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PERIODIC SOLUTIONS OF HIGH ACCURACY
TO THE FORCED DUFFING EQUATION:
PERTURBATION SERIES IN THE FORCING AMPLITUDE

LAWRENCE K. FORBES!

(Received 13 February 1986)

Abstract

“Steady state” periodic solutions are sought to the forced Duffing equation. The solutions
are expressed as formal Fourier series, giving rise to an infimte system of non-linear
algebraic equations for the Fourier coefficients. This system is then solved using perturba-
tion series in the amplitude of the forcing term. Solution profiles of high accuracy and
phase-plane orbits are presented. The existence of limiting values of the forcing amplitude
is discussed, and points of non-linear resonance are identified.

1. Introduction

In this paper, periodic solutions are sought to the forced Duffing equation
d?x/dr* + Ax + Bx® = FcosQr, (1.1)

in which A4, B, F and Q are real constants, and A > 0.

The deceptively simple ordinary differential equation (1.1) has been the subject
of much research over many years, and arises naturally in a variety of physical
contexts. For example, it is the governing equation for electrical circuits contain-
ing certain non-linear circuit components, it describes the forced oscillation of a
spring-mass system in which the restoring force is no longer Hookean, and it also
serves as an approximation to the behaviour of forced mechanical systems
containing geometrical non-linearities (Davis [4], Arnold and Case [2]).
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This paper is concerned with periodic “steady state” solutions to equation
(1.1), where the frequency of the periodic solution is equal to the forcing
frequency . The change of variable 1 = 7 transforms equation (1.1) to

i+ ax + Bx® = Kcost, (1.2)
where dots denote differentiation with respect to ¢, and the new constants are
a=AQ"% B=BR2 ?and K= FQ 2 Equation (1.2) is supplemented with the
periodic boundary conditions

Hom . (1)
x(-n)=x(7).

The computation of periodic solutions to the forced Duffing equation (1.2) has
been addressed by numerous authors. Davis [4], for example, expresses the
solution in Fourier-series form, and obtains a truncated system of equations for
the first few Fourier coefficients, which he solves graphically. His procedure has
been extended somewhat by Bazley and Miletta [3]) who present the full infinite
system of equations for the Fourier coefficients. Urabe [10] anticipates that the
Fourier coefficients might be found to high order using a digital computer, and it
is a technique of this type which is employed in the present investigation. Here,
however, we also express each Fourier coefficient as a perturbation series in K;
details of this formulation may be found in Section 2. Our solution technique is
thus similar in many respects to that adopted by Andersen and Geer [1] in their
investigation of the van der Pol equation, and much use will be made of
series-improvement devices of the type reviewed by van Dyke [11]. More recent
research (e.g. Schmitt [8], Parlitz and Lauterborn [7] and Holmes [6]) has shown
an extraordinary degree of complexity in the solutions of the forced Duffing
equation, associated with the existence of bifurcation points, strange attractors
and chaotic behaviour, and recourse is frequently made to advanced topological
and functional-analytic arguments. These complicated phenomena will not be
considered explicitly in the present paper, however.

2. The Fourier- and Perturbation-series solution

A solution is sought to the forced Duffing equation (1.2) in the Fourier-series
form

x(1) = L As,ur005((2) + 1), 1)
j=0
which satisfies the boundary conditions (1.3) identically. It is convenient at this
stage to form the intermediate product

x(t) = ¥ By, cos(2jt) (2.22)
J=0
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in which
1 [> <]
F, = 5 Z 2:+1) (2.2b)

and

1’ .
Z A25+21+1A2:+1 + 5 Z Azs+1A2, 2s-1 J=1,2,3,....

s=0 s=0

Equations (2.1) and (2.2) are now substituted into the Duffing equation (1.2) to
yield an infinite system of algebraic equations for the Fourier coefficients
A, Ay, As, ... For ease of future reference, we shall present the full system of
equations here. It is

