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Abstract

Competing patterns are compound patterns that compete to be the first to occur pattern-
specific numbers of times. They represent a generalisation of the sooner waiting time
problem and of start-up demonstration tests with both acceptance and rejection criteria.
Through the use of finite Markov chain imbedding, the waiting time distribution of
competing patterns in multistate trials that are Markovian of a general order is derived.
Also obtained are probabilities that each particular competing pattern will be the first to
occur its respective prescribed number of times, both in finite time and in the limit.
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1. Introduction

In recent years there has been significant research on distributions associated with patterns.
An important segment of this work deals with sooner waiting time distributions. Generally
speaking, the sooner waiting time distribution refers to waiting times for the first occurrence of
one of several simple patterns. Most of the early research on sooner waiting time distributions
dealt with success or failure runs in binary trials; see, for example [4], [3], and [1]. In [10]
and [9], run and frequency quotas in multistate Markov chains were studied. Probability
generating functions of sooner and later waiting time problems for patterns in Markov chains
were considered in [8], while in [5] waiting time distributions for compound patterns were
computed. Since compound patterns are the union of simple patterns, their waiting time
distribution corresponds to the sooner waiting time distribution for the collection of simple
patterns. We mention these papers because they each represent special cases of competing
patterns as discussed in this paper.

Also of relevance is work on start-up demonstration tests. In early research on start-
up demonstration testing [7], [17], it was assumed that the testing of the power-generation
equipment continued until k consecutive successes had occurred, irrespective of the number
of failures that occurred prior to it. As this setup is clearly impractical, [2] studied start-up
demonstration tests with independent start-ups, where the equipment is accepted or rejected
based on whether or not k consecutive successes occur before d total failures. The analysis
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was extended to trials that form a Markov chain in [12]. This research has subsequently been
extended to tests with stopping criteria based on consecutive successes and consecutive failures,
total successes and consecutive failures, and total successes and total failures [16], [13]. The
length of start-up demonstration tests with these different setups can be considered as a sooner
waiting time, if we allow the number of occurrences of the patterns (in this case either runs or
individual successes and failures) to vary.

In this paper the more general problem of competing patterns is considered. Competing
patterns refer to groups of compound patterns that compete to occur pattern-specific numbers
of times. The setting for this study is an underlying sequence of multistate trials with an arbitrary
order of Markovian dependence.

The waiting time distribution for this more general problem is computed through finite
Markov chain imbedding [6]. This provides a theoretically rigorous environment whilst also
enabling the development of easy computational algorithms for practical implementation. In
addition, the framework allows for easy derivation of the limiting probabilities of absorption
in one of the various states corresponding to a particular pattern being the first to occur its
prescribed number of times.

The paper is organised as follows. In the next section, more formal definitions of the various
concepts that are of importance in the paper are given. Section 3 contains a description of
the steps used to compute the waiting time distribution and limiting absorption probabilities.
Section 4 contains numerical examples, and the final section is a summary.

2. Definitions and preliminaries

Let X−m+1, X−m+2, . . . , X0, X1, X2, . . . be a multistate mth-order Markovian sequence,
with state space SX = {b1, . . . , bs}, s ≥ 2, for the individual observations. An mth-order
Markovian sequence is one for which

P(Xn = xn | X−m+1 = x−m+1, . . . , X0 = x0, . . . , Xn−1 = xn−1)

= P(Xn = xn | Xn−m = xn−m, . . . , Xn−1 = xn−1).

Associated with the sequence are the initial probabilities

π0(x−m+1, . . . , x0) = P(X−m+1 = x−m+1, . . . , X0 = x0),

and time-invariant transition probabilities

p(xt |xt−m, . . . , xt−1) = P(Xt = xt | Xt−m = xt−m, . . . , Xt−1 = xt−1).

