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The effects of mental steps and compatibility on Bayesian reasoning

Shahar Ayal∗ Ruth Beyth-Marom†

Abstract

Four laboratory studies were conducted to test the hypothesis that correct Bayesian reasoning can be predicted by two

factors of task complexity — the number of mental steps required to reach the normative solution, and the compatibil-

ity between the framing of data presented and the framing of the question posed. The findings show that participants

performed better on frequency format questions only when one mental step was required to solve the task and when the

data were in a compatible frequency format. By contrast, participants performed more poorly on more complicated tasks

which required more mental steps (in a compatible frequency or probability format) or when the data and question formats

were incompatible (Studies 1 and 2). Incompatibility between data and question formats was also associated with higher

reaction times (Study 2b). Furthermore, on problems that incorporated incompatibility between the data sample size and

the target (question) sample size, participants performed better on the probability question than the frequency question, re-

gardless of data format (Study 3). The latter findings highlight the ecological advantage of translating data into probability

terms, which are normalized in a range between 0 and 1, and thus can be transferred from one situation to another.
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1 Introduction

Dealing with uncertain prospects about risks and hazards

(e.g., the probability of having breast cancer) requires peo-

ple to have basic hypotheses about reality. These hypothe-

ses need to be updated in light of new data, which may

change prior beliefs or the relative strength of each hy-

pothesis. Bayes’ theorem is considered to be a norma-

tive model for such hypothesis evaluation. In its simplest

form, Bayes’ theorem expresses the implications of a da-

tum [event] D when determining whether a hypothesis H
is true relative to its complement, ¬H . In such cases, the

odds-version of Bayes’ theorem states that:

P (H/D)

P (¬H/D)
=

P (H)

P (¬H)
·
P (D/H)

P (D/¬H)

Reading from left to right, the three terms in the for-

mula are: (a) the posterior odds that H is true (relative to

¬H) in light of all that is known after inputting D; (b) the

prior odds that H (relative to ¬H) is true in light of all

that is known prior to event or evidence D. These prior

odds are the base rates for the hypotheses; (c) the likeli-

hood ratio, representing the information value of D with

respect to the truth of H (relative to ¬H), also known as
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“the diagnosticity of D”. Thus from a Bayesian point of

view, the relative belief in a set of hypotheses in terms of

evidence D is a function of the prior belief in each one

and the diagnosticity of the data. These two components

are independent.

Bayes’ theorem has been used in the judgment and deci-

sion making literature as a tool for exploring naïve statisti-

cal reasoning and its systematic deviations from normative

consideration. Studies have examined the way hypotheses

are formulated, how component probabilities are assessed

(prior and conditional probabilities) and how all compo-

nents are aggregated into a final judgment (e.g., Fiedler,

1988; Fischhoff & Beyth-Marom, 1983; Gavanski & Hui,

1992; Kahneman, Slovic & Tversky, 1982; Trope & Bas-

sok, 1982). Most of these studies have reported that the

use of intuitive mechanisms for updating hypotheses tends

to move decision makers further away from the correct

normative benchmark, especially when participants are re-

quired to answer only a single problem (for a review see

Birnbaum & Mellers, 1983).

The element of Bayes’ theorem that has probably at-

tracted the most attention in this literature is the base rate

component. The “base rate fallacy” refers to the ten-

dency to allow one’s posterior beliefs to be dominated by

the information extracted from D by ignoring the prior

beliefs. For example, when testing two competitive hy-

potheses such as “John is a lawyer/John is an engineer”,

even weak diagnostic information relating directly to John

dominates the base rate information (the proportion of

lawyers and engineers in the relevant sample) (e.g., Kah-

neman & Tversky, 1972, 1973; Koehler, 1996). Summa-
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rizing a set of empirical studies, Bar-Hillel (1980) con-

cluded that “the genuineness, the robustness, and the gen-

erality of the base-rate fallacy are matters of established

fact” (p. 215).

1.1 The effect of frequency format

The following “mammography problem” (adapted from

Eddy, 1982; see also Cosmides & Tooby, 1996) has been

the subject of many Bayesian experimental studies in the

last 30 years and illustrates the base rate fallacy:1

The probability of breast cancer is 1% for a

woman at age 40 who participates in routine

screening. [P (H)]

If a woman has breast cancer, the probability is

80% that she will get a positive mammography

result. [P (D/H)]

If a woman does not have breast cancer, the

probability is 9.6% that she will get a positive

mammography result. [P (D/¬H)]

A woman in this age group had a positive mam-

mography in a routine screening.

