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Abstract

We speak of rigidity, if partial information about the prime decomposition in an extension of
number fields K\k determines the decomposition law completely (and hence the zeta function
CK), or even fixes the field K itself. Several concepts of rigidity, depending on the degree of
information we start from, are introduced and studied. The strongest concept (absolute rigidity)
was only known to hold for the ground field and all quadratic extensions. Here a complete list
of all Galois quartic extensions which are absolutely rigid is given. For the weaker concept of
rigidity, all rigid situations among the fields of degree up to 8 are determined.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 R 32, 11 R 27,
20 B 25.

1. Introduction

Old results of GaBmann [7], and more recent results of Jehne [10], Perlis [18],
Komatsu [14] and others, showed, that in general, number fields may not be
fixed by their decomposition law. There were a lot of examples of extensions
K, K' having totally the same decomposition law over some fixed ground
field k, without being conjugate over k.

We will introduce and study several concepts of rigidity. A decomposition
law will be called rigid (see Definition (1.3)), if it is already fixed by some
small part of it. We will prove several rigidity results, and for fields up to
degree 8 we will determine all rigid situations.
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172 Norbert Klingen [2]

(1.1) DEFINITION. Let K\k be a finite extension of number fields, p a
prime ideal of k and and &>

i (i = 1, . . . , r) its prime factors in K.
(a) If ft = fi&'ilp) are the residue degrees, then we call A = (fl,..., fr)

the type of decomposition of p in K, and for every r e N and A =
(/i > • • • » / r ) e Nr we let PA{K\k) be the set of all primes p of k having A
as type of decomposition in K.

(b) The (full) decomposition law of K\k is given by all sets PA(K\k), while
the weak decomposition law of K over A: is given by the Kronecker-set

D(K\k) := {p\p has a factor of degree 1 in K}.

Finally the Kronecker set D(K\k) together with the set

S(K\k) := {p\p splits completely in K}

shall be called the partial decomposition law of K\k.
By results of Bauer [3], it is well known that two Galois extensions K\k,

K'\k having almost (that is, up to a finite number of exceptions) the same
weak decomposition law must coincide. This does not hold anymore if one
of the fields is not Galois; in fact, as mentioned above, there are lots of
non-conjugate fields with the same weak, and even full, decomposition law.

(1.2) EXAMPLES, (i) (Schinzel [22, page 334]) Every cubic cyclic extension
K\k has the same weak decomposition law as some (even infinitely many)
sextic fields K'\k (with K1 D K).

(ii) (Klingen [12, Satz 2]) Quintic extensions K\k with normal closure K
having Galois group A5 have the same weak decomposition law as some field
K'\k of degree 10.

(iii) (Trinks [24]) Extensions of K\k of degree 7 with Galois group
G(K\k) = GL3(2) have the same full decomposition law as some non-conju-
gate septic field K' C K.

(iv) (Schinzel, Gerst [8, page 138]) The radical extensions Q(v/3) and
^ have the same full decomposition law, but are not conjugate over

(1.3) DEFINITION. Let K\k be a finite extension of number fields.
(a) We will call the decomposition law of K over k absolutely rigid (re-

spectively rigid) if it is already determined by the weak (respectively, by the
partial) decomposition law, that is, if any number field K' with the same
weak (respectively partial) decomposition law as K has already the same
full decomposition law. We will call the decomposition law of K horizon-
tally rigid, if it is already determined by the weak decomposition law and the
degree (K : k).

(b) We will attribute these properties of rigidity to the field K itself, if not
only the full decomposition law, but even the field K is uniquely determined
(up to conjugacy over k) by these partial decomposition laws.
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[3] Rigidity of decomposition laws 173

(c) We call a number field K arithmetically fixed if the full decomposi-
tion law determines the field (up to conjugacy), that is, if any field K1 with
the same full decomposition law is already conjugate. (Perlis [18] calls this
arithmetically solitary.)