2.1. Notation for patterns

Definition 2.1. A simple pattern �i refers to a specified sequence of ki symbols bi1 , . . . , biki ,
where the symbols in the pattern are allowed to be repeated.

Definition 2.2. A compound pattern � is the union of simple patterns, i.e. � = ⋃η
i=1{�i},

where η is fixed, the simple patterns �i are of lengths ki, i = 1, . . . , η, and �a ∪�b denotes
the occurrence of either pattern �a or pattern �b.

Definition 2.3. Let �(1), . . . , �(c), c ≥ 1, be a system of c compound patterns, and let rj
denote the number of occurrences of compound pattern �(j) that leads to termination of the
experiment. The patterns �(1), . . . , �(c) are called competing patterns. The assumption is
made that no two competing compound patterns in the system are identical.
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If Cj (n), j = 1, . . . , c, denotes the event that, by time n, the compound pattern �(j) has
occurred rj times, then the probability of the occurrence of one of the eventsCj (n), the waiting
time for the competing patterns, is given by

P

( c⋃
j=1

Cj (n)

)
, n ∈ N. (2.1)

If c = 1 then (2.1) reduces to the waiting time for the r1th occurrence of the compound
pattern �(1). If ri = 1 for all i then (2.1) reduces to the special case of the waiting time to the
first occurrence of the compound pattern

⋃c
j=1{�(j)}. If, in addition, each of the competing

patterns consists of just one simple pattern, then the waiting time distribution corresponds to
the sooner waiting time distribution considered in the literature discussed in the introduction.
Next it is shown how various types of start-up demonstration tests arise as special cases of
competing patterns.

For the types of start-up demonstration test that are described next, we take SX = {0, 1},
representing failure/success of the individual start-ups, and there are c = 2 competing simple
patterns. Four different tests are derived by varying the simple patterns �(1) and �(2), and
the number of occurrences r1 and r2, in the following manner. For a test with rejection of the
unit if d total failures occur before k consecutive successes and acceptance if the k consecutive
successes occur first, take

�(1) =
k︷ ︸︸ ︷

1 · · · 1, r1 = 1, �(2) = 0, r2 = d.

For a test with acceptance based on k consecutive successes and rejection based on d consecutive
failures, take

�(1) =
k︷ ︸︸ ︷

1 · · · 1, �(2) =
d︷ ︸︸ ︷

0 · · · 0, r1 = r2 = 1.

The other two tests are obtained by taking �(1) = 1 with r1 = k (total successes) and either

�(2) =
d︷ ︸︸ ︷

0 · · · 0, r2 = 1 (consecutive failures),

or
�(2) = 0, r2 = d (total failures).

Other start-up demonstration tests may be derived as well; for example, if two rejection criteria
are used in addition to an acceptance criterion, there will be c = 3 competing patterns.

In the next two subsections, the methods used to count patterns (Subsection 2.2) and the
concepts of ending and finishing blocks (Subsection 2.3) are discussed.

2.2. Methods of counting

Two distinct methods of counting patterns are used in the paper, though much of the
implementation will not change dramatically between the two cases. The first method is that
of non-overlapping counting. In this case, when a pattern occurs the counting re-starts from
that point, and any partially completed pattern cannot be finished. Non-overlapping counting
can be for the entire system of competing patterns, or it can be restricted to within compound
patterns (where counting only re-starts for simple patterns within the same compound pattern
as the one that has just occurred). The second case is that of overlapping counting, where
partially completed patterns can be finished at any time, regardless of whether another pattern
has been completed after the partially completed pattern starts but before it is completed.
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Table 1.

