
10
O(N) vector models

The simplest models, which become solvable in the limit of a large number
of field components, deal with a field which has N components forming
an O(N) vector in an internal symmetry space. A model of this kind was
first considered by Stanley [Sta68] in statistical mechanics and is known
as the spherical model. The extension to quantum field theory was made
by Wilson [Wil73] both for the four-Fermi and ϕ4 theories.
Within the framework of perturbation theory, the four-Fermi interac-

tion is renormalizable only in d = 2 dimensions and is nonrenormalizable
for d > 2. The 1/N -expansion resums perturbation-theory diagrams after
which the four-Fermi interaction becomes renormalizable to each order in
1/N for 2 ≤ d < 4. An analogous expansion exists for the nonlinear O(N)
sigma model. The ϕ4 theory remains “trivial” in d = 4 to each order of
the 1/N -expansion and has a nontrivial infrared-stable fixed point for
2 < d < 4.
The 1/N -expansion of the vector models is associated with a resumma-

tion of Feynman diagrams. A very simple class of diagrams – the bubble
graphs – survives to the leading order in 1/N . This is why the large-N
limit of the vector models is solvable. Alternatively, the large-N solution
is nothing but a saddle-point solution in the path-integral approach. The
existence of the saddle point is a result of the fact that N is large. This is
to be distinguished from a perturbation-theory saddle point which arises
from the fact that the coupling constant is small. Taking into account
fluctuations around the saddle-point results in the 1/N -expansion of the
vector models.
We begin this chapter with a description of the 1/N -expansion of the

N -component four-Fermi theory analyzing the bubble graphs. Then we
introduce functional methods and construct the 1/N -expansion of the
O(N)-symmetric ϕ4 theory and nonlinear sigma model. Finally, we dis-
cuss the factorization in the O(N) vector models at large N .
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188 10 O(N) vector models

10.1 Four-Fermi theory

The action of the O(N)-symmetric four-Fermi theory in a d-dimensional
Euclidean space∗ is defined by

S
[
ψ̄, ψ
]
=
∫
ddx
[
ψ̄ ∂̂ ψ +mψ̄ψ − G

2
(
ψ̄ψ
)2]

. (10.1)

Here ∂̂ = γµ∂µ and ψ = (ψ1, . . . , ψN ) is a spinor field which forms an
N -component vector in an internal-symmetry space so that

ψ̄ψ =
N∑
i=1

ψ̄iψi . (10.2)

The dimension of the four-Fermi coupling constant G is

dim [G] = m2−d . (10.3)

For this reason, the perturbation theory for the four-Fermi interaction is
renormalizable in d = 2 but is nonrenormalizable for d > 2 (and, in par-
ticular, in d = 4). This is why the old Fermi theory of weak interactions
was replaced by the modern electroweak theory, where the interaction is
mediated by the W± and Z bosons.
The action (10.1) can be rewritten equivalently as

S
[
ψ̄, ψ, χ

]
=
∫
ddx
(
ψ̄ ∂̂ ψ +mψ̄ψ − χ ψ̄ψ +

χ2

2G

)
, (10.4)

where χ is an auxiliary field. The two forms of the action, (10.1) and
(10.4), are equivalent owing to the equation of motion which reads in the
operator notation as

χ = G :ψ̄ψ : , (10.5)

where : · · · : denotes the normal ordering of operators. Equation (10.5)
can be derived by varying the action (10.4) with respect to χ.
In the path-integral quantization, where the partition function is de-

fined by

Z =
∫
DχDψ̄Dψ e−S[ψ̄,ψ,χ] (10.6)

with S
[
ψ̄, ψ, χ

]
given by Eq. (10.4), the action (10.1) appears after per-

forming the Gaussian integral over χ. Therefore, alternatively one obtains

Z =
∫
Dψ̄Dψ e−S[ψ̄,ψ] (10.7)

with S
[
ψ̄, ψ
]
given by Eq. (10.1).

∗ In d = 2 this model was studied in the large-N limit in [GN74] and is often called
the Gross–Neveu model.
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10.1 Four-Fermi theory 189

The perturbative expansion of the O(N)-symmetric four-Fermi theory
can be represented conveniently using the formulation (10.4) via the aux-
iliary field χ. Then the diagrams are of the same type as those in Yukawa
theory, and resemble those for QED with ψ̄ and ψ being an analog of the
electron–positron field and χ being an analog of the photon field.
However, the auxiliary field χ(x) does not propagate, since it follows

from the action (10.4) that

D0(x− y) ≡ 〈χ(x)χ(y) 〉Gauss = Gδ(d)(x− y) (10.8)

or

D0(p) ≡ 〈χ(−p)χ(p) 〉Gauss = G (10.9)

in momentum space.
It is convenient to represent the four-Fermi vertex

Γklij = G
(
δki δ

l
j − δliδ

k
j

)
(10.10)

as the sum of two terms
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j j j
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, (10.11)

where the empty space inside the vertex is associated with the propaga-
tor (10.8) (or (10.9) in momentum space). The relative minus sign makes
the vertex antisymmetric in both incoming and outgoing fermions as is
prescribed by the Fermi statistics.
The diagrams that contribute to second order in G for the four-Fermi

vertex are depicted, in this notation, in Fig. 10.1. The O(N) indices
propagate through the solid lines so that the closed line in the diagram
in Fig. 10.1b corresponds to the sum over the O(N) indices which results
in a factor of N . Analogous one-loop diagrams for the propagator of the
ψ-field are depicted in Fig. 10.2.

Problem 10.1 Calculate the one-loop Gell-Mann–Low function of the four-
Fermi theory in d = 2.

Solution Evaluating the diagrams in Fig. 10.1 that are logarithmically diver-
gent in d = 2, and noting that the diagrams in Fig. 10.2 do not contribute to the
wave-function renormalization of the ψ-field, which emerges to the next order in
G, one obtains

B(G) = − (N − 1)G
2

2π
. (10.12)
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Fig. 10.1. Diagrams of second-order perturbation theory for the four-Fermi ver-
tex. Diagram (b) involves the sum over the O(N) indices.
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Fig. 10.2. One-loop diagrams for the propagator of the ψ-field. Diagram (b)
involves the sum over the O(N) indices.