We mention some obvious facts.
'Absolutely rigid' implies 'rigid' and 'horizontally rigid', but (as we will see

later on) none of the last two concepts implies the other one.
A field K has one of the three rigidity properties, if and only if its de-

composition law has it and additionally K is arithmetically fixed.
The first, and until recently only example of an absolutely rigid field over

k was the ground field k itself (Cassels and Frohlich [6, Exc. 6.2]). This
result follows from the fact that a finite group cannot be covered by the
conjugates of one subgroup, using the following group theoretical criterion
(1.4), (i) «• (ii), based on the Cebotarev density theorem. That fields with
almost the same weak decomposition law (Kronecker-equivalent fields, Jehne
[10]) must have the same weak decomposition law without any exception was
proved in [11, Satz 1].

(1.4) THEOREM. Let K and K' be extensions of some number field k,
N\k a Galois extension containing KK1. Denoting the fixed groups of K
(respectively K.') in the Galois group G = G(N\k) by U (respectively U'),
the following are equivalent:

(i) K and K' have almost the same weak decomposition law with respect
to k;

(ii) the groups U and U' have the same set of conjugate elements in G,

UG := |J if = U'G;
a€G

(iii) the weak decomposition laws of K and K' agree without any excep-
tion.

The above examples of fields with the same weak decomposition law are
constructed using this group theoretical criterion: in the alternating group A4

the Klein-four group V4 is covered by the conjugates of any of its subgroups
U of order 2;

F4 = F / 4 = UA*.

Hence, realizing A4 as Galois group, Theorem (1.4) gives rise to cubic ex-
tensions K\k having the same weak decomposition law as some (in fact
infinitely many) sextic fields. Since the embedding problem

1 -> F4 -f A4 -> C3 -> 1
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is always properly solvable, this applies to every cubic Galois extension K\k.
Moreover, the infinitely many sextic fields belonging to one cubic field provide
examples of fields being rigid, but not horizontally rigid.

2. The alternating and symmetric case

We will see, that all field extensions of degree n with a normal closure
having Galois group An or Sn are examples of rigid number fields with one
exception: the case G = A5 provides us with examples of horizontally rigid,
but not rigid number fields. More precisely, we have the following theorem
(see Klingen [12]).

(2.1) THEOREM. Let K\k be an extension of degree n with normal closure
K over k having Galois group G = G{K\k) = Sn or An .

(a) If G^A5, then K is rigid.
(b) If G = A5, then K has the same partial decomposition law as some

field K' C K of degree 10 over k; in particular, K is not rigid.
(c) In any case, the field K is horizontally rigid, and therefore also arith-

metically fixed.

PROOF. In [12] we proved, for fields K as above, that a field K' Kro-
necker-equivalent to K over k and contained in K is already conjugate to
K, unless we have

G = A5, G{K\K') = if := <(12)(34), (125)),

in which case lfA> = UAi holds for the group G(K\K) = U = F ix^^) = A4 .
This result contains assertion (a), since we know (Bauer [3]) the equiva-

lence of
(i) K and K1 have almost the same partial decomposition law,
(ii) K and K' have the same weak decomposition law and the same

normal closure K = K' and
(iii) K and K1 have the same partial decomposition law.

(b) Since A5 is simple we must have K = K' and therefore K and K'
have the same partial decomposition law. But since they have different de-
grees, their full decomposition laws differ. (It is well known that two fields
with the same full decomposition law have the same zeta function (Cassels
and Frohlich [6, Ex. 6], Perlis [18]) and therefore share many number theo-
retic invariants (see Klingen [11]), for example, the degree.)

To deduce (c) from (a) one uses the following proposition, the first part
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of which is easily proved from (1.4) (see Jehne [10, Reduktionssatz]), while
the second statement then follows using the above result of Bauer [3].

