj, . . . , kn}. It
follows from the continuity of/that each set £, =/~1({A,}), l < j < n , is both open and
closed in Q and, hence, %Ei e C(Q). If 2 denotes the (finite) a-algebra generated by the
disjoint sets {£,; 1 < / < / I } , then the mapping P:2—»L,(C(Q)) of pointwise multiplica-
tion by characteristic functions of elements of 2 is a spectral measure such that
Tf = jafdP. Accordingly, 7} is scalar, [3, XVII Lemma 2.9].

3. Weakly compact homomorphisms. It is well known that there is an intimate
connection between weakly compact homomorphisms from C(Q)-spaces into LS{X) and
the theory of algebras of commuting scalar operators in L(X); see [3, Chapter XVII], [12]
and [13], for example. This connection is explicitly formulated in Proposition 3.1 below.
The purpose of this section is to investigate the nature of such homomorphisms in the
particular case when A' is a GDP-space.

Let Y be a Banach space and Z a locally convex Hausdorff space. A linear operator
T: Y^>Z is said to be compact (weakly compact) if {Ty; \\y\\ £ 1} is relatively compact
(relatively weakly compact) in Z. Such operators are necessarily continuous.

If Q is a compact Hausdorff space, then S8(Q) denotes the a-algebra of Borel subsets
of Q. A linear mapping <I>:C(Q)—* L(X) is a homomorphism if O(/g) = <&(f)<b(g), for
each /, g e C(Q), and 3>(1) = /.

PROPOSITION 3.1. Let Q be a compact Hausdorff space and X be a Banach space.
(i) / / 3>:C(Q)—* LS(X) is a weakly compact operator, then there exists a unique

(regular) operator-valued measure P: 98(Q)—* LS(X) such that

<bf=\fdP, feC(Q). (2)

//, in addition, <& is a homomorphism, then P is a spectral measure.
(ii) / / P:9l(Q)—* LS(X) is a (regular) operator-valued measure, then the linear

mapping of C(Q) into LS(X) defined by (2) is weakly compact. If, in addition, P is a
spectral measure, then this mapping is a homomorphism.

REMARK. Regularity of operator-valued measures is defined by analogy with scalar
measures, using the topology of the image space LS{X).

A continuous linear operator between Banach spaces is said to be absolutely
summing if it maps weakly unconditionally Cauchy series into absolutely convergent
series.
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PROPOSITION 3.2. Let Q be compact Hausdorff space, X be a GDP-space and
<I>: C(Q)—» LS(X) be a weakly compact homomorphism. Then,

(i) <S>: C(Q)-+ LU{X) is a compact homomorphism,
(ii) $ : C(Q)—»LS(X) is a compact homomorphism and

(iii) 4>: C(Q)—» LU{X) is an absolutely summing operator.

Proof, (i) Let P:58(Q)-» LS(X) be the unique spectral measure given by Proposi-
tion 3.1(i). Since P:9S(Q)-*LU{X) is then also a-additive (cf. Lemma 1), it follows that
each / e C(Q) is P-integrable in LU(X). Of course, the integrals \afdP, feC(Q), are
the same operators in L{X) irrespective of whether we consider P as an Ls(X)-va\ued
or Lu(AT)-valued measure. Now ®:C(Q)-*LU(X) is actually continuous (this follows
easily from [3, XVII Theorem 2.10]) and its representing measure P:2ft(Q)^>Lu(X),
having finite range (cf. Lemma 1), certainly has relative compact range in LU(X). It
follows that *:C(S2)-»Lu(Ar) is compact, [2, VI Theorem 2.18].

(ii) If si denotes the closure of {$/ ; | |/ | |«,^ 1} in LU(X), then si is compact by (i).
Since the identity mapping of LU(X) into LS(X) is continuous it follows that si is also
compact as a subset of LS(X) and, hence, <I>: C(£2)-» LS(X) is compact.