The four-Fermi theory in two dimensions is asymptotically free as was first noted
by Anselm [Ans59] and rediscovered by Gross and Neveu [GN74].
The vanishing of the one-loop Gell-Mann–Low function in the Gross–Neveu

model for N = 1 is related to the same phenomenon in the Thirring model.
The latter model is associated with the vector-like interaction (ψ̄γµψ)2 of one
species of fermions, where γµ are the γ-matrices in two dimensions. Since in
d = 2 a bispinor has only two components ψ1 and ψ2, both the vector-like and
the scalar-like interaction (10.1) for N = 1 reduce to ψ̄1ψ1ψ̄2ψ2, since the square
of a Grassmann variable vanishes. Therefore, these two models coincide. For
the Thirring model, the vanishing of the Gell-Mann–Low function for any G was
shown by Johnson [Joh61] to all loops.
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Fig. 10.3. Bubble diagram which survives the large-N limit of the O(N) vector
models.

Remark on auxiliary fields

The introduction of the auxiliary field is often called the Hubbard–
Stratonovich transformation in statistical mechanics. The proper term
used in quantum field theory is just “auxiliary field”.

10.2 Bubble graphs as the zeroth order in 1/N

The perturbation-theory expansion of the O(N)-symmetric four-Fermi
theory contains, in particular, diagrams of the type depicted in Fig. 10.3,
which are called bubble graphs. Since each bubble has a factor of N , the
contribution of the n-bubble graph is ∝ Gn+1Nn, which is of the order of

Gn+1Nn ∼ G (10.13)

as N →∞, since

G ∼ 1
N

. (10.14)

Therefore, all the bubble graphs are essential to the leading order in 1/N .
Let us denote

= G + · · ·+ G2✚✙
✛✘

+ Gn+1 ✚✙
✛✘

· · ·✚✙
✛✘n loops

+ · · · .

(10.15)

In fact, the wavy line is nothing but the propagator D of the χ field
with the bubble corrections included. The first term G on the RHS of
Eq. (10.15) is nothing but the free propagator (10.9).
Summing the geometric series of the fermion-loop chains on the RHS

of Eq. (10.15), one obtains analytically∗

D−1(p) =
1
G
−N

∫
ddk
(2π)d

sp
[
(k̂ + im)(k̂ + p̂+ im)

]
(k2 +m2) [(k + p)2 +m2]

. (10.16)

∗ Recall that the free Euclidean fermionic propagator is given by S0(p) = (ip̂+m)−1

from Eqs. (10.4) and (10.6), and the additional minus sign is associated with the
fermion loop.
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Fig. 10.4. Some diagrams of the 1/N -expansion for the O(N) four-Fermi theory.
The wavy line represents the (infinite) sum of the bubble graphs (10.15).

This determines the exact propagator of the χ field at large N . It is
O
(
N−1) since the coupling G is included in the definition of the propa-

gator.
The idea is now to change the order of summation of diagrams of per-

turbation theory using 1/N rather than G as the expansion parameter.
Therefore, the zeroth-order propagator of the expansion in 1/N is defined
as the sum over the bubble graphs (10.15), which is given by Eq. (10.16).
Some of the diagrams of the new expansion for the four-Fermi vertex

are depicted in Fig. 10.4. The first diagram is proportional to G, while
the second and third ones are proportional to G2 or G3, respectively,
and therefore are of order O

(
N−1) or O(N−2) with respect to the first

diagram. The perturbation theory is thus rearranged as a 1/N -expansion.
The general structure of the 1/N -expansion is the same for all vector

models, say, for the N -component ϕ4 theory which is considered in the
next section.
The main advantage of the expansion in 1/N for the four-Fermi in-

teraction, over the perturbation theory, is that it is renormalizable in
d < 4, while the perturbation-theory expansion in G is renormalizable
only in d = 2. Moreover, the 1/N -expansion of the four-Fermi theory
in 2 < d < 4 demonstrates [Wil73] the existence of an ultraviolet-stable
fixed point, i.e. a nontrivial zero of the Gell-Mann–Low function.

Problem 10.2 Show that the 1/N -expansion of the four-Fermi theory is renor-
malizable in 2 ≤ d < 4 (but not in d = 4).

Solution In order to demonstrate renormalizability, let us analyze indices of
the diagrams of the 1/N -expansion.
First of all, we shall remove an ultraviolet divergence of the integral over the

d-momentum k in Eq. (10.16). The divergent part of the integral is proportional
to Λd−2 (logarithmically divergent in d = 2), where Λ is an ultraviolet cutoff. It
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10.2 Bubble graphs as the zeroth order in 1/N 193

can be canceled by choosing

G =
g2

N
Λ2−d , (10.17)

where g2 is a proper dimensionless constant which is not necessarily positive
since the four-Fermi theory is stable with either sign of G. The power of Λ in
Eq. (10.17) is consistent with the dimension of G. This prescription works for
2 < d < 4 where there is only one divergent term, while another divergence
∝ p2 ln Λ emerges additionally in d = 4. This is why the consideration is not
applicable in d = 4.
The propagatorD(p) is therefore finite, and behaves at large momenta |p| $ m

as

D(p) ∝ |p|2−d . (10.18)

The standard power-counting arguments then show that the only divergent di-
agrams appear in the propagators of the ψ and χ fields, and in the ψ̄–χ–ψ
three-vertex. These divergences can be removed by a renormalization of the
coupling g, mass, and wave functions of ψ and χ.
This completes a demonstration of renormalizability of the 1/N -expansion for

the four-Fermi interaction in 2 ≤ d < 4. For more details, see [Par75].

Problem 10.3 Calculate in d = 3 the value of g in Eq. (10.17).

Solution To calculate the divergent part of the integral in Eq. (10.16), we set
p = 0 and m = 0. Remembering that the γ-matrices are 2× 2 matrices in d = 3,
we obtain∫ Λ d3k

(2π)3
sp k̂k̂
k2k2

= 2
∫ Λ d3k

(2π)3
1
k2

=
1
π2

Λ∫
0

d|k| = Λ
π2

. (10.19)

Note that the integral is linearly divergent in d = 3 and Λ is the cutoff for the
integration over |k|. This divergence can be canceled by choosing G according
to Eq. (10.17) with g equal to

g∗ = π . (10.20)

Problem 10.4 Calculate in d = 3 the coefficient of proportionality in
Eq. (10.18).