Competing pattern SWNO WPNO Overlapping

�(1) �a ∪�d �a ∪�d �a ∪�b ∪�d
�(2) �d �c ∪�d �c ∪�d

Example 2.1. Let�a = 11111,�b = 1011, and�c = 00 and let the competing patterns under
consideration be�(1) = �a and�(2) = �b∪�c. For the realisationR1 = 011011111101100,
of length n = 15, the use of system-wide non-overlapping (SWNO) counting yields two
occurrences of �b and one of �c (and thus three occurrences of �(2)), but no occurrences
of �(1). Though there are six consecutive 1s in R1, only four of them occur after the first
completion of 1011 (which re-starts counting), and thus �a does not occur. With within-
pattern non-overlapping (WPNO) counting, in addition to the occurrences mentioned above,
�a occurs once, since now the first occurrence of�b does not cause a re-starting of counting for
the partially completed pattern�a , since they are in different competing patterns. Finally, with
overlapping counting, �(1) occurs twice (the two overlapping occurrences of �a), in addition
to the three occurrences of �(2).

Remark 2.1. If SWNO counting is used, then any simple pattern wholly containing another
will be deemed impossible to occur. However, with WPNO counting, this will only be the
case when the simple patterns are within the same compound pattern. This is because, with
non-overlapping counting, the occurrence of the smaller pattern re-starts the counting process,
and thus the larger one will never be observed. On the other hand, with overlapping counting,
simple patterns will be allowed to contain any smaller simple pattern within the system. The
case where a simple pattern is part of two different compound patterns will not be eliminated
using either non-overlapping or overlapping counting.

Example 2.2. To illustrate these concepts, if the simple patterns �a = 10, �b = 101, �c =
1010, and �d = 1111 make up the two competing patterns �(1) = �a ∪ �b ∪ �d and
�(2) = �c ∪�d , the counting restrictions will reduce the effective competing patterns under
evaluation in the manner shown in Table 1.

2.3. Ending and finishing blocks

Definition 2.4. Ending blocks [5] of a simple pattern �i = {bi1 , . . . , biki } are subpatterns of
the form {bi1 , . . . , biq }, where q can be any of the integers 1, . . . , ki − 1. The set of ending
blocks of a compound pattern is the union of the sets of ending blocks of the simple patterns
of which it is comprised, along with the symbol ∅ to indicate that none of the other ending
blocks are currently active, if necessary. The set of ending blocks of the system of competing
patterns is the union of the ending blocks of the competing patterns themselves, along with the
symbol ∅.

Definition 2.5. Finishing blocks [14] of the simple pattern�i = {bi1 , . . . , biki } are subpatterns
of the form {biζ , . . . , biki }, where ζ can be any of the integers 1, . . . , ki (and thus�i is a finishing
block of itself). The finishing blocks of a compound pattern or of all of the competing patterns in
the system are formed by taking the union of the finishing blocks of their respective components.

Remark 2.2. Note that, whereas ending blocks always start at the beginning of a simple pattern
but may end at any point before its last symbol, finishing blocks may start at any point but always
end with the last symbol.
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3. Computation of waiting time distributions for competing compound patterns

This section contains details on the generation of the Markov chain, {Yt }nt=0, that was used
to compute the waiting time distribution for competing patterns. The Markov chain is such that

P(Cj (n)) = P(Yn ∈ Aj), j = 1, . . . , c, (3.1)

where each Aj is an absorbing state corresponding to the occurrence of the event Cj (n). Also,

P

( c⋃
j=1

Cj (n)

)
= P(Yn ∈ A), (3.2)

where A = ⋃c
j=1Aj . For notational purposes, the union includes simultaneous occurrences

of patterns, which are not included in (3.1). Basic properties of Markov chains are then used to
compute the desired probabilities. After determining the state spaceSY of {Yt }nt=0 and describing
its generation, the method of generating the associated transition probability matrix TY is
given. Finally, formulae for computing the waiting time distribution and limiting absorption
probabilities are given.

3.1. State space SY

In [14], where the distribution of the time until the rth occurrence of a compound pattern
was computed, vector triplets were used to represent the transient states of SY . In that paper,
the three vector components were anm-tuple of values (xt−m+1, . . . , xt ), an ending block, and
the number of simple pattern occurrences up to the present time. In this paper, because there
are c competing patterns rather than one, the transient states must carry additional information.
This generalisation is described next.