What is the probability that she actually has

breast cancer?___% [P (H/D)]

The normative solution to this problem is based on the

following normal-version of Bayes’ theorem2:

P (H/D) =
P (D/H)P (H)

P (D/H)P (H) + P (D/¬H)P (¬H)
=

(0.8)(0.01)

(0.8)(0.01) + (0.096)(0.99)
= 0.078

However, Eddy (1982) reported that 95 out of 100

physicians estimated the posterior probability to be be-

tween 70% and 80%, rather than 7.8%. This bias was

attributed to participants’ disregard of the base rate com-

ponent.

Along with many studies that have replicated the base

rate fallacy (for a review see Bar-Hillel, 1980; Girotto &

Gonzalez, 2001), the frequentistic approach claims that

the main source of the base rate fallacy (as well as several

other fallacies mentioned in the Kahneman and Tversky

heuristics and biases approach) is the format of the prob-

ability question, since humankind did not evolve through

calculating single-event probabilities. Rather, according

to this natural frequency hypothesis, our minds have been

tuned to natural frequencies acquired by natural sampling

1The expressions in brackets are not presented to participants.
2The normal-version of Bayes’ theorem is a simple mathematical

derivation from the “odds-version” presented earlier.

Table 1: Data used by Gigerenzer and Hoffrage (1995).

H ¬H Total

D 8 95 103

¬D 2 895 897

Total 10 990 1000

and not to probability or percentage. Thus, when infor-

mation is presented in natural frequency formats the base

rate fallacy can be reduced and sometimes even disappear

(Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995,

2007; Hoffrage, Gigerenzer, Krauss & Martignon, 2002).

For instance, very recently Garcia-Retamero and Hoffrage

(in press) reported that doctors and patients made more ac-

curate inferences when information was communicated in

terms of natural frequencies rather than probabilities.

To analyze the effect of frequency format on Bayesian

reasoning, the standard probability format is usually trans-

formed into different frequency formats. The frequency

format is based on a 2 x 2 table of frequencies such as Ta-

ble 1, from Gigerenzer and Hoffrage (1995) (H stands for

Hypothesis, e.g., disease is present; D stands for Datum,

e.g., positive laboratory result).

From this table of frequencies, the probability for-

mat can be inferred directly by calculating the relevant

relative proportions as a ratio between two frequencies

(P (D/H) = 8/10 = 0.8 ; P (D/¬H) = 95/990 =
0.096; P (H) = 10/1000 = 0.01).

Gigerenzer and Hoffrage (1995) reported that there

were more correct answers to the P (H/D) question in

the frequency format (around 50%) than in the proba-

bility format (around 20%). The authors claimed that

“Bayesian algorithms are computationally simpler when

information is encoded in a frequency format rather than

a standard probability format”; i.e., fewer calculations are

needed and they can be done on natural numbers. They

argued that the improvement in the percentage of cor-

rect answers is related to the fact that the frequency for-

mat is in accordance with an evolutionary-based com-

putational algorithm (Brase, Cosmides & Tooby, 1998;

Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995,

2007; Hoffrage et al., 2002). This is because humans

have “inductive-reasoning mechanisms that embody cer-

tain rational principles, but the design of these mecha-

nisms requires representations of event frequencies to op-

erate properly” (Brase et al., 1998, p. 4). The frequen-

tistic approach further claims that the base rate fallacy

(as well as other judgmental fallacies) accounts for find-

ings that failed to reveal inductive-reasoning mechanisms

since people find it more difficult to “read” input in a non-

frequency format. Therefore, changing probability for-
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mats back into natural frequency formats should dramat-

ically improve the number of participants who take the

base rate into account, enabling them to rediscover their

Bayesian reasoning and get the right answer.

1.2 Alternative explanations for the fre-

quency effect

Do natural frequency-formats truly “improve Bayesian

reasoning without instruction” (Gigerenzer & Hoffrage,

1995)? And if so, can we really conclude that frequency

is a more adaptive mode of communication and that there-

fore people have developed a cognitive algorithm that is

specifically tuned to frequencies?