(2.2) PROPOSITION. Let K\k and K'\k be extensions of number fields with
the same weak decomposition law, and K, K' their normal closures over k.
Then the fields K' n K and K r\Kr too, have the same weak decomposition
law as K and K'. Hence, if both fields K, K' are minimal with respect to
their weak decomposition law, they have the same partial decomposition law.

To prove (2.1)(c) let K be a field as in the theorem and K1 any number
field of degree n with the same weak decomposition law, not necessarily
contained in K. We choose Ko C K' minimal with the same weak de-
composition law as K' (and K). Since K has no proper subfield ^ k
(the permutation groups An , Sn are primitive) and k is absolutely rigid, the
fields K and Ko have the same partial decomposition law according to (2.2),
and hence are conjugate by (a). (The exceptional case (b) cannot occur, since
we have {Ko : k) < (K' : k) = n.) From (Ko: k) = (K : k) = n = {K1: k),
we finally see that Ko = K1 and hence K' is conjugate to K over k.

(2.3) COROLLARY. Let f e k[X] be a polynomial of degree n with Galois
group An or Sn (which happens for irreducible polynomials with probability
1), then for any irreducible polynomial g e k[X] of degree n the following
statements are equivalent:

(i) k{a) = k{P) for some root a of f and ft of g;
(ii) The sets P(f) and P{g), where

P(f) := {PI P\f(a) far some a e Z J ,

coincide up to a finite number of exceptions.

(Here Zk denotes the ring of integers of k.) The corollary is clear, since
for a root a of / we have D{k(a)\k) = P(f), where = means equality
with a finite number of exceptions.

3. Extensions of low degree

As we have seen in the preceding section, in general there is no connection
between 'rigid' and 'horizontally rigid', but for extensions of prime power
degree, rigidity implies horizontal rigidity: this follows from Proposition
(2.2), since fields of prime power degree contain no proper subfield with
almost the same weak decomposition law (Klingen [11, Satz 9]).
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For fields of prime degree, however, one can even prove the following

(3.1) THEOREM. Let k be a number field and K an extension of prime
degree p.

(a) K\k has a horizontally rigid decomposition law,
(b) if K\k is solvable by radicals, then even the field K itself is horizontally

rigid, and hence in particular arithmetically fixed.

This theorem was proved in slightly different terms in Klingen [11, Satz
13]. Part (b) is another formulation of the theorem of P. Hall on Hall-
subgroups in solvable groups. Part (a) was proved by character theoretic
means from the theorem of Burnside that a non-solvable permutation group
of prime degree is 2-fold transitive.

In general one cannot deduce in (a) that the decomposition law is rigid,
nor can one drop in (b) the assumption of solvability. Counterexamples are
given by fields of degree 5 with group A5 (see (2.1)(b)) and by fields K of
degree 7 with normal closure K having as Galois group G{K\k) the simple
group G — GL3(2) of order 168 with its natural permutation representation
of degree 7. Since we have GL3(2) ~ PSL2(7) the subgroups of G are
well known according to Dickson (see Huppert [9, Kap. II, 8.27]): there
are two conjugacy classes of subgroups U, U' isomorphic to 5 4 , one of
which is the fixed group of one element with respect to the permutation
representation mentioned above. For these groups we have UG = U>G, so
that the corresponding fields K and K' have the same weak decomposition
law. According to (3.1)(a) the full decomposition laws of these fields agree.
Since they are not conjugate, we see that we cannot drop the assumption of
solvability in (3.1)(b).

Combining the results in the alternating (respectively symmetric) case
(Theorem (2.1)) with those in the prime degree case (Theorem (3.1)) one
is able to decide for all fields of degree up to 8 whether they are rigid or
horizontally rigid.

In the theorem below we use the following notation:
Cn is the cyclic group of order n ,
VA is the Klein-four-group,
Aff(l, R) = {a • x + b\b e R, a e R*}, the affine group of dimension 1

over a ring R (with x = id.R), and
GWTH is the wreath product of a group G with a permutation group H.
C. E. Praeger [20] computed independently a list similar to the list of the

seven cases below, and I thank her for fruitful discussions on this topic.