The vector state representation will in general be of length 2c + 1. As before, one of
these vector components gives the last m observations from the underlying sequence {Xt }.
This m-tuple is necessary for Markov chain formation because the sequence {Xt } is mth-order
Markovian by assumption. The other c component pairs give ending block information and the
number of pattern occurrences to date for each of the c competing patterns. The information on
the number of occurrences of pattern j gives progress towards the rj occurrences needed for
termination of the experiment. The ending block information shows the progress towards the
completion of the simple patterns. Note that, under SWNO counting, although c ending blocks
may be used, the relevant ending block is the same for all competing patterns in the system,
and thus in this case only c + 2 vector components are needed.

To automate the generation of the transient states of SY , the m-tuple is allowed to take each
of the sm possible values and, for each j , the number of pattern occurrences are given values
0, 1, . . . , rj − 1. The various possible values of the ending blocks also need to be generated.
This is discussed next.

3.1.1. Determining ending block information for transient states. With non-overlapping count-
ing, either system wide or within pattern, the current ending block(s) will depend on the
relevant finishing blocks. In the case of overlapping counting, ending block formation is more
straightforward. The competing patterns �(1) = �a and �(2) = �b ∪�c, with �a = 11111,
�b = 1011, and �c = 00, are used to illuminate the discussion. The set of ending blocks for
the complete system is

E = {1, 11, 111, 1111, 10, 101, 0,∅},
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with ending blocks for the individual competing patterns E1 = {1, 11, 111, 1111,∅} and
E2 = {1, 10, 101, 0,∅}. The sets of finishing blocks are F1 = {1, 11, 111, 1111, 11111} and
F2 = {1, 11, 011, 1011, 0, 00}, and the set of finishing blocks F for the complete system is
F = F1 ∪ F2.

With non-overlapping counting, simple patterns may be completed in the middle or at the
end of anm-tuple (xt−m+1, . . . , xt ), re-starting the counting process and modifying the ending
block associated with the m-tuple. To account for this, for each m-tuple, first the ending block
obtained by examining it in its entirety is recorded. Then the location after each symbol is
examined to determine if a pattern could end there, i.e. if the segment of the m-tuple up to that
point is a finishing block. If so, the effective ending block is determined from the remainder of
the m-tuple. As stated previously, with SWNO counting, there is only one ending block. With
WPNO counting, each compound pattern will have an ending block whose determination is
based on the finishing blocks of its simple patterns. The ending blocks for overlapping counting
are obtained from the entire m-tuple and, hence, finishing blocks are not needed in this case.

As an example, assume that m = 3 and consider the competing patterns �(1) and �(2) and
the triple 000. For SWNO counting, there will be one ending block, coming from E. For
WPNO counting, there will be two ending blocks, one from E1 and one from E2. Since there
are no 0s in the simple pattern �a , all ending blocks of �(1) must be ∅. In examining the
complete triple, a pattern ends after the second 0, and with SWNO counting, counting re-starts
and the 0 at the end is its only ending block. With WPNO counting, this 0 is the ending block
associated with pattern �(2).

The location after the first symbol is now checked to determine if it is a finishing block; and
indeed it is, for 0 ∈ F2. If a pattern ends after the first 0, the ending block determined from
00, the remainder of the triple, is ∅ under both system-wide and within-pattern overlapping
counting. The location after the second symbol of the triple is certainly a finishing block, as a
pattern ends there. The situation is just as when we examined the entire sequence, and thus the
ending blocks have already been included in our set of possible state vectors. Now, in checking
the location after the third symbol of 000, we find that the pattern 00 ends there, but the ending
block is again ∅, which has previously been included. If overlapping counting is used, only the
entire triple need be checked. Here the ending block associated with�(2) will be 0, to indicate
that one more 0 gives another overlapping pattern occurrence.