Despite evidence replicating the frequency-probability

effect (e.g., Brase et al., 1998; Cosmides & Tooby, 1996),

there is still controversy regarding its underlying process

(e.g., Girotto & Gonzalez, 2001, 2002; Lewis &Keren,

1999; Sloman, Over, Slovak & Stibel, 2003). For exam-

ple, Lewis and Keren (1999) proposed that Gigerenzer and

Hoffrage (1995) confounded two different factors affect-

ing the comparison between probability and frequency for-

mats: the use of frequency versus probability statements,

and the use of joint (in the frequency formats) versus con-

ditional (in the probability format) sampling information.

They claimed that the information given to participants in

the frequency format (8 out of 10 and 95 out of 990) is not

the direct translation of the standard Bayesian probability

format into a frequency format, but rather a much easier

task based on the direct cell conjunction frequencies (i.e.,

enabling participants to calculate directly the proportion of

8 in 8+95). In contrast, the information given in the prob-

ability format is conditional data, which are known to be

harder to represent and work with since they require more

computations (see also Barbey & Sloman, 2007; Eddy,

1982; Evans, Handley, Perham, Over & Thompson, 2000;

Girotto & Gonzalez, 2001; Moskowitz & Sarin, 1983). To

test this claim, Lewis and Keren (1999) compared two fre-

quency formats: the joint frequency format that was orig-

inally used by Gigerenzer and Hoffrage (1995) and the

conditional frequency format, which according to Lewis

and Keren is the right translation of the standard probabil-

ity format. In line with the authors’ hypothesis, the results

showed that 30% of the participants correctly answered

the joint frequency question (the one originally used by

Gigerenzer and Hoffrage), but only 4% correctly answered

the conditional frequency question and thus scored even

worse than Gigerenzer and Hoffrage’s participants in the

probability format.

A very similar claim was advanced by Mellers and Mc-

Graw (1999), who suggested differentiating between sys-

tematic sampling and natural sampling in frequency ver-

sions of Gigerenzer and Hoffrage’s problems. According

to these authors, there are two ways to translate a prob-

ability version into a frequency version — the one used

by Gigerenzer and Hoffrage (which Mellers and McGraw

define as “a frequency task with natural sampling”) and

the one employed by Lewis and Keren (which Mellers and

McGraw define as “a frequency task with systematic sam-

pling”). The greater number of correct answers in the nat-

ural sampling can be attributed to the fact that natural sam-

pling allows people to visualize nested sets (8 out of 103 is

easily perceived), whereas systematic sampling precludes

such direct perception (see also Hoffrage et al., 2002).

The focus on the ease of perceiving the relevant set was

further explored by Evans et al. (2000) as well as Sloman

et al. (2003). These studies used a variety of examples to

show that frequency formats were associated with better

reasoning performance than standard probability formats

only when they were presented in a manner that facilitated

the construction of a set inclusion mental model (see also

Barbey & Sloman, 2007; Gavanski & Hui, 1992). Evans et

al. (2000) summarized their studies as follows: “Our view

was that none of the experiments in those papers com-

pared frequency and probability versions that were pre-

cisely controlled in other respects . . . . The reason that par-

ticipants were more successful on the frequency versions

was that these problems cued a mental model of set inclu-

sion which made the problems much easier to understand”

(pp. 210–211). In other words, translating probability data

and questions into frequency data and frequency questions

might improve assessments in “base-rate like problems”

but only under specified conditions that clarify the critical

nested sets relations.

Importantly, Hoffrage et al. (2002) responded to these

alternative explanations by identifying some of the spe-

cific moderators associated with the facilitating effect of

the frequency format. Specifically, they differentiated be-

tween natural frequencies, a result of natural sampling,

and normalized frequencies, a result of systematic sam-

pling. When natural frequencies are presented (10 out of

1000 have cancer; 8 out of the 10 with cancer are posi-

tively diagnosed; 95 out of the 990 without cancer are pos-

itively diagnosed), the data enable participants to fill in a 2

x 2 table (comparable to Table 1) and infer the correct pos-

terior probability (or frequency). On the other hand, when

normalized frequencies are presented (10 out of 1000 have

cancer, 800 out of 1000 with cancer are positively diag-

nosed; about 96 out of 1000 without cancer are positively

diagnosed), the posterior probability cannot be directly in-

ferred and the computation is much more complex.