Solution Let us choose G = π2/NΛ, as prescribed by Eqs. (10.17) and (10.20),
and in Eq. (10.16) set m = 0, since we are interested in the asymptotic behavior
at |p| $ m. Then the RHS of Eq. (10.16) can be rearranged as

D−1(p) = −2N
∫

d3k
(2π)3

[
k2 + kp

k2(k + p)2
− 1
k2

]
= 2N

∫
d3k
(2π)3

p2 + kp

k2(k + p)2
. (10.21)

This integral is obviously convergent.
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194 10 O(N) vector models

To calculate it, we apply the standard technique of α-parametrization, which
is based on the formula

1
k2

=

∞∫
0

dα e−αk
2
. (10.22)

We have∫
d3k
(2π)3

p2 + kp

k2(k + p)2
=

∞∫
0

dα1

∞∫
0

dα2
∫

d3k
(2π)3

(
p2 + kp

)
e−α1k

2−α2(k+p)
2

(10.23)

after which the Gaussian integral over d3k can easily be performed. We then
obtain

D−1(p) =
N

4π3/2
p2

∞∫
0

dα1

∞∫
0

dα2
α1

(α1 + α2)
5/2

exp
(
− α1α2
α1 + α2

p2
)
. (10.24)

The remaining integration over α1 and α2 can easily be performed by introducing
the new variables α ∈ [0,∞] and x ∈ [0, 1] so that

α1 = αx , α2 = α(1 − x) ,
∂ (α1, α2)
∂ (x, α)

= α . (10.25)

Finally, this gives

D(p) =
8

N |p| . (10.26)

Equation (10.26) (or (10.18) in d dimensions) is remarkable since it shows that
the scale dimension of the field χ, which is defined in Sect. 3.5 by Eq. (3.65),
changes its value from lχ = d/2 in perturbation theory to lχ = 1 in the zeroth
order of the 1/N expansion (remember that the momentum-space propagator of
a field with the scale dimension l is proportional to |p|2l−d). This appearance
of scale invariance in the 1/N -expansion of the four-Fermi theory at 2 < d < 4
was first pointed out by Wilson [Wil73] and implies that the Gell-Mann–Low
function B(g) has a zero at g = g∗, which is given in d = 3 by Eq. (10.20).

Problem 10.5 Find the (logarithmic) anomalous dimensions of the fields ψ and
χ, and of the ψ̄–χ–ψ three-vertex in d = 3 to order 1/N .

Solution The 1/N -correction to the propagator of the ψ-field is given by the di-
agram depicted in Fig. 10.5a. Since we are interested in the ultraviolet behavior,
we can again set m = 0. Analytically, we have

S−1(p) = ip̂+
8i
N

∫ Λ d3k
(2π)3

k̂ + p̂

|k|(k + p)2
. (10.27)

The (logarithmically) divergent contribution emerges from the domain of inte-
gration |k| $ |p| so we can expand the integrand in p. The p-independent term
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Fig. 10.5. Diagrams for the 1/N -correction to the ψ-field propagator (a) and
the three-vertex (b).

vanishes after integration over the directions of k so that we obtain

S−1(p) = ip̂

(
1 +

8
N

∫ Λ d3k
(2π)3

1
|k|3

)
= ip̂
(
1 +

2
3π2N

ln
Λ2

p2
+
finite
N

)
.

(10.28)
The diagram, which gives a nonvanishing contribution to the three-vertex at

order 1/N , is depicted in Fig. 10.5b. It gives analytically

Γ(p1, p2) = 1 +
8
N

∫ Λ d3k
(2π)3

(k̂ + p̂1)(k̂ + p̂2)
|k|(k + p1)2(k + p2)2

, (10.29)

where p1 and p2 are the incoming and outgoing fermion momenta, respectively.
The logarithmic domain is |k| $ |p|max, with |p|max being the largest of |p1| and
|p2|. This gives

Γ(p1, p2) = 1− 2
π2N

ln
Λ2

p2max

+
finite
N

. (10.30)

The analogous calculation of the 1/N correction for the field χ is slightly
more complicated since it involves three two-loop diagrams (see, for example,
[CMS93]). The resulting expression for D−1(p) is given by[

ND(p)
]−1

=
Λ
g2
+
(
− Λ
π2
+
|p|
8

)
+

1
π2N

[
2Λ− |p|

(
2
3
ln
Λ2

p2
+ finite

)]
.

(10.31)

The linear divergence is canceled to order 1/N , providing g is equal to

g∗ = π

(
1 +

1
N

)
, (10.32)

which determines g∗ to order 1/N . After this D−1(p) takes the form

D−1(p) =
N |p|
8

(
1− 16

3π2N
ln
Λ2

p2

)
. (10.33)

To make all three expressions (10.28), (10.30), and (10.33) finite, we need
logarithmic renormalizations of the wave functions of ψ- and χ-fields and of the
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vertex Γ. This can be achieved by multiplying them by the renormalization
constants

Zi(Λ) = 1− γi ln
Λ2

µ2
, (10.34)

where µ denotes a reference mass scale and γi are anomalous dimensions. The
index i denotes ψ, χ, or v for the ψ- and χ-propagators or the three-vertex Γ,
respectively. We have, therefore, calculated

γψ =
2

3π2N
, γv = − 2

π2N
, γχ = − 16

3π2N
(10.35)

to order 1/N . Owing to Eq. (10.5) γχ coincides with the anomalous dimension
of the composite field ψ̄ψ: γψ̄ψ = γχ.
Note that

Z2
ψZ

−2
v Zχ = 1 . (10.36)

This implies that the effective charge is not renormalized and is given by
Eq. (10.32). Thus, the nontrivial zero of the Gell-Mann–Low function persists
to order 1/N (and, in fact, to all orders of the 1/N -expansion).