Consider now as an example another triple, 111. The ending blocks associated with the
complete triple are 111 for�(1) and 1 for�(2), for both overlapping and WPNO counting (with
111 being the only ending block for SWNO counting). In checking for finishing blocks at the
middle locations or end of the triple, it is observed that a pattern could end after its first, second,
or third 1. If a pattern ends after the first 1, for both types of non-overlapping counting (in
particular, for compound pattern �(1) if WPNO counting is used), then the effective ending
block is 11; if a pattern ends after the second 1, then the effective ending block is 1; and if a
pattern ends after the third 1, then the effective ending block is ∅. For�(2) and WPNO counting
or overlapping counting, the effective ending block is always 1. Also added to the state space
are ending blocks of lengths greater than m with their corresponding m-tuple. Thus, 1111 is
added as an ending block for �(1) with WPNO counting or overlapping counting, and for the
whole system with SWNO counting.

3.1.2. Absorbing states. For each competing pattern, an absorbing state is included in SY to
indicate that a corresponding compound pattern has occurred the required number of times.
As a result, absorption probabilities for each particular competing pattern may be computed.
Absorbing states are also added to indicate that more than one of the eventsCj (n) have occurred
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simultaneously. In general, if c ≥ 2 then the number of possible combinations of indices for
simultaneous absorption by two or more competing patterns is(

c

2

)
+

(
c

3

)
+ · · · +

(
c

c

)
= 2c − (1 + c).

Adding c, for the number of absorbing states corresponding to the individual competing patterns,
we find that there are a maximum of 2c−1 absorbing states in SY . Note that it may be impossible
for certain of the compound patterns to cause simultaneous absorption.

3.1.3. Initialisation states. For times t < m, the chain {Yt } may be in states that were not
covered by the methods given previously. These states are added to SY . The most obvious of
these states is the state of Y0, where the m-tuple is (x−m+1, . . . , x0), every competing pattern
has occurred zero times, and all ending blocks are equal to ∅. From this starting point, for
t = 1, . . . , m−1, by determining the possible destinations from each of the initialisation states
already in SY , new states are added. The added states are deleted after time t = m, as they will
no longer be needed in the state matrix.

3.2. Determination of TY

With states set up as described above, {Yt }nt=0 is a Markov chain. To obtain its transition
probability matrix TY for transitions from Yt to Yt+1, the possible destinations from each state
of SY are determined, and the appropriate transition probability p(xt+1|xt−m+1, . . . , xt ) is
assigned to the transition. Note that the matrix TY depends on the competing patterns, the
order of dependencem, the method of counting patterns, and the transition probabilities for the
underlying sequence {Xt }.
3.3. Computation of the waiting time distribution

The competing pattern experiment ends with compound pattern �(j) having occurred rj
times if and only if the Markov chain {Yt } is absorbed in the corresponding absorbing state.
Thus, (3.1) and (3.2) hold. By (3.1) and basic properties of Markov chains, the waiting time
for rj occurrences of compound pattern �(j) is given by

P(Cj (n)) = ψ0T
n
Y Wj (Aj ), j = 1, . . . , c. (3.3)

Here ψ0 is a 1 × card(SY ) row vector holding the probabilities for the initial states of Y0.
The probability for the state with m-tuple (x−m+1, . . . , x0), zero(es) for the number of pattern
occurrences, and ∅ as the ending block(s) is given by π0(x−m+1, . . . , x0); all other initial
probabilities are zero. Also, Wj(Aj ) is a card(SY )× 1 column vector with a 1 in the position
corresponding to the absorbing state for compound pattern �(j) and 0s elsewhere. By (3.2),
probabilities for the waiting time until one of the competing patterns occurs its prescribed
number of times may be computed using

P

( c⋃
j=1

Cj (n)

)
= ψ0T

n
Y W(A), (3.4)

whereW(A) is a card(SY )× 1 column vector with 1s at its end, corresponding to the positions
of the absorbing states of A, and with 0s elsewhere.