In fact, in Bayesian problems with natural frequencies,

the data and the question presented to participants relate

to the same sample. Thus, participants can bypass the

Bayesian formula and directly assess the posterior hypoth-

esis by relying on the relevant set of D (103) and assess

the proportion of H in D (8 of 103). Although this by-

pass can lead to an increase in the number of correct an-

https://doi.org/10.1017/S1930297500005775 Published online by Cambridge University Press

http://journal.sjdm.org/vol9.3.html
https://doi.org/10.1017/S1930297500005775


Judgment and Decision Making, Vol. 9, No. 3, May 2014 Effects of mental steps and compatibility on Bayesian reasoning 229

swers in Bayesian-like problems, it does not necessarily

improve people’s understanding of the role of base rate

in uncertainty judgments (Beyth-Marom & Arkes, 1983;

Gavanski & Hui, 1992). However, in a Bayesian problem

with normalized frequencies (as with percentages or prob-

abilities), participants can choose one of two strategies to

solve the problem: (a) transform the normalized frequen-

cies into natural ones (translate the 800 in 1000 into 8 out

of 10 and translate the 96 in 1000 into 95 out of 990) and

then bypass the Bayesian formula in the same way as can

be done when natural frequencies are presented; (b) treat

the normalized frequencies as probabilities, which they ac-

tually are, and use the Bayesian formula. Both strategies

are much more cumbersome than the direct strategy that

can be adopted when natural frequencies are presented.

To sum up, most of the evidence points to the fact that

under certain conditions, frequency formats can simplify

a task and elicit better Bayesian reasoning than probability

formats. The current studies were designed to shed more

light on Bayesian reasoning research via four main goals:

(a) define two general factors of task complexity; (b) ex-

plore the conditions in which frequency formats using data

and questions are preferred; (c) test the role of individual

differences in numerical ability on the specific case of base

rate neglect; and (d) find the possible cost associated with

the use of frequencies over probabilities.

1.3 The mental steps and compatibility hy-

potheses

Two main conclusions can be drawn from the above stud-

ies on the effect of the frequency format: (1) when com-

paring a frequency format to a probability format, addi-

tional variables (e.g., the number of computational steps

required to solve the problem) are often not controlled for;

(2) the advantage of frequency formats depends on a num-

ber of other variables, all of which play a role in people’s

performance. As discussed earlier in the context of base

rate problems, a variety of variables have been shown to

influence performance and can decrease (or increase) the

percentage of correct answers. Thus, there is a special

need to define more general factors that may account for

better or worse performance with frequency formats over

probability formats across different studies.

Here, we posit that performance on base-rate-like prob-

lems depends directly on the complexity of the task, and

that complexity is governed by two factors.

The first factor is the number of mental steps needed

to reach the normative answer, and the second factor re-

lates to the compatibility between the data and the ques-

tion characteristics, i.e., the fit between data and question

formats as well as between the basic sample size that ap-

pears in the data and the target sample size that appears in

the question.

In fact, both factors have been identified in other judg-

mental tasks but can only be indirectly derived from stud-

ies in the base rate domain (e.g., Girotto & Gonzalez 2001;

Sloman et al., 2003). The idea of the number of mental

steps was originally presented in other decision-making

domains by Johnson and Payne (1985) and Bettman, John-

son and Payne (1990). These authors defined cognitive ef-

fort as the total cognitive resources required to complete

a task. Thus cognitive effort can be operationalized by

decomposing a task into a series of Elementary Informa-

tion Processes (EIPs); each EIP is defined as a one mental

step, and tasks that include more EIPs take more time to

be solved (Bettman et al., 1990). Similarly, any Bayesian

problem can be characterized by the number of mental

steps required to reach the correct answer. This number

of mental steps represents the overall complexity of the

problem; hence when it increases, it should directly reduce

the percentage of correct responses as well as lengthen

the reaction time (RT). For example, in their simplest task

(called the “short menu”), Gigerenzer and Hoffrage (1995)