Remark on scale invariance at the fixed point

The renormalization group says that

µ = Λ exp
[
−
∫

dg2

B(g2)

]
, (10.37)

which is essentially the same as Eq. (6.85). If B has a nontrivial fixed
point g2∗ near which

B
(
g2
)
= b
(
g2 − g2∗

)
(10.38)

with b < 0, then the substitution into Eq. (10.37) gives

g2 = g2∗ +
(µ
Λ

)−b
. (10.39)

Therefore, the approach to the critical point is power-like rather than
logarithmic as for the case of g2∗ = 0 when

B
(
g2
)
= bg4 . (10.40)

The latter behavior of B results, after the substitution into Eq. (10.37),
in the logarithmic dependence

g2 =
1

b ln(µ/Λ)
(10.41)

when b < 0, which is associated with asymptotic freedom.
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If g is chosen exactly at the critical point g∗, then the renormalization-
group equations

µ
d lnΓi
dµ

= γi
(
g2
)
, (10.42)

where Γi denotes generically either vertices or inverse propagators, possess
the scale-invariant solutions

Γi ∝ µγi(g2∗) . (10.43)

This complements the heuristic consideration of Sect. 3.5 on the rela-
tion between scale invariance and the vanishing of the Gell-Mann–Low
function.
For the four-Fermi theory in d = 3, Eq. (10.43) yields

S(p) =
1
ip̂

(
p2

µ2

)γψ

, (10.44)

D(p) =
8

N |p|

(
p2

µ2

)γχ

, (10.45)

Γ(p1, p2) =
(
µ2

p21

)γv

f

(
p22
p21
,
p1p2
p21

)
, (10.46)

where f is an arbitrary function of the dimensionless ratios which is not
determined by scale invariance. Here the indices obey the relation

γv = γψ +
1
2
γχ (10.47)

which guarantees that Eq. (10.36), implied by scale invariance, is satisfied.
The indices γi are given to order 1/N by Eqs. (10.35). When expanded

in 1/N , Eqs. (10.44) and (10.45) obviously reproduce Eqs. (10.28) and
(10.33). Therefore, one obtains the exponentiation of the logarithms
which emerge in the 1/N -expansion. The calculation of the next terms of
the 1/N -expansion for the indices γi is given in [Gra91, DKS93, Gra93].

Remark on conformal invariance at fixed point

Scale invariance implies, in a renormalizable quantum field theory, more
general conformal invariance as was first pointed out in [MS69, GW70].
The conformal group in a d-dimensional space-time has (d+ 1)(d + 2)/2
parameters as illustrated by Table 10.1. More details concerning the
conformal group can be found in the lecture by Jackiw [Jac72].
A heuristic proof [MS69] of the fact that scale invariance implies con-

formal invariance is based on the explicit form of the conformal current
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Table 10.1. Contents and the number of parameters of groups of space-time
symmetry.

Group Transformations Parameters

Lorentz d(d−1)
2 rotations x′µ = Ωµνxν

d(d−1)
2

Poincaré + d translations x′µ = xµ + aµ
d(d+1)
2

Weyl + 1 dilatation x′µ = ρ xµ
d2+d+2

2

Conformal + d special conformal
x′µ

(x′)2
=

xµ
x2
+ αµ

(d+1)(d+2)
2

Kα
µ , which is associated with the special conformal transformation, via

the energy–momentum tensor:

Kα
µ =

(
2xνxα − x2δαν

)
θµν . (10.48)

Differentiating, we obtain

∂µK
α
µ = 2xαθµµ , (10.49)

which is analogous to Eqs. (3.66) and (3.67) for the dilatation current.
Therefore, both the dilatation and conformal currents vanish simultane-
ously when θµν is traceless which is provided, in turn, by the vanishing of
the Gell-Mann–Low function.
Conformal invariance completely fixes three-vertices as was first shown

by Polyakov [Pol70] for scalar theories. The proper formula for the four-
Fermi theory (the same as for Yukawa theory [Mig71]) is given by

Γ(p1, p2) = µ2γv
Γ(d/2)Γ(d/2 − γv)

Γ(γv)

×
∫
ddk
πd/2

k̂ + p̂1

[(k + p1)2]1+γχ/2

k̂ + p̂2

[(k + p2)2]1+γχ/2

1
|k|d−2+2γψ−γχ/2

,

(10.50)

where the coefficient in the form of the ratio of the Γ-functions is pre-
scribed by the normalization (10.44) and (10.45), and the indices are
related by Eq. (10.47) but can be arbitrary otherwise.∗

∗ The only restriction γψ ≥ 0 is imposed by the Källén–Lehmann representation of the
propagator, while there is no such restriction on γχ since it is a composite field.
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Equation (10.50), which results from conformal invariance, unam-
biguously fixes the function f in Eq. (10.46). In contrast to infinite-
dimensional conformal symmetry in d = 2, the conformal group in d > 2
is less restrictive. It fixes only the tree-point vertex while, say, the four-
point vertex remains an unknown function of two variables.

Problem 10.6 Calculate the integral on the RHS of Eq. (10.50) in d = 3 to
order 1/N .

Solution The integral on the RHS of Eq. (10.50) looks in d = 3 very much
like that in Eq. (10.29) and can easily be calculated to the leading order in 1/N
when only the region of integration over large momenta with |k| � |p|max ≡
max{|p1|, |p2|} is essential to this accuracy.
Let us first note that the coefficient in front of the integral is ∝ γv ∼ 1/N ,

so that one is interested in the term ∼ 1/γv in the integral for the vertex to be
of order 1. This term comes from the region of integration with |k| � |p|max.
Recalling that |p1 − p2| � |p|max in Euclidean space, one obtains∫

d3k
2π

k̂ + p̂1

[(k + p1)2]1+γχ/2

k̂ + p̂2

[(k + p2)2]1+γχ/2

1
|k|1+2γψ−γχ/2

=

∞∫
p2max

dk2

[k2]1+γv
=

1
γv (p2max)

γv , (10.51)

where Eq. (10.47) has been used and

Γ(p1, p2) =
(

µ2

p2max

)γv

. (10.52)

While the integral in Eq. (10.51) is divergent in the ultraviolet for γv < 0, this
divergence disappears after the renormalization.
Equation (10.30) is reproduced by Eq. (10.51) when expanding in 1/N . This

dependence of the three-vertex solely on the largest momentum is typical for
logarithmic theories in the ultraviolet region where one can set, say, p1 = 0
without changing the integral with logarithmic accuracy. This is valid if the
integral is quickly convergent in infrared regions which it is in our case.