(3.2) T H E O R E M . Let K\k bean extension of number fields of degree n<%
with normal closure K, Galois group G(K\k) := G c Sn and the subgroup
U = FixG(n) c G fixing K.
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[7] Rigidity of decomposition laws 177

(a) If there is a non-conjugate field K1 c K, which has the same weak
decomposition law as K, then only the following seven cases are possible (£/'
denotes the subgroup of G fixing Kf).

n = 6:G~/i4, (K1: k) = 3, U c U1 ~ V4.

n = l*G = GL3(2), (K' : it) = 7, U s if =s S4.

n = 8:*G = Aff(l,Z/8Z), (JC':fc) = 8, U = (-x, 3x), U' = (-x

*G = GL2(3), (/s:':A;) = 8, U*lf*S3,

G = C2 wr C4, (K': A:) = 8, U = c\ * if c C2
4 c C2 • C4,

G = C2wrF4, ( # ' : fc) = 8, C/ = C2 ~ (/' c C2 C C2 • F4.

(b) Only in the 3 cases marked by an asterisk the fields K, K1 have the
same full decomposition law, and hence we deduce the following.

(a) The field K is arithmetically fixed unless G = GL3(2) (n = 7) or
G = Aff(l, Z/8Z) or G = GL2(3) (n = 8).

(/?) # Aas n'g/V/ decomposition law if G ^ A5, C2 wr C 4 , C2 wr V4;
K has a horizontally rigid decomposition law if G ^ A4 (n = 6) a«rf C? /
C2wrC4, C2wrF4 (n = 8).

(y) Apart from the 6 cases in (a) /or n = 5, 7 , 8 the field K itself is
rigid, while K is horizontally rigid unless it belongs to one of the 6 cases in
(a) for n = 6, 7 , 8.

(S) The last two cases n = 8 , G = C2 wr C 4 , C2 wr V4 provide us with the
first examples of fields K, K' with the same partial decomposition law and
the same degree, but different full decomposition laws.

None of the conditions can be dropped.

PROOF, (a) Applying Theorem (1.4) for N = K we get the following group
theoretical situation:

G{N\k) =: G a transitive permutation group of degree n ;
G{N\K) =: U the subgroup fixing one letter;
G(N\K') =:U'CG not conjugate to U, but satisfying UG = U'G, that

is, every element of U' fixes one letter.
From Theorem (2.1) we know that, apart from the case n = 5, G = A5,

we have G / An and G ^ Sn. Hence we have n > 4 .
CASE n = 4 . Since G cannot be abelian, the only permutation group

left is the dihedral group of order 8, the group of the square. But then UG

contains exactly three elements and UG = U>G implies at once that U' too
must be the group fixing one letter, hence conjugate to U, contradicting the
assumption.

https://doi.org/10.1017/S1446788700034182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034182


178 Norbert Klingen [8]

CASE n = 5 . Here we know from Theorem (3.1) that, in addition to the
restrictions already mentioned, G is non-solvable. But then only the case
G = A5 remains which according to (2.1)(b) is a true exception.

CASE n = 6. The exceptional case G = AA (with its transitive permuta-
tion representation of degree 6 given by any of its subgroups of order 2) was
already mentioned shortly after Theorem (1.4). To prove that there are no
further possibilities we check the list of all transitive permutation groups of
degree 6 (see for instance McKay [15]). Since the groups A6 and S6 are
excluded, the biggest group occurring is the group PGL2(5) of order 120.
Hence one can check these groups using CAYLEY, the computer system for
group theoretical computations.

CASE « = 7. As for n = 5, G must be a non-solvable transitive per-
mutation group of degree 7, different from S1 and A1. Hence G is the
simple group GL3(2) of order 168 with its natural representation of degree
7. Again, this is a true exception already discussed after Theorem (3.1).