1 & 1. & 1
(a—1)4, + EB Y Foipdyy + EB Y B Ay + EBF0A1 =K,
s=0

for j =0, (2.3a)

and

[(X _(2.] + 1)2]A2J+1 + B Z F2:+2]+2A2s+1
s=0

1,3 1 <
+ EB Z F25A2s+2/+1 + EB Z FZsAz,—2s+1 =0,
s=0 s=0

for j=1,2,3,.... (2.3b)

Clearly the analytic solution of equations (2.3) cannot proceed without some
further simplifying assumption. Several of these are available, but the simplest is
to assume the perturbation series

Ay =K¥'N Y Ayi,,KP, j=0,1,2,.... (2.4a)
m=0

for each Fourier coefficient in equation (2.1). A similar expansion of the form
Fy=KY Z FyyamK ™ (2.4b)

is required for the coefficients of the intermediate product (2.2a).

When the expressions (2.4) are substituted into equations (2.3), a system of
recurrence relations is obtained, which can be solved to arbitrarily high order on a
digital computer. For j =m =0, one finds Fyy=0 and 4,5 = (a« — 1)7}; if
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B = 0, these are the only non-zero coefficients, which gives the solution

x(t) = Kceost for=0 (2.5)
a—1
to the linear equation.
The full system of recurrence relations is too lengthy to be presented here,

alels A

ai uluusll for i = §, one finds the wunparduvmy slmple epr'CSSIOIl

B J
2[01 -2 + 1)2] s§1

A2,+1,0 == F2$,0A2j-2s+1,0’ (2-6)

in which

17 )
Fy0= 5 Z Aysi1042, 25-10 J=123,..

Equations (2.5) and (2.6) indicate that the perturbation series (2.4) fails whenever
« equals one of the eigenvalues (2 + 1)2, j = 0,1,2,..., of the linear operator
(B =0).

The expansions for the first few Fourier coefficients, computed by hand, are as
follows:

i - 1 3BK> | 3(sa - 4)EK* O(KG)},
a-1 4(a-1* 8(a-9)(a-1)

A3=K3—— B -+ 3(5"‘_229)321(26 +0(K4)],

4(a—9(a—1) 16(a—9)(a—-1)

A5=K5[ # -+ 0(K?)],
| 16(a — 25)(a = 9)(a = 1)
[ 3

A4, =K7|- LCE ) — O(KZ)},
| 16(a — 49)(a — 25)(a — 9)(a — 1)

.= 0(K°).

Again, the failure of the perturbation series (2.4) at the eigenvalues of the linear
problem is evident. Clearly the assumed form of the perturbation series (2.4) is
inadequate at these special values of a, and a more general form of perturbation
expansion is needed. For example, when a = 9, a solution may be obtained by
allowing both A4, and A4, to be O(K), and A, A,, Ay to be O(K3). After
considerable calculation, a single solution is obtained at the resonance value
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a=91tis

4,-1x- 8

_0_ 2 3 4
g 128(128+ +0 )K +0(K*),

A, = 0K + 0(K?),

38 2\ g3
As = 512(8+49)K + 0(K*),

- 3B 23 4
Ay = Toe5 07K + 0(K*),

_ B gigs 4
A9-2880K + 0(K*),

n=0(K*,ata=09,
where the constant 8 is the real root of the cubic equation

3 =
36° + —0 —2 0.

The system of recurrence relations derived from equations (2.3), of which
equation (2.6) forms a part, has been programmed in the FORTRAN language on
an IBM 3083E computer. To avoid the coefficients 4, ,,, becoming excessively
small, with consequent computer underflow problems, the perturbation series
(2.4) are re-written in terms of the new parameter ¢ rather than K, where
e = K/S,, and S, is an appropriate scale factor. Convenient values for S_ are
typically small integral multiples of a — 1. The only change that this entails is
that A4,, must be replaced by S.(a — 1)~! in the computer programme. To begin
the computation, equations (2.6) are solved separately to some desired order N,
giving Ay, Asyg, ..., Ayy10- The first pass through the recurrence relations
yields the coefficients A4,,, A3,,..., Ayy_, 3, and so on until a triangular array of
coefficients has been obtained. With N = 61, the process of obtaining the
coefficients requires about 150 seconds of CPU time.