3.4. Limiting absorption probabilities

Standard results on absorption probabilities of Markov chains [15, pp. 102–116] give the
limiting probability that any particular competing pattern is the first to occur its specified
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number of times. The limiting probability is needed when there is a positive probability that
the experiment has not ended by any given finite time. First, partition the transition probability
matrix TY as follows:

TY =
(
Q R

0 I2c−1

)
.

HereQ is the (card(SY )−2c+1)×(card(SY )−2c+1) transition probability matrix for transitions
strictly among transient states, R is a (card(SY )− 2c + 1)× (2c − 1)matrix of probabilities for
transitions from transient to absorbing states, 0 is the (2c−1)×(card(SY )−2c+1) zero matrix,
and Iκ denotes the κ × κ identity matrix. Let ψ̃0 be a 1 × (card(SY )− 2c + 1) subvector of the
initial vector ψ0, such that ψ̃0 holds the initial probabilities for the transient states. Also, let
αn be the 1 × (2c − 1) row vector holding the probabilities that Yn lies in one of the individual
absorbing states (including those states that indicate simultaneous pattern occurrence). The
limiting absorption probabilities are then found to be

lim
n→∞αn = ψ̃0(Icard(SY )−2c+1 −Q)−1R.

4. Examples

A MATLAB® program (available from the authors upon request) was written to implement
the calculations given in the last section. The program generates the states and the transition
probability matrix, and then calculates the waiting time distributions and the limiting absorption
probabilities. The following are two examples of output from this program.

Example 4.1. The first example is a start-up demonstration test with two rejection criteria. The
equipment is accepted if ten consecutive successes occur before either of the rejection criteria:
ten total failures or the occurrence of three consecutive failures twice. In this example the
underlying sequence is Markovian of order m = 3, with state space SX = {0, 1}. There are
c = 3 competing patterns,

�(1) =
10︷ ︸︸ ︷

1 · · · 1, �(2) = 0, �(3) = 000,

with r1 = 1, r2 = 10, and r3 = 2. The transition probabilities and initial distribution were
chosen so that the underlying sequence is a stationary third-order Markovian sequence, using
an alternative parametrisation as described in [11]. These transition and initial probabilities are
listed in Table 2.

Table 2: Transition and initial probabilities used in Example 4.1, for the Markovian sequences shown.

Sequence p(1|·, ·, ·) π0(·, ·, ·)
1, 1, 1 24

25
1197
2000

0, 1, 1 19
25

63
2000

1, 0, 1 76
125

7
400

0, 0, 1 149
375

21
400

1, 1, 0 4
25

63
2000

0, 1, 0 89
275

77
2000

1, 0, 0 284
375

21
400

0, 0, 0 637
8875

71
400
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Figure 1: Waiting time probabilities of the competing patterns used in Example 4.1: (a) union of patterns,
(b) SWNO, (c) WPNO, (d) overlapping. The fourth lines in plots (c) and (d) correspond to the absorbing
state due to�(2) and�(3) occurring at the same time. This is an example of a start-up demonstration test
requiring ten consecutive starts with two rejection criteria: ten total failures or two occurrences of three

consecutive failures.