CASE n = 8 . The four exceptional cases for n = 8 are found on the basis
of Butler and McKay's list [5] of all transitive permutation groups of degree
8, again using CAYLEY. The groups are (in the notation of [5]):

= T15 = ((14682357), (17)(28)(36)(45), (34)(78)) of order 32,

C/' = ((12)(56),(37)(48)(56)>;

G= T23 = ((357)(468), (13)(24)(78)> of order 48,

C/ = ((136)(245),(14)(23)(56)>,
C/' = <(136)(245),(16)(25)(78)>;

G= T21 = ((14682357), (12)) of order 64,

t/ = ((12), (34), (56)),

if = <(12)(34)(56), (12)(56)(78), (34)(56)(78)>;

= ((1625)(37)(48), (17)(28)(35)(46), (12)) of order 64,

if = <(12)(34)(56), (12)(56)(78), (34)(56)(78)>.

The first of these four cases for n = 8, which has order 32, is realized by
the Schinzel and Gerst Example (1.2)(iv). This group therefore is the Galois
group G(Q(v/3, C8)IQ), the affine group Aff(l, Z/8Z) with the subgroups
U and U' as stated in the theorem. Because of the purely group theoretical
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criterion (1.4), Example (1.2)(iv) extends to the following general fact: any
octic radical extension Q(^a) has the same weak (in fact full; see the group
theoretical criterion (*) in the proof of (b) below) decomposition law as

The group of order 48 is the general linear group GL2(3) in its natural
permutation representation on F3 \ {0} . The subgroup fixing one vector (for
example (1,0)) obviously is

* • < ( * ! ) • ( * - ' . ) > •

GL2(3) has eight conjugacy classes, of which the six non-central ones are
characterized by trace and determinant: two classes consisting of the non-
diagonalizable matrices with inseparable characteristic polynomial and four
cases corresponding to the separable quadratic polynomials over F 3 . Besides
the unit matrix the subgroup U contains two matrices with trace - 1 and
determinant 1 and three matrices with trace 0 and determinant - 1 . The
same is true for the subgroup

-<(- . - ' ) • ( - . I.1))-
which does not fix any non-zero vector, and therefore is not conjugate to U.

As for the last two groups in the list above, we remark that the natural
representation of the wreath product C2wrC4 as permutation group on eight
letters preserving the partition (12|34|56|78) is given as

C2wrC4 = ((12),(1357)(2468)),

which because of (1357)(2468)(12) = (14682357) is exactly the group T27
as given above. Representing the wreath product as semidirect product C2 wr
CA = C* • CA, the subgroup U fixing the letter 8 obviously is given as U =
C\ c C2 , that is,

U = ((l, 0 , 0 , 0 ) , ( 0 , 1 , 0 , 0 ) , ( 0 , 0 , 1 , 0 ) ) ,

while, up to conjugacy, we have

U' = ((0, 1 , 1 , 1 ) , ( 1 , 0 , 1,1), ( 1 , 1 , 0 , 1 ) ) .

The duality between U and U' is obvious.
Vectors x = ( x , , . . . , x4) € C\ are conjugate in the group G = C\ • C4

exactly if the corresponding sets {/|JC(. = 1 } C { 1 , . . . , 4 } belong to the same
orbit under the regular action of C4 . From this one sees that the groups U
and U' determine the same set of conjugate elements. These considerations
apply equally well in the last case.

(b) In the first two cases the fields K, K' cannot have the same full
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decomposition law, since they are either of different degree (« = 5) or have
different normal closures (n = 6). That in the third and fourth case the fields
do have the same full decomposition law was mentioned earlier, while in the
last three cases one easily tests the following group theoretical criterion (aG

denotes the conjugacy class of a e G),

which is equivalent to the fact that the fields K, K' have the same full
decomposition law (for example, see Cassels and Frohlich [6, Exc. 6], Klingen
[11, Satz 2]). For G = GL2(3) and the groups U, U' as given above the
numbers in (*) are 0, 1, 2, 3 as was explained already in the proof of (a),
and agree in both cases.