Once the coefficients have been determined, the series (2.1) and (2.4) are
combined and re-written in the form

'x(t) = Z 621+1 Z A2]+12m mCOS((zj + l)t)
j=0 m=0

=Y a(t)e 2.7)

i=0
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where ¢ = K/S, as above, and

a(t)= Y Azq+1,zi—2qC°5((2q + 1)1).
q=0

The form (2.7) ensures optimum use of our triangular array of coefficients. In

s~ CoT

addition, equation (2.7) can easily be differentiated to give similar series for x(z)
and x(7). The series (2.7) is summed by recasting it as an [m/n] Padé fraction,
which is a rational function in &2 of the form

X o+ 1€+ cpet+ - +c, 82"
L _ 20 1 - 2 m . + 0(£2m+2n+2) (2.8)
€ 1+de+det+ - +de™"

in which the constants c,...,c,, and d,,...,d, are chosen so that the Taylor-
series expansion of (2.8) agrees with equation (2.7) to order 2N = 2(m + n). In
practice, Wynn’s [12] epsilon algorithm is used to form the Padé approximants.
As output, the computer program gives values of ¢, x, X, ¥ and the residual

X%+ ax + Bx® — Kcost.

This last quantity provides a valuable check on the correctness of the recurrence
relations, as well as the process of analytic continuation of the series (2.7) using
Padé approximants, and indicates that the solutions often have accuracy in excess
of eight significant figures.

3. Presentation of Results

3.1 The hardening spring case (f > 0)

We consider first the case of the “hardening spring”, 8 > 0, so named because
in a model of large-amplitude oscillation of a mass attached to a spring, the
non-linear term Bx3 represents an additional restoring force beyond the usual
Hooke’s Law.

Figure 1 shows the solution x as a function of ¢ for a single period —7 < ¢ < 7,
for the case & = 5, B = 1, and the two different values of the forcing amplitude
K =4 and K = 7. When K =4 the profile is roughly cosinusoidal, as expected
from the linearized solution (2.5) valid for suitably small K. For K = 7, however,
extra inflection points become apparent in the solution profile.
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x(t)
2+

_2__

Figure 1. Solution profiles for a« = 5, 8 = 1 and amplitudes K = 4,7.

The extent to which non-linearity affects the solution is made most evident in
Figure 2, which is a sketch of the orbits in the phase plane for the same values of
the parameters as in Figure 1. In the phase plane, the linearized solution (2.5)
describes circular orbits of radius K(a — 1)~! centred at the origin, so that the
departure from circularity of the orbits in Figure 2 is a direct measure of the
effects of non-linearity. Even when K = 4, the orbit is significantly distorted into
a roughly elliptical shape, whilst for K = 7 the orbit pinches in sharply at x = 0.

For the case a = 5, B = 1 investigated in Figures 1 and 2 it was found that the
Padé fractions used to sum the series (2.7) suddenly failed to converge at about
K = 7.3. Accordingly, we seek the radius of convergence of the series

20 _ 3 40 (3.1)

1=0

in which

t
©) —
a;” = ): A2q+l,2i—2q'
q=0
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2L

Figure 2. Phase-plane orbits for « = 5, 8 = 1 and amplitudes K = 4, 7.

This is done by the method of Domb and Sykes [5]. Thus, if the nearest
singularity of equation (3.1) is assumed to be of the form

x(0) |c(e+¢)° §#0,1,2,....
€ C(e2+£)°log(e2+£), 6=0,1,2,....
as el —» —¢,

where C, § and 8 are constants, then it follows (from the binomial theorem in the
first instance) that

a®/a®, —»%(—1 + #), asi — 0.