Remark on broken scale invariance

Scale (and conformal) invariance at a fixed point g = g∗ holds only for
large momenta |p| $ m. For smaller values of momenta, scale invariance
is broken by masses. In fact, any dimensional parameter breaks scale
invariance. If the bare coupling g is chosen in the vicinity of g∗ according
to Eq. (10.39), then scale invariance holds even in the massless case only
for |p| $ µ, while it is broken if |p| � µ.
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10.3 Functional methods for ϕ4 theory

The large-N solution of the O(N) vector models, which is given by the
sum of the bubble graphs, can be obtained alternatively by evaluating the
path integral at large N using the saddle-point method. We shall restrict
ourselves to the scalar O(N)-symmetric ϕ4 theory, while the analysis of
the four-Fermi theory is quite analogous.
The action of the O(N)-symmetric ϕ4 theory is given by

S[ϕa] =
∫
ddx
[
1
2
(∂µϕa)2 +

1
2
m2ϕaϕa +

λ

8
(ϕaϕa)2

]
, (10.53)

where ϕa =
(
ϕ1, . . . , ϕN

)
. The coupling λ in the action (10.53) must

be positive for the theory to be well-defined. The vertices of Feynman
diagrams are associated with −λ.
Problem 10.7 Calculate the one-loop Gell-Mann–Low function of the O(N)-
symmetric ϕ4 theory in d = 4.

Solution The corresponding diagrams are similar to those of Fig. 10.1, though
now the arrows are not essential since the field is real. The diagrams are logarith-
mically divergent in four dimensions. Each diagram contributes with a positive
sign, while the diagram in Fig. 10.1b now has an extra combinatoric factor of
1/2. The diagrams in Fig. 10.2 result in a mass renormalization and there is no
wave-function renormalization of the ϕ-field in one loop so that one obtains

B(λ) =
(N + 8)λ2

16π2
. (10.54)

The positive sign in this formula is the same as for QED and is associated with
the “triviality” of the ϕ4 theory in four dimensions. It is also worth noting that
the coefficient (N + 8) is large even for N = 1.

Introducing the auxiliary field χ(x) as in Sect. 10.1, the action (10.53)
can be rewritten as

S[ϕa, χ] =
∫
ddx
[
1
2
ϕa
(
−∂2µ +m2 + χ

)
ϕa − χ2

2λ

]
. (10.55)

The two forms are equivalent owing to the equation of motion

χ =
λ

2
:ϕaϕa : . (10.56)

In other words, χ is again a composite field.
The correlators of ϕ and χ are determined by the generating functional

Z [Ja,K] =
∫
↑
Dχ(x)

∫
Dϕa(x)

× exp
{
−S[ϕa, χ] +

∫
ddxJa(x)ϕa(x) +

∫
ddxK(x)χ(x)

}
,

(10.57)
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which is a functional of the sources Ja and K for the fields ϕa and χ and
extends Eq. (2.49).
To make the path integral over χ(x) in Eq. (10.57) convergent, at each

point x we integrate over a contour that is parallel to the imaginary axis.
This is specific to the Euclidean formulation. The propagator of the χ-
field in the Gaussian approximation reads

D0(p) = 〈χ(−p)χ(p) 〉Gauss = −λ , (10.58)

which reproduces the four-boson vertex of perturbation theory.
Since the integral over ϕa is Gaussian, it can be expressed via the Green

function

G(x, y;χ) =
〈
y

∣∣∣∣ 1
−∂2µ +m2 + χ

∣∣∣∣ x〉 (10.59)

as

Z [Ja,K] =
∫
↑
Dχ(x) exp

{∫
ddx

χ2

2λ

+
1
2

∫
ddxddy Ja(x)G(x, y;χ) Ja(y)

+
∫
ddxK(x)χ(x) − N

2
Tr lnG−1[χ]

}
.

(10.60)

Here we have used the obvious notation

G−1[χ] = −∂2µ +m2 + χ . (10.61)

It will also be convenient to use the short-hand notation

g ◦ f = 〈g|f〉 ≡
∫
ddx f(x)g(x) . (10.62)

Then, Eq. (10.60) can be rewritten as

Z [Ja,K] =
∫
↑
Dχ(x) exp

{
χ ◦ χ
2λ

+
1
2
Ja ◦G[χ] ◦ Ja

+K ◦ χ− N

2
Tr lnG−1[χ]

}
. (10.63)

The exponent in Eq. (10.63) is O(N) at large N so the path integral
can be evaluated as N → ∞ by the saddle-point method. The saddle-
point field configuration χ(x) = χsp(x) is determined (implicitly) by the
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saddle-point equation

χsp(x)−
λN

2
G(x, x;χsp)

+
λ

2
Ja ◦G(·, x;χsp)G(x, ·;χsp) ◦ Ja + λK(x) = 0 . (10.64)

If K ∼ 1/λ, each term here is O(1) since

λ ∼ 1
N

(10.65)

in analogy with Eq. (10.14).
When the sources Ja and K vanish so that the last two terms on the

LHS of Eq. (10.64) equal zero, this equation reduces to

χsp −
λN

2
G(x, x;χsp) = 0 . (10.66)

Its solution is x-independent owing to translational invariance and can be
parametrized as

χsp = m2
R −m2 , (10.67)

wherem and mR are the bare and renormalized mass, respectively. Equa-
tion (10.66) then reduces to the standard formula [Wil73]

m2 = m2
R −

λN

2

∫ Λ ddk
(2π)d

1(
k2 +m2

R

) (10.68)

for the mass renormalization at large N .
To take into account fluctuations around the saddle point, we expand

χ(x) = χsp + δχ(x) , (10.69)

where

δχ(x) ∼
√
λ ∼ N−1/2 . (10.70)

The Gaussian integration over δχ(x) determines the pre-exponential fac-
tor in (10.63).
To construct the 1/N expansion of the generating functional (10.63), it

is convenient to use the generating functional for connected Green func-
tions, which was already introduced in Eq. (2.52). It is usually denoted
by W [Ja,K] and is related to the partition function (10.57) by