With SWNO counting, 178 states were required (including the initialisation states), 392
states were needed for WPNO counting, while, for overlapping counting, card(SY ) = 297. The
test can last no longer than n = 100 start-ups, but, as can be seen in the graphs of Figure 1, by
time n = 40 the probability that one of the competing patterns has occurred its required number
of times is very close to 1, regardless of the counting method. Also apparent from Figure 1 and
Table 3 (which contains limiting absorption probabilities for the competing patterns) is that the
probabilities of absorption into the absorbing states vary according to the counting method. In
this example, the test could end with the simultaneous occurrence of ten total failures and two
occurrences of three failures, but not with �(1) occurring simultaneously with any of the other
patterns. Note that, since the test is guaranteed to end by time n = 100, the limiting absorption
probabilities are the same as the absorption probabilities at that time. The computing time
was approximately four seconds on a personal computer with 1 Gb of RAM and an Intel®

Pentium® 4 processor.
Note that in typical formulations of start-up demonstration tests, such as in the references

given in Section 1, the test has no ‘practice’ start-ups, and the initial distribution is based on the
observations X1, . . . , Xm instead of X−m+1, . . . , X0. To handle this formulation, we would
need to redefine the initial distribution π0(·) in an appropriate manner. Probabilities for times
t = m + 1, . . . , n could then be computed by replacing T nY by T n−mY in (3.3) and (3.4), with

https://doi.org/10.1239/jap/1134587810 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587810


986 J. A. D. ASTON AND D. E. K. MARTIN

Table 3: Limiting absorption probabilities for Example 4.1, for the three different counting methods.

Counting

Pattern SWNO WPNO Overlapping

�(1) 0.7 0.681 0.661
�(2) 0.3 0.0673 0.042
�(3) 0.238 0.289

�(2) and �(3) 0.014 0.008
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Figure 2: Waiting time probabilities of the patterns used in Example 4.2: (a) union of patterns, (b)
SWNO, (c) WPNO, (d) overlapping. Altering the type of counting changes which competing pattern is

more likely to cause absorption.

Table 4: Limiting absorption probabilities for Example 4.2, for the three different counting methods.

Counting

Sequence SWNO WPNO Overlapping

�(1) 0.459 37 0.459 36 0.551 07
�(2) 0.540 63 0.540 64 0.448 93
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the initial states of Ym and the corresponding initial probabilities respectively determined by
the m-tuple (x1, . . . , xm) and π0(x1, . . . , xm). Absorption probabilities at times t < m could
also be computed from π0(x1, . . . , xm). In the case of a stationary sequence, however, the
probabilities derived from each formulation are the same.

Example 4.2. The second example illustrates that the method may be used in cases of larger
state spaces and longer patterns. Here we take {Xt } to be a fourth-order Markovian sequence
with state space SX = {A,C,G, T }. Randomly selected transition probabilities are used,
meaning that uniform(0,1) variates are used, with the restriction that the probabilities sum to
1. The initial distribution for the sequence {Xt } is the discrete uniform distribution over the
44 = 256 possible initial states. For this example, approximately 750 states are needed for all
three methods of counting. The competing patterns are

�(1) = ACGTACGT ∪ AAAAAAAA, r1 = 2,

�(2) = T T T T T T T T , r2 = 1.

Figure 2 depicts the waiting time distributions for the two competing patterns, and the limiting
absorption probabilities are listed in Table 4. One thing of interest to note is that the counting
method does alter the competing pattern most likely to cause absorption. With SWNO and
WPNO counting,�(2) is the sequence more likely to cause absorption, whilst with overlapping
counting, the situation is reversed and �(1) is more likely to do so. While the probabilities
under SWNO and WPNO counting appear to be remarkably similar, it can be seen from the
absorption probabilities that they are not identical.

The computation time for the second example was approximately 600 seconds forn = 40 000
trials (on the same hardware).

5. Summary

Competing patterns are compound patterns that ‘compete’ to be the first to occur specified
numbers of times. Special cases of waiting times for the occurrence of competing patterns
include the sooner waiting time and the time to the conclusion of a start-up demonstration test.
If the number of competing patterns is c = 1, previous results [14] on the waiting time to the
r1th occurrence of a compound pattern are obtained. Using finite Markov chain imbedding,
waiting time distributions for competing patterns were computed. The algorithm used also
allows the computation of the probability that the experiment ends due to the specified number
of occurrences of specific patterns, both in finite time and in the limit.
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