The position of the singularity, €2 = —¢, and the singularity exponent § may
therefore be found from the limits
-1/¢ = lim a®/a®, (3.2a)

1=
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and
§ = lim &i(i + 1)[a®/a®, - a9,/a®] - 1. (3.2b)
11— o0

These are estimated using the extrapolative e,-transform due to Shanks [9].

When a =5 and B =1, as in Figures 1 and 2, equation (3.2a) yields the
nearest singularity at K? = ~13.525 and (3.2b) gives its exponent as § = 0.50,
which indicates that the singularity is of square-root type. In order to explain the
failure of the Padé fractions at about K = 7.3, we have mapped the singularity at

K? = —13.525 away to infinity using an Euler transform (see van Dyke [11]), in
which the series (3.1) is re-expressed in terms of the new variable
t=e2/(e? + £) (3.3)

with £ as given in equation (3.2a). The Domb-Sykes technique indicates that this
new series has a singularity on the positive real axis of K2 but is insufficiently
accurate to give the precise value.

From the series (3.1) we have constructed the series for two new functions 2(s)
and x(0)e~(s), where s is a pseudo-arclength defined by

ds? = [d(e?)]” +[d(x(0)/¢)]’.

x(t)

e K2250
~N

~ — K=400
K=600

-pL
Figure 3. Solution profiles for a = 101, B = 1 and amplitudes K = 250, 400, 600.
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When these new series are summed using Padé approximants, they give the same
result as before for 0 < K < 7.3, but are able to yield highly converged values for
e? and x(0)/e with K > 7.3. We therefore suggest that the failure of the original
series (3.1) near K = 7.3 is due to the presence of a pitchfork bifurcation at about
this value of K.

Figure 3 shows solution profiles for the case a« = 101, 8 = 1 and the three
values K = 250, 400 and 600 of the forcing amplitude. All three proiiies appear
to be roughly cosinusoidal, and to investigate the réle played by non-linearity, it
is again necessary to consider the solution behaviour in the phase plane.

In Figure 4, phase plane orbits are shown for the same values of the parameters
as in Figure 3. When K = 250, the orbit closely approximates the circle predicted
by the linearized solution (2.5), but for K = 400 and K = 600 there are many
subsidiary maxima and minima in each orbit.

The series (3.1) has again been examined for this case « = 101, 8 =1, and a
graph of x(0) against K is given in Figure 5. The Padé fractions converge well up
until about K = 624, when they suddenly fail. Similarly, there is a narrow region
around K = 405 where the Padé fractions do not converge, and the shape of the
graph in Figure 5 suggests a pole singularity near this value of X.

x.

Figure 4. Phase-plane orbits for a = 101, 8 = 1 and amplitudes K = 250, 400, 600.
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x(0)

| | |
400 600
K

|
200

Figure 5. Solution amplitude x(0) against forcing amplitude K for a = 101, B = 1.

The Domb-Sykes procedure, summarized in equations (3.2), is applied to the
series (3.1) with @ = 101 and B = 1 and uncovers the existence of a square-root
singularity again on the negative real axis of K2, at K2?= —104000. This
singularity is mapped away to infinity by the Euler transformation (3.3), and the
new series now possesses a singularity at K = 404.93, with § = —1.0000, as
revealed by equations (3.2). Clearly this is a pole singularity, confirming the
features in Figure 5, and presumably corresponds to a point of non-linear
resonance in the physical system.

3.2 The softening spring case (B < 0)

Figures 6 and 7 show, respectively, solution profiles and phase-plane orbits for
a =5, 8= —1 and the two forcing amplitudes K = 2 and K = 3.6. The solution
clearly becomes more like a square wave as K is increased, and the corresponding
phase-plane orbits become increasingly elangated in the vertical direction.

The Domb-Sykes procedure is applied to the series (3.1) in this case a = 5,
B = —1, and shows that the nearest singularity now lies on the positive real axis
of K2, at K = 3.67. Equation (3.2b) indicates that the singularity is of square-root
type, with & = 0.50. Such a singularity is the result of the solution surface folding
back, and can be confirmed directly by reverting the series (3.1) to give a new
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x(t)
15

[12]

-0.5

-1.0

-1.5

Figure 6. Solution profiles for a

= 5,8 = —1 and amplitudes K = 2, 3.6.