For the wreath products one checks (with the notations already used) that
the conjugacy class consisting of all vectors x £ C^ with exactly one non-zero
entry meets U in only one element, while it meets U' in 3 elements.

This proves assertions (a) and (d); (y) follows from (a) and (/?).
As for (/?) we first notice, that in the case mentioned in (a) for n = 6, the

field K' is Galois over k, hence K and K' cannot have the same partial
decomposition law, so the decomposition law of K is rigid if G ^ A5.
Unless n = 6, G ~ A4, the results of (a) show that K is minimal, even of
minimal degree, with respect to Kronecker equivalence. Because of (2.2) we
deduce from the rigidity just proved that K is horizontally rigid. This also
applies in the case n = 5, G = A5, since in that case the fields K and K'
are of different degree.

4. Absolutely rigid fields

As was already mentioned in the introduction, until recently the only
known result concerning absolute rigidity was the fact that no proper exten-
sion K of k can have the same weak decomposition law as the groundfield k
itself. The situation is even worse, since Jehne showed [10, Theorem 3] that
for many number fields K there exist infinitely many others with the same
weak decomposition law. This is true especially for all Galois extensions K
of odd degree or of degree 8 with cyclic or quaternion Galois group.

However, Jehne [10, remark after Theorem 5] also showed that if quadratic
extensions were not absolutely rigid, then a finite simple group G had to
exist, which could be covered by the conjugates of two maximal subgroups
U, U', isomorphic under some outer automorphism of G. This seemed
highly improbable, and in fact there were several results excluding a lot of
finite simple groups (Jehne [10], Klingen [12], [13], Brandl [4]), but only after
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the classification of the finite simple groups was complete Saxl [21] was able
to exclude all of them, thereby proving

(4.1) THEOREM. Quadratic extensions K of a number field k are abso-
lutely rigid over k, that is, K is already uniquely determined by its weak
decomposition law.

In view of Jehne's results mentioned above, among Galois extensions only
2-extensions could possibly be absolutely rigid. Hence the next interesting
case are the quartic Galois extensions. Concerning these, Praeger proved the
following group theoretical result.

(4.2) THEOREM (Praeger [19]). Let G be a finite group, H a normal sub-
group of index 4 and U a maximal subgroup of H with

(*) UG:= f | Ua = {l} and UG = HG = H.

Then G is a semidirect product of the elementary abelian group A = C3 x C3

of order 9 with the cyclic or quaternion group of order 8, and A is contained
in H.

The general linear group GL2(3) of order 48 contains as subgroups of
order 8 three conjugate cyclic, three conjugate dihedral and one quaternion
group. Of these, the cyclic and the quaternion group operate transitively
on the cyclic subgroups of A. This leads to the fact that the groups G
mentioned in the theorem do in fact have subgroups U and H with property
(*). From this one easily deduces

(4.3) REMARK, (a) There exist cyclic and biquadratic Galois quartic ex-
tensions L\k with the same weak decomposition law as some field L1 D L
of degree 12. Especially these quartic fields L are not absolutely rigid, (b)
There exist dihedral extensions of K\k of degree 8 with the same weak de-
composition law as some field K' D K of degree 24.