presented participants with the number of “D & H” (the

number of women with a positive result and with the dis-

ease) and “D” (number of women with a positive result)

and asked them to state the percentage of woman having

the disease given a positive result. The correct answer is

based on a simple normative rule (“divide the former num-

ber by the latter”, i.e., calculating the posterior conditional

probability or frequency by dividing the conjunction D &

H , by D), which requires only one calculating step. How-

ever, in what Gigerenzer and Hoffrage (1995) called the

“standard menu”, the correct answer was based on a much

more complicated normative rule that required more cal-

culating steps. In both formats (frequency and probabil-

ity), the complexity of the task depended on the number of

mental operations solvers had to perform before reaching

the answer; the more steps required, the lesser the like-

lihood that participants would correctly solve it. Thus,

the complexity of the task is dramatically affected by the

structure of the data presented (see also Girotto & Gonza-

lez, 2001).

Compatibility was introduced in the field of human

engineering, where it was shown that stimulus-response

compatibility is an important factor in optimizing the rela-

tionship between technology and human operators (Kan-

towitz, Triggs & Barnes, 1990; Kornblum, Hasbroucq &

Osman, 1990). In psychology in general and in judg-

ment and decision-making in particular, high compatibil-

ity between the format of the data and the response scale

has been shown to improve performance (e.g., Fischer &

Hawkins, 1989; Lichtenstein & Slovic, 1971; Slovic, Grif-

fin & Tversky, 1990). In Bayesian tasks, compatibility

might be affected by two sources: (a) scale compatibil-

ity involving the compatibility between the data presented

(frequency or probability data) and the format of the ques-
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tion presented to participants (a frequency question or a

probability question). When there is no such scale com-

patibility, more mental steps are needed to answer the

question; (b) sample-size compatibility which refers to the

compatibility between the basic sample size from which

the data are drawn and the target sample size to which

the conclusion needs to be applied. Importantly, incom-

patibility between sample sizes in this sense is only rele-

vant when the question is presented in a frequency format,

since probabilities are not sensitive to the sample size and

thus can be transferred from one sample size to another

sample size without any further computation. Therefore,

incompatibility between sample sizes is expected to neg-

atively affect performance only in the frequency format

question, but not in the probability format question.

It is also important to note that overcoming these two

types of incompatibility requires some transformations

(i.e., mental steps), which complicate the task (by drawing

attention to the relation between those two dimensions)

and lengthen the reaction time required to solve it. These

kinds of transformations, such as the transformation be-

tween probabilities and frequencies, and percentages and

fractions, are the primary capabilities tested by the Nu-

meracy scale (Lipkus, Samsa & Rimer, 2001; Peters et al.,

2007). Recent findings on this scale show that “. . . more

errors are made on questions that involve multiplication or

conversions from one metric to another (e.g., converting

frequencies to percentages)” (Lipkus & Peters, 2009). It

can thus be assumed that people who are low in numeracy

will have more difficulties (compared to high numeracy

individuals ) solving Bayesian type problems when there

is incompatibility between the data format and question

format, as a transformation from one scale to the other is

needed.

1.4 Overview of the studies

Four laboratory studies were conducted to explore the ef-

fects of mental steps and compatibility on Bayesian rea-

soning. In Study 1 the data were presented in natural

frequencies and we manipulated (1) the number of men-

tal steps needed to solve a Bayesian problem, and (2) the

scale compatibility between the format of the data (natural

frequencies) and the format of the question (either a fre-

quency or a probability question). The number of steps

was manipulated by the kind of data given to participants.

Studies 2a and 2b further focused on scale compatibility

between data and question, but the data were presented ei-

ther in a probability or a frequency format (with the mini-

mal number of steps held constant), while the question was

posed either in a probability or a frequency format. In both

studies participants completed a numeracy questionnaire

to test the relationship between numeracy and Bayesian

reasoning under compatible and incompatible conditions.

In Study 2b we tested external validity by using a novel

scenario, and also explored the effect of compatibility on

reaction time.

Finally, Study 3 was constructed to test the effect of

sample size compatibility (i.e., the match between the

sample size of the data presented and the sample size of

the question). These settings require a generalization from

one sample to another, and thus enabled us to test poten-

tial cost in the natural frequency format. More specifically,

when the question sample is not compatible in size to the

target sample, we predicted that frequency formats of the

question would require more mental steps than probability

formats, and thus should decrease rather than increase the

number of correct answers.