(iii) Since P:38(Q)-» LU(X) is the representing measure of O:C(Q)-»Lu(Ar), to
show that $ is absolutely summing it suffices to show that P has finite variation, [2, VI
Theorem 3.3].

Let {P\,. . . , Pn} be the atoms in the range of P as given by Lemma 1. If
T = {Au . . . , Ar} is a partition of Q, then each operator P(A), l ^ i ' s r , is a partial sum
°f {Pk}"k=i and it is not difficult to show, using the disjointness of {Pk}l=i, that if i^j,
then there are no elements of {/*}£=! forming the partial sum for P(Aj) in common with

*/
those forming the partial sum for P(Aj). Then P(/4,) = £ Pijt for each 1 < j < r, where all

/='
the projections Pip for l < i < r and l< /< /c , , belong to {Pk}k=\ and there are no

repetitions. In particular, ( E k-) <n. It follows that ||P(/4,)|| s £ ||P,.J < akh for each

l < t < r , where a- is a bound for {||P(£)||; E e 08(Q)}, and hence, E ||P04,)ll - an-

Since T was an arbitrary partition of Q it follows that P has finite variation in LU(X). This
completes the proof of the proposition.

Let X be a Banach space and $ : C(Q)—»L(X) a linear mapping. For / e C(Q) fixed,
the operator $( / ) belongs to L(X) and so possesses an adjoint operator O(/)' € L(X').
We denote by * ' : C ( Q ) ^ L(Jf') the linear mapping / - » O(/)', / e C(Q).

PROPOSITION 3.3. Lef Q be a compact Hausdorff space and X be a Grothendieck
space. If <5>: C(Q)—»LS(X) is a weakly compact operator, then the mapping O ' :C (Q) -»
LS(X') is also weakly compact. If, in addition, X has the Dunford-Pettis property and <t> is
a homomorphism, then

(i) <&': C(Q)—»LU(X') is a compact homomorphism,
(ii) O ' : C(Q)—> LS(X') is a compact homomorphism and

(iii) <&': C(Q)—> LU{X') is an absolutely summing operator.
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Proof. By Proposition 3.1(i), there exists a regular operator-valued measure
P:M(Q)^>LS(X) such that <I> is given by (2). Let P':0%(Q)^> LS(X') denote the set
function defined by P'(E) = (P(E))', E e 58(Q). Then P' is a-additive, that is, the
A"'-valued measure P'x' :E—>P'(E)x', E e 28(Q), is a-additive with respect to the norm
topology of A", for each x' e X'. Indeed, if x' e X' is fixed, then the identities

(x,P'(E)x') = (P(E)x,x'), Ee®(Q),

valid for each x eX, shows that P'x' is a-additive for the weak-star topology. Since X' is
weakly sequentially complete (cf. §1) it cannot contain a copy of f° and, hence, P'x' is
CT-additive with respect to the norm topology of X', [2, I Corollary 4.7]. Hence,
P' :9&(Q)-* LS(X') is an operator-valued measure and so by Proposition 3.1(ii) the
mapping of C(Q) into LS(X') given by

feC(Q),

is weakly compact. But, this mapping is precisely 4>' as can be seen by the identities

((9f)x, x') = jj(w) d(P(w)x, x') = jj(w) d(x, P'(w)x') = (x, (J fdP'Y),

valid for each/e C(Q) and each xeX and x' eX'. Accordingly, 3>' is weakly compact.
If, in addition, X has the Dunford-Pettis property and O is a homomorphism, then

the operator-valued measure P: 2&(Q)—> LS(X) is a spectral measure with finite range (cf.
proof of Proposition 3.2). But, then the representing (spectral) measure P' for <&' has the
same properties as the measure P in the proof of Proposition 3.2. Accordingly, (i), (ii)
and (iii) can be proved in the same way as the corresponding statements of Proposition
3.2 by simply replacing P with P'.
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