PROOF, (a) The possible groups G mentioned in (4.2) are solvable, and
hence they occur as Galois groups of extensions N\k (see the front piece of
Figure 1). The fact that the corresponding group of order 8 acts transitively
on the cyclic subgroups of A means that M (the fixed field of A) has the
same weak decomposition law as M1 (the field fixed by any of these cyclic
subgroups). The subgroups H and U mentioned in (4.2) correspond to the
fields L (respectively L,'), which also have the same weak decomposition
law. The Galois group G{L\k) is a quotient of order 4 of G(M\k) = G/A,
the cyclic or the quaternion group of order 8. Hence both cyclic and bi-
quadratic extensions L\k occur.
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(b) It was already well known (Jehne [10]) that the statement of (b) is true
even for any cyclic or quaternion extension of degree 8, since any such exten-
sion M\k can be embedded into an extension N\k with the corresponding
group G mentioned in (4.2). For the dihedral group this proof did not work.

To prove (b) we start with a Galois extension F\k with Galois group the
unique group of order 16 having as quotients the dihedral and the quaternion
group of order 8. Let L\k be the extension of degree 4 contained in the
quaternion subfield M c F . Then according to the proof of (a) there exists
an extension l! D L of degree 12 with the same weak decomposition law
as L. Now one easily sees that L must also lie inside the dihedral subfield
K c F and hence K' := L'K is an extension of degree 24 with the same
weak decomposition law as K.

The main result of this section is the following complete classification of
all absolutely rigid Galois quartic extensions K\k. The given description is
explicit, so that one can check for a given Galois quartic number field whether
it is absolutely rigid or not.

(4.4) THEOREM. Let k be a number field, L\k a Galois quartic extension.
Then the following statements are equivalent:

(i) L is absolutely rigid over k;
(ii) L\k is cyclic and - 1 is not a norm in L\k or L = k(y/a, Vb) is a

biquadratic extension of k and the quadratic form aX2 + bY2 + abZ2 is not
k-isomorphic to X2 + Y2 + Z2.

PROOF. Let L\k be cyclic and assume that - 1 is a norm from L. By
class field theory we know (see, for example, Artin and Tate [1, Chapter 10,
Corollary 2 to Theorem 6]) that in this case L\k may be embedded into a
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cyclic extension M\k of degree 8. But then the proof of (4.3) applies and we
find a field L' D L with the same weak decomposition law as L, and hence L
is not absolutely rigid. Now let us assume that L\k is cyclic but not absolutely
rigid. Since L\k is Galois, any field L1 with the same weak decomposition
law as L contains L (theorem of Bauer [3], following immediately from
(1.4)). Taking L' D L minimal with the same weak decomposition law as
L and G — G{N\k), the Galois group of the normal closure N of L'\k,
then Theorem (1.4) shows that the assumptions of (4.2) are satisfied with
H = G(N\L) and U = G{N\L'). Hence the group G is a semidirect product
A-& of A = C3 x C3 wi th^ = Cg or 3? = Q% . Since A is contained in H we
see that the cyclic group G{L\k) = G/H is a quotient of 3?, which excludes
'S = Q&. But this means that L\k may be embedded into a cyclic extension
M\k of degree 8, which is only possible (see Artin and Tate [1]) if - 1 is a
norm from L.

If in the biquadratic case the quadratic form aX + bY + abZ is k-
isomorphicto X2+Y2+Z2, then (see, for example, Serre [23, §3.2, Exemple])
the field L = k{<fa, \/b) is contained in a quaternion extension M\k, and
again the proof of (4.3) shows the existence of a proper extension field l! D L
with the same weak decomposition law as L, that is, L is not absolutely
rigid. If, on the other hand, L is not absolutely rigid and L' ^ L has the
same weak decomposition law as L, then we show, as in the cyclic case, that
L is contained in a cyclic or quaternion extension M\k of degree 8. This
time M\k has to be quaternion, since L\k is not cyclic. But this implies
([23]) that aX2 + bY2 + abZ2 is Ar-isomorphic to X2 + Y2 + Z2 .

The conditions of (ii) are of purely local nature because of Hasse's local-
global-principle for norms in cyclic extensions (see, for example, Neukirch
[16, Chapter IV, Corollary (5.2)]) respectively for quadratic forms (Theorem
of Hasse and Minkowski, see for example, O'Meara [17, Chapter VI, 66:4]).