-2-

Figure 7. Phase-plane orbits for a = 5, 8 = —1 and amplitudes K = 2, 3.6.
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series of the form

&= Y b, (3.4)

i=1
in which
p=[x(0)/e - a] /a®

and the coefficients b, are functions of a®, j = 0,1,...,i. The new series (3.4) is
summed using Padé approximants, as before.

In Figure 8 we present a graph of x(0) against X for the case a = 5, B = —1,
obtained using both series (3.1) and (3.4). The reverted series (3.4) clearly
indicates a fold at K = 3.67, confirming the predictions of the Domb-Sykes
technique. Multiple solutions are evidently a possible outcome at least within the
narrow range of values 3.55 < K < 3.67 of the forcing amplitude. The reverted
series (3.4) fails suddenly at K = 3.55 (x(0) = 1.47), however, and it thus seems
likely that a singularity exists near this point, although careful analysis of the
various series presented here has so far failed to yield its exact nature or location.

T ]7 T I T | T
1.5+ -
=)
X 1.0 .
0.5“ —
1 | 1 ] ] | 1
1 2 3

Figure 8. Solution amplitude x(0) against forcing amplitude X fora = 5, 8 = —1.
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In Figures 9 and 10, solution profiles and phase-plane orbits are shown for
a =17, B = —1 and the two values of forcing amplitude K = 16 and K = 23.
The Domb-Sykes technique again indicates a square root singularity on the
positive real axis of K2, at K = 23.4, so that the solution at K = 23 represents
about the largest value of K for which the present method is capable of giving
accurate results. Figures 9 and 10 appear very similar to the results shown in
Figures 1 and 2, obtained with & = 5 and B8 = 1, and it is perhaps possible that
these two different branches of solution are somehow analytically linked.

The final case to be considered in this section is that obtained with a = 101
and B = —1. Three solution profiles are shown in Figure 11, with K = 200, 300
and 360. Whilst the profile with K = 200 does not differ greatly from the
predictions of linearized theory, that obtained with K = 360 possesses numerous
small wavelets “riding” on the overall solution profile and is thus strongly
influenced by non-linearity.

x(t)

Figure 9. Solution profiles for « = 17, 8 = —1 and amplitudes K = 16, 23.
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Figure 10. Phase-plane orbits for @ = 17, 8 = —1 and amplitudes K = 16, 23.

Phase-plane orbits are shown in Figure 12 for a = 101, 8 = —1 and the same
three values of K as in Figure 11. Again it may be seen that the orbit obtained
with K = 200 differs but slightly from the circle predicted by linearized theory,
whilst the exaggerated peaks and troughs of the orbit for K = 360 indicate the
strength of non-linear effects in this case.

Figure 13 shows a graph of x(0) against K for @ = 101, 8 = —1. Unlike the
results obtained with smaller a, where the nearest singularity was of square-root
type, the Domb-Sykes technique now indicates a pole singularity at about
K = 322, This is clearly visible in Figure 13, and presumably corresponds to a
point of non-linear resonance. The Padé fractions used to sum the series (3.1) fail
again at about K = 386, and the graph suggests that a square-root singularity
may possibly occur at about this value of the forcing amplitude.

It is interesting to re-examine Figure 12 in the light of the information available
from Figure 13. If one considers the portion of each orbit lying in the upper half
of the phase plane, x > 0, it will be observed that this portion contains four
upward-concave regions when K = 300, and only three when K = 360. In
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1
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N\ e-K=200
-3
~ K=300
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-5L

Figure 11. Solution profiles for « = 101, B = —1 and amplitudes X = 200, 300, 360.

addition, the upper half of the orbit obtained with K = 300 possesses a local
maximum in %X when x = 0, whilst the orbit for K = 360 possesses a local
minimum at x = 0. In fact, the orbit for K = 360 appears qualitatively similar to
those obtained with a lying between the singular values 49 and 81, and we
speculate that a different branch of solution has been entered upon crossing the
point of non-linear resonance at K = 322 in Figure 13.