Z[Ja,K] = eW [Ja,K] . (10.71)
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Then we find

W [Ja,K] =
1
2λ

χsp ◦ χsp −
N

2
Tr lnG−1[χsp]

+
1
2
Ja ◦G [χsp] ◦ Ja +K ◦ χsp

− 1
2
Tr ln
(
λD−1[χsp]

)
+O
(
N−1) , (10.72)

where

D−1(x, y;χ) = − 1
λ
δ(d)(x− y)− N

2
G(x, y;χ)G(y, x;χ)

+ Ja ◦G(·, x;χ)G(x, y;χ)G(y, ·;χ) ◦ Ja . (10.73)

This operator emerges when integrating over the Gaussian fluctuations
around the saddle point. The corresponding (last displayed) term on the
RHS of Eq. (10.72) is associated with the pre-exponential factor and,
therefore, is ∼ 1.
The next terms of the 1/N expansion can be calculated in a systematic

way by substituting (10.69) in Eq. (10.63) and performing the perturba-
tive expansion in δχ.
If the sources Ja and K vanish so that the saddle-point value χsp is

given by the constant (10.67), then the RHS of Eq. (10.73) simplifies to

D−1(x, y;χsp) = − 1
λ
δ(d)(x− y)− N

2
G(x, y;χsp)G(y, x;χsp) .

(10.74)
Remembering the definition (10.59) of G and passing to the momentum-
space representation, we obtain

D−1(p) = − 1
λ
− N

2

∫
ddk
(2π)d

1(
k2 +m2

R

) [
(k + p)2 +m2

R

] . (10.75)

The sign of the first term on the RHS is consistent with Eq. (10.58).
Equation (10.75) is analogous to Eq. (10.16) in the fermionic case and

can be obtained alternatively by summing bubble graphs of the type
shown in Fig. 10.3 for

D(p) = 〈χ(−p)χ(p) 〉 . (10.76)

The extra symmetry factor of 1/2 in Eq. (10.75) is the usual combina-
toric one for bosons. Therefore, the large-N saddle-point calculation of
the propagator (10.76) results precisely in the zeroth order of the 1/N -
expansion.
We see from Eq. (10.72) the difference between perturbation theory

and the 1/N -expansion. The perturbation theory in λ can be constructed
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as an expansion (10.69) around the saddle point χsp given again by
Eq. (10.64), with the omitted second term on the LHS, which is now
justified by the fact that λ is small (even for N ∼ 1). The second term on
the RHS of Eq. (10.72), which is associated with a one-loop diagram, ap-
pears in perturbation theory as a result of Gaussian fluctuations around
this saddle point.

Remark on the effective action

The effective action is a functional of the mean values of fields

ϕa
cl(x) =

δW

δJa(x)
, χcl(x) =

δW

δK(x)
(10.77)

in the presence of the external sources. The effective action is defined as
the Legendre transformation of W [Ja,K] by

Γ[ϕa
cl, χcl] ≡ −W + Ja ◦ ϕa

cl +K ◦ χcl , (10.78)

where the sources Ja and K, which are regarded as functionals of ϕa
cl and

χcl, are to be determined by an inversion of Eq. (10.77). To the leading
order in 1/N we obtain

Ja(x) = G−1[χcl]ϕa
cl(x) +O

(
N−1) ,

χcl(x) = χsp(x) +O
(
N−1) .

}
(10.79)

When Eq. (10.79) (with the 1/N correction included) is substituted
into Eq. (10.78) and account is taken of the 1/N terms, most of them
cancel and we arrive at the relatively simple formula

Γ[ϕa
cl, χcl] = − 1

2λ
χcl ◦ χcl +

N

2
Tr lnG−1[χcl]

+
1
2
ϕa
cl ◦G−1[χcl] ◦ ϕa

cl +
1
2
Tr ln
(
λD−1[χcl]

)
+O
(
N−1) ,
(10.80)

where

D−1(x, y;χcl) = − 1
λ
δ(d)(x− y)− N

2
G(x, y;χcl)G(y, x;χcl)

+ϕa
cl(x)G(x, y;χcl)ϕ

a
cl(y) (10.81)

coinciding with (10.73) to the leading order in 1/N .
The second and fourth terms on the RHS of Eq. (10.80), which involve

Tr, are associated with one-loop diagrams of the fields ϕa and χ, respec-
tively, in the classical background fields ϕa

cl and χcl. Higher orders in 1/N
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are given by diagrams which are one-particle irreducible with respect to
both ϕ and χ.
It follows immediately from the definitions (10.77) and (10.78) that

δΓ
δϕa

cl(x)
= Ja(x) ,

δΓ
δχcl(x)

= K(x) . (10.82)

Therefore, ϕa
cl(x) and χcl(x) are determined in the absence of external

sources by the equations

δΓ[ϕa
cl, χcl]

δϕb
cl(x)

= 0 ,
δΓ[ϕa

cl, χcl]
δχcl(x)

= 0 . (10.83)

Substituting (10.80) into Eqs. (10.83), we get to the leading order in
1/N , respectively, the equations[

−∂2µ +m2 + χcl(x)
]
ϕa
cl(x) = 0 (10.84)

and

χcl(x) =
λ

2
ϕa
cl(x)ϕ

a
cl(x) +

λN

2
G(x, x;χcl) . (10.85)

The first equation is just a classical equation of motion in an external
field χcl(x), while the second one is just the average of the (quantum)
equation (10.56). Equation (10.85) is often called the gap equation.
A solution to Eqs. (10.84) and (10.85) depends on what initial (or

boundary) conditions are imposed.

Problem 10.8 Find translationally invariant solutions to Eqs. (10.84) and
(10.85) and calculate the corresponding effective potential.