When the ground field k is Q, then these conditions may be easily
checked, for example, in the biquadratic case in terms of the sign of a, b(e Z)
and the Legendre symbols {a/p), (b/p) (p prime):

(4.5) COROLLARY. The following Galois number fields of degree 4 are ab-
solutely rigid over Q, that is, already determined by their weak decomposition
law.

(1) all imaginary Galois quartic fields;
(2) all biquadratic extensions L with quadratic subfields Q(̂ /Z5T) {i =

1 , 2 , 3 ) , Dt: e Z squarefree and at least one Dt = -\ mod8 ;
(3) exactly those real biquadratic extensions L with quadratic subfields

(QKY/ZJT) (i = 1 ,2 ,3,2) , . e N squarefree), for which there exists a prime

number p and i^j with 2^p\Dt, p\Dj, /? = - -^ -mod4 .
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PROOF. (1) If L|Q is imaginary, then the local extension at infinity is C|R
and —1 is not a norm at the infinite place. Hence the assertion follows in
the cyclic case.

If L = Q(^/15i~, y/T^i) is imaginary biquadratic, then Dx or D2 is nega-
tive and the quadratic form DXX2 + D2Y

2 + D^Z2 is not positive definite at
the infinite place, and hence not equivalent to X2 + Y2 + Z2 over R.

(2) Let L = Q(y/1\, y/Tfy with Z>, = - I m o d 8 . If L were not abso-
lutely rigid, then according to (4.4) the quadratic forms D{X

2+D2Y
2+D3Z

2

and X2 + Y2 + Z2 were Q-isomorphic, and hence they would represent the
same numbers over Q. Then especially the number Dx could be represented
as a sum of 3 squares in Q, which however is already impossible mod 8 if
Dx = - 1 mod 8.

(3) According to Theorem (4.4) and the Hasse-Minkowski theorem the
field L = Q(y/U^, y/D~2) is absolutely rigid if and only if DXX2 + D2Y

2 +
£>3Z

2 and X2 + Y2 + Z2 are not isomorphic locally at some place of Q.
Since the Di are positive, these forms are equivalent over R, and hence
there must exist a prime number p such that these forms are not isomorphic
over Qp . Since dimension and discriminant of both forms agree, their Hasse
invariants (for example, see O'Meara [17, §66]) must differ at p. Because
of the product formula we may assume p ^ 2 and hence, for the Hasse
invariant H of DXX2 + D2Y

2 + D3Z
2 at some prime p ^ 2, we have

Using standard computations with the Hilbert symbol (see, for example,
Neukirch [16, Chapter III, (5.6)]), we get

f 1, P\D,D2,

f ) ( £ ) , p\Dx,p*D2,

=f) (^) , p\Dx,p\D2,

p\Dx,p\D2.

This proves assertion (3) of (4.5) because of p\D{ A p\D2 =$• p\D3 and
p = (-l/p) mod 4 for odd prime numbers p .

This corollary shows that in contrast with the quadratic case, in which the
result (Theorem (4.1)) is of purely group theoretical nature and applies to all
quadratic extensions uniformly, for quartic Galois extensions absolute rigid-
ity is not a purely group theoretical property, but depends on the arithmetic
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of the field: for example the real field Q(Vi, V3) is absolutely rigid, while
Q(\/2, \/3) is not.

Note added in proof

R. M. Guralnick ('Zeroes of permutation characters with applications to
prime splitting', /. Alg. 131 (1990), 294-302) has widely extended the list of
absolutely rigid extensions of number fields. He proved that any extension
K\k of degree n is absolutely rigid if its normal closure K has Galois group
An (n > 5) or Sn .

The computations of Theorem (3.2) have been extended by C. Moll for
any permutation group of degree up to 11 and for the primitive ones up to
degree 20.
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