The results presented in this paper for the case of the softening spring have all
had the value 8 = —1 in common. Although the particular form of the series
expansions (2.4) is not the most convenient for investigating the influence of B
upon the solution, we have run the computer programs for several different values
of B and find that there is little qualitative change in the solution profiles as a
result of altering B at a fixed value of a, apart from a change of scale.
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- 5 -
Figure 12. Phase-plane orbits for a = 101,'8 = ~1 and amplitudes K = 200, 300, 360.

x(0)

1 I L 1

| ] !
100 200 300 K 400

Figure 13. Solution amplitude x(0) against forcing amplitude K for a = 101, 8 = —1.
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4. Summary

Periodic solutions of high accuracy have been found for the forced Duffing
equation. The solution technique is semi-analytical, and involves the use of
Fourier series combined with perturbation expansions in the amplitude of the
forcing term. The assumed form of the perturbation series fails to yield a solution
whenever the coefficient of the linear term equals one of the eigenvalues of the
linear problem, but between these singular values, the series converge to a unique
solution. Limiting values for the forcing amplitude have been found in every case
investigated, but the nature of these limits varies. In the case of the softening
spring (when the coefficient of the non-linear term has negative sign) the limiting
values of forcing amplitude appear to correspond to a fold in the solution surface,
and the consequent possibility of multiple solutions. For the hardening spring
case, when the sign of the non-linear term is positive, the nature of the limiting
value of amplitude is less clear, but is possibly associated with a pitchfork
bifurcation.

In both the hardening and softening spring cases, points of nonlinear resonance
have been identified. It appears that a different branch of solution may be entered
upon crossing such points. The stability of such branches, however, is not
discussed here.

References

[1) C. M. Andersen and J. F. Geer, “Power series expansions for the frequency and period of the
limit cycle of the van der Pol equation”, STAM J. Appl. Math. 42 (1982), 678-693.
[2] T. W. Arnold and W. Case, “Nonlinear effects in a simple mechanical system”, Amer. J. Phys.
50 (1982), 220-224.
(3] N. W. Bazley and P. Miletta, “Approximations to periodic solutions of a Duffing equation”,
ZAMP 34 (1983), 301-309.
[4] H. T. Davis, Introduction to nonlinear differential and integral equations (Dover, New York,
1962).
[5] C. Domb and M. F. Sykes, “On the susceptibility of a ferromagnetic above the Curie point”,
Proc. Roy. Soc. London Ser. A 240 (1957), 214-228.
[6] P. Holmes, “A nonlinear oscillator with a strange attractor”, Philos. Trans. Roy. Soc. London
Ser A. 292 (1979), 418-448.
[7} U. Parlitz and W. Lauterborn, “Superstructure in the bifurcation set of the Duffing equation
%+ dx + x + x* = fcos(wt)", Phys. Lett. A107 (1985), 351-355.
(8] B. V. Schmitt, “Sur la structure de 'equation de Duffing sans dissipation”, SIAM J. Appl.
Math. 42 (1982), 868-894.
[9] D. Shanks, “Non-linear transformations of divergent and slowly convergent sequences”, J.
Math. Phys. 34 (1955), 1-42,
{10] M. Urabe, “Galerkin’s procedure for non-linear periodic systems”, Arch. Rational Mech. Anal.
20 (1965), 120-152.
[11] M. D. van Dyke, “Analysis and improvement of perturbation series”, Quart. J. Mech. Appl.
Math. 27 (1974), 423-450.
[12] P. Wynn, “On the convergence and stability of the epsilon algorithm”, STAM J. Numer. Anal.
3 (1966), 91-121.

https://doi.org/10.1017/50334270000005609 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000005609