Solution The effective potential V (ϕacl, χcl) is defined via the integrand in the
effective action Γ[ϕacl, χcl] for translationally invariant

ϕacl(x) = ϕ̄a , χcl = χ̄ , (10.86)

i.e. it is given by Γ divided by the volume of Euclidean space. From Eq. (10.80),
at large N we find

V = − 1
2λ

χ̄2 +
N

2

∫ Λ ddk
(2π)d

ln
(
k2 +m2 + χ̄

)
+
1
2
(
m2 + χ̄

)
ϕ̄2 , (10.87)

which obviously recovers Eqs. (10.84) and (10.85) after varying with respect to
constant ϕ̄a and χ̄.
It is convenient to perform renormalization by introducing, in d = 4, the

renormalized coupling λR given by

1
λR

=
1
λ
+
1
2

∫ Λ d4k
(2π)4

1
k2 (k2 +m2

R)
=

1
λ
+

N

32π2
ln
Λ2

m2
R

(10.88)
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and χ̄R = χ̄ + m2. Assuming that χ̄R ! Λ2 (also mR ! Λ as usual) and
representing Eq. (10.68) in the form

m2
R

λR
=

m2

λ
− N

32π2
Λ2 , (10.89)

we rewrite Eqs. (10.84) and (10.85) as [Sch74, CJP74]

χ̄Rϕ̄
a = 0 (10.90)

and

χ̄R

(
1− λRN

32π2
ln

χ̄R
m2

R

)
= m2

R +
λR
2
ϕ̄2 . (10.91)

Equation (10.87) then gives the renormalized effective potential

VR = − 1
2λR

χ̄2R +
m2

Rχ̄R
λR

+
N

64π2
χ̄2R

(
−1
2
+ ln

χ̄R
m2

R

)
+
1
2
χ̄Rϕ̄

2 , (10.92)

which obviously reproduces Eqs. (10.90) and (10.91).
Equations (10.90) and (10.91) possess the solutions

ϕ̄a = 0 , χ̄R = m2
R for m2

R > 0 , (10.93)

ϕ̄2 = − 2m
2
R

λR
, χ̄R = 0 for m2

R < 0 . (10.94)

The first of them is associated with an unbroken O(N) symmetry, while the
second one corresponds to a spontaneous breaking of O(N) down to O(N−1).
Both formulas look like the proper tree-level ones, while the only effect of loop
corrections at large N is the renormalization of the coupling constant and mass.
A subtle point is the question of the stability of these solutions. For small

deviations of ϕ̄2 from the mean value given by Eqs. (10.93) and (10.94), the
effective potential VR is a monotonically increasing function of ϕ̄2, as can be
shown for λRN < 32π2 by eliminating the auxiliary field χ̄R from Eq. (10.92) by
solving the gap equation (10.91) iteratively in ϕ̄2, and the solutions are locally
stable. Both solutions are, however, unstable globally with respect to large
fluctuations of the fields. This can be seen by eliminating ϕ̄2 from VR by solving
the gap equation (10.91) for ϕ̄2 which yields

VR =
1
2
χ̄2R

(
1
λR
− N

32π2
ln

χ̄R
m2

R

)
− N

128π2
χ̄2R . (10.95)

This function is monotonically decreasing for very large

χ̄R > m2
R e

32π2/λRN , (10.96)

where the theory becomes unstable. This is related to the usual problem of
“triviality” of the ϕ4 theory, which makes sense only for small couplings λRN
as an effective theory and cannot be fundamental at very small distances of the
order of

r ∼ m−1
R e−16π2/λRN . (10.97)
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Problem 10.9 Find a solution to Eqs. (10.84) and (10.85) which decreases
exponentially as

ϕacl(x) = ξamR emRτ for τ → −∞ , (10.98)

where τ ≡ x4 and ξa is an O(N) vector.

Solution The difference with respect to the previous Problem is that ϕcl is
no longer translationally invariant along the time-variable owing to the initial
condition (10.98). Let us denote

ϕacl(x) ≡ Φa(τ) , χcl(x) ≡ v(τ) . (10.99)

The the saddle-point equations (10.84) and (10.85) can be rewritten as[
−D2 +m2 + v(τ)

]
Φa(τ) = 0 (10.100)

and

v(τ) =
λ

2
Φa(τ)Φa(τ) +

λN

2

∫
d3k
(2π)3

Gω(τ, τ ; v) , (10.101)

where

D ≡ d
dτ

, ω =
√
k2 +m2 (10.102)

and we have introduced the Fourier image of the Green function (10.59)

Gω(τ, τ ; v) ≡
∫
d3�x ei*k*xG

(
(τ, �x), (τ,�0); v

)
=
〈
τ

∣∣∣∣ 1
−D2 + ω2 + v

∣∣∣∣ τ〉 (10.103)

with respect to the spatial coordinate.
The solution to Eqs. (10.100) and (10.101) can be easily found to be

Φa(τ) =
ξamR emRτ

1− λ̄Rξ2

16 e2mRτ
, v(τ) =

λ̄R
2
Φa(τ)Φa(τ) , (10.104)

where the renormalized coupling

λ̄R =
λR

1 + λRN
16π2

(10.105)

differs from Eq. (10.88) only by an additional final renormalization and the
renormalized mass mR is defined in Eq. (10.68). This solution is nontrivial for
ξ2 ∼ N and obviously satisfies the initial condition (10.98).
The solution is so simple because the diagonal resolvent (10.103) takes the

very simple form

Gω(τ, τ ; v) =
1
2ω
− v (τ)
4ω(ω2 −m2

R)
(10.106)

for the potential v(τ) given by Eq. (10.104). This can be verified by substituting
into the Gel’fand–Dikii equation (1.127) with G = 1. This is a feature of an
integrable potential, which was already discussed in Problem 4.4 on p. 73.
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The function Φa(τ) given by Eq. (10.104) describes large-N amplitudes of
multiparticle production at a threshold [Mak94].

10.4 Nonlinear sigma model

The nonlinear O(N) sigma model∗ in two Euclidean dimensions is defined
by the partition function

Z =
∫
D�n δ
(
�n2 − 1

g2

)
exp
[
−1
2

∫
d2x (∂µ�n)2

]
, (10.107)

where �n = (n1, . . . , nN ) is an O(N) vector. While the action is pure
Gaussian, the model is not free owing to the constraint

�n2(x) =
1
g2

, (10.108)

which is imposed on the �n field via the (functional) delta-function.
The sigma model in d = 2 is sometimes considered as a toy model for

QCD since it possesses:

(1) asymptotic freedom [Pol75];
(2) instantons for N = 3 [BP75].

The action in Eq. (10.107) is ∼ N as N → ∞ but the entropy, i.e.
the contribution from the measure of integration, is also ∼ N so that a
straightforward saddle point is not applicable.
To overcome this difficulty, we proceed as in the previous section, in-

troducing an auxiliary field u(x), which is ∼ 1 as N → ∞, and rewrite
the partition function (10.107) as

Z ∝
∫
↑
Du(x)

∫
D�n(x) exp

{
−1
2

∫
d2x
[
(∂µ�n)

2 − u

(
�n2 − 1

g2

)]}
,

(10.109)

where the contour of integration over u(x) is parallel to the imaginary
axis.
Performing the Gaussian integration over �n, we find

Z ∝
∫
↑
Du(x) exp

{
−N
2
Tr ln
[
−∂2µ + u(x)

]
+

1
2g2

∫
d2xu(x)

}
.

(10.110)

∗ The name comes from elementary particle physics where a nonlinear sigma model in
four dimensions is used as an effective Lagrangian for describing low-energy scattering
of the Goldstone π-mesons.
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The first term in the exponent is as before nothing but the sum of one-loop
diagrams in two dimensions,

N

2
Tr ln
[
−∂2µ + u(x)

]
=
∑
n

1
n ✒✑

	✏· ··
·· · ··

· , (10.111)

where the auxiliary field u is again denoted by a wavy line. Equation
(10.110) looks very much like Eq. (10.63) if we set Ja = K = 0. The
difference is that the exponent in (10.110) involves the term which is
linear in u, while the analogous term in (10.63) is quadratic in χ.
Now the path integral over u(x) in Eq. (10.110) is a typical saddle-point

one: the action ∼ N , while the entropy ∼ 1 since only one integration
over u is left. The saddle-point equation for the nonlinear sigma model

1
g2
−NG(x, x;usp) = 0 (10.112)

is quite analogous to Eq. (10.66) for the ϕ4 theory, while G is defined by

G(x, y;u) =
〈
y

∣∣∣∣ 1
−∂2µ + u

∣∣∣∣ x〉 , (10.113)

which is an analog of Eq. (10.59).
Introducing sources for the �n and u fields, we can derive the analogs

of Eqs. (10.84) and (10.85) for ϕ4 theory which are given for the sigma
model by [

−∂2µ + ucl(x)
]
�ncl(x) = 0 , (10.114)

and

1
g2

= �n2cl(x) +NG(x, x;ucl) . (10.115)

For a translationally invariant solution when �ncl(x) = 0 and ucl(x) = usp,
we recover Eq. (10.112).
The coupling g2 in Eq. (10.112) is ∼ 1/N , as prescribed by the con-

straint (10.108), which involves a sum over N terms on the LHS. This
guarantees that a solution to Eq. (10.112) exists. Next orders of the
1/N -expansion for the two-dimensional sigma model can be constructed
analogously to the previous section.
The 1/N -expansion of the two-dimensional nonlinear sigma model has

many advantages over perturbation theory, which is usually constructed
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by solving the constraint (10.108) explicitly, say, by choosing

nN =
1
g

√√√√1− g2
N−1∑
a=1

n2a (10.116)

and expanding the square root in g2. Only N − 1 dynamical degrees
of freedom are left so that the O(N)-symmetry is broken in perturba-
tion theory down to O(N − 1). The particles in perturbation theory are
massless (like Goldstone bosons) and it suffers from infrared divergences.
In contrast, the solution to Eq. (10.112) has the form

usp = m2
R ≡ Λ2 e−4π/Ng2

, (10.117)

where Λ is an ultraviolet cutoff. Therefore, all N particles acquire the
same mass mR in the 1/N -expansion so that the O(N) symmetry is re-
stored. This appearance of mass is a result of the dimensional transmu-
tation which says in this case that the parameter mR rather than the
renormalized coupling constant g2R is observable. The emergence of the
mass cures the infrared problem.

Problem 10.10 Show that (10.117) is a solution to Eq. (10.112).

Solution Let us look for a translationally invariant solution usp(x) = m2
R. Then

Eq. (10.112) in the momentum space gives

1
g2

= N

∫ Λ d2k
(2π)2

1
k2 +m2

R

=
N

4π

Λ2∫
0

dk2

k2 +m2
R

=
N

4π
ln
Λ2

m2
R

. (10.118)

The exponentiation results in Eq. (10.117).
Equation (10.118) relates the bare coupling g2 and the cutoff Λ and allows us

to calculate the Gell-Mann–Low function, yielding

B
(
g2
)
≡ Λ

dg2

dΛ
= −Ng4

2π
. (10.119)

The analogous one-loop perturbation-theory formula for any N is given by
[Pol75]

B
(
g2
)

= − (N − 2)g
4

2π
. (10.120)

Thus, the sigma model is asymptotically free in two dimensions for N > 2, which
is the origin of the dimensional transmutation. There is no asymptotic freedom
for N = 2 since O(2) is Abelian.
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10.5 Large-N factorization in vector models

The fact that a path integral has a saddle point at large N implies a very
important feature of large-N theories – the factorization. It is a general
property of the large-N limit and holds not only for the O(N) vector
models. However, it is useful to illustrate it by these solvable examples.
The factorization at large N holds for averages of singlet operators, for

example

〈u(x1) · · · u(xk) 〉

≡ Z−1
∫
↑
Du exp

[
−N
2
Tr ln
(
−∂2µ + u

)
+

1
2g2

∫
d2xu
]

× u(x1) · · · u(xk) (10.121)

in the two-dimensional sigma model.
Since the path integral has a saddle point at some configuration u(x) =

usp(x) (which is, in fact, x-independent owing to translational invariance),
we obtain to the leading order in 1/N :

〈u(x1) · · · u(xk) 〉 = usp(x1) · · · usp(xk) +O
(
N−1) , (10.122)

which can be written in the factorized form

〈u(x1) · · · u(xk) 〉 = 〈 u(x1) 〉 · · · 〈u(xk) 〉+O
(
N−1) . (10.123)

Therefore, u becomes “classical” as N → ∞ in the sense of the 1/N -
expansion. This is an analog of the WKB-expansion in � = 1/N . “Quan-
tum” corrections are suppressed as 1/N .
We shall return to discussing large-N factorization in the next chapter

when considering the large-N limit of QCD.
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