2 Study 1 — The effects of task

complexity — number of mental

steps and compatibility — with

frequency data

The first study was designed to test the basic rationale of

the mental step hypothesis, which states that performance

on a Bayesian problem will deteriorate when the number

of mental steps required to reach the normative solution is

increased. In order to test this hypothesis, we used only

data presented in a natural frequency format and manip-

ulated the number of mental steps necessary to solve a

Bayesian problem.

To test the scale compatibility rationale, the format of

the questions posed to participants was manipulated: half

of the participants were presented with a frequency ques-

tion (high compatibility between data and question) and

the other half were presented with a probability question

(low compatibility). We expected to find better perfor-

mance in the frequency than in the probability conditions

in each of the mental step conditions.

2.1 Method

2.1.1 Participants.

234 students (192 females, 42 males) enrolled at a univer-

sity in central Israel served as participants in this experi-

ment. Their ages ranged from 19 to 31 (M=23, Sd=1.97).

Eight different questionnaires were randomly distributed.

2.1.2 Procedure

The study employed a 4 (number of steps needed to solve

the problem: 1, 2, 3 or 4 steps) by 2 (type of question: a

frequency or a probability question) between- subject de-

sign. Thus, there were 8 groups of participants each re-
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Table 2: Data used in Study 1.

H (with breast cancer) ¬H (without breast cancer) Total

D (positive test result) a = 8 b = 92 a+b=100

¬D (negative test result) c = 2 d = 898 c+d=900

Total a+c=10 b+d=990 N=1000

ceiving a different questionnaire. We employed the well-

known “mammography problem” used by Gigerenzer and

Hoffrage (1995) (adapted from Eddy, 1982). Table 2

shows the numbers we used for the problem in the experi-

ment.

All participants read the following introduction:

A mammography is a test to detect breast can-

cer. However, the instrument is not 100% reli-

able. The following data describe frequencies

for 1000 women who were tested: the number

of women with breast cancer out of those tested

as well as the frequencies for false positives and

false negatives on the Mammography test. Af-

ter reviewing the data, answer the question that

follows it.

Note: Some of the data might be superfluous

for the evaluation needed, but none are incon-

sistent.3

Then, each of the participants was given 4 out of the

following 8 sentences to read:

1) 10 of the 1000 tested women have breast cancer [(a

+ c) out of N]

2) 990 of the 1000 tested women don’t have breast can-

cer [(b + d) out of N]

3) 100 of the 1000 tested women are diagnosed posi-

tively (as having breast cancer) [(a + b) out of N]

4) 8 of the 10 women with breast cancer are positively

diagnosed [a out of (a+c)]

5) 92 of the 100 women diagnosed positively don’t have

breast cancer [b out of (a+b)]

6) 2 of the 10 women with breast cancer are negatively

diagnosed [c out of (a+c)]

7) 92 of the 990 women without breast cancer are posi-

tively diagnosed [b out of (b+d)]

8) 898 of the 990 women without breast cancer are neg-

atively diagnosed [d out of (b+d)]

In each condition, a different set of four sentences was

presented to participants. The sets differed in the number

3In order to ensure an equal number of pieces of information in each

of the different conditions some of the conditions included redundant in-

formation. This sentence was added to avoid participants being confused

by this redundancy (Grice, 1975; Schwarz, 1999).

of steps required to answer the question correctly (consis-

tent with the set of data they were given). In all condi-

tions, the format of the question posed to participants was

manipulated to be either a frequency or a probability ques-

tion.

Table 3 presents the data given in each of the condi-

tions and the calculations needed to get the answer for

either the frequency question (the numerator in the last

step) or the probability question (the numerator in percent-

ages). As can be seen, in each condition in the sequence,

an additional step is needed to reach the normative answer

(P (H/D) in the probability condition, or N(H/D) in the

frequency condition).

After reading the four sentences, all participants were

asked to respond to one question. Participants in the “fre-

quency question” conditions read the following question:

Based on the data presented, write down your

best estimate regarding the following question:

in a new sample of 100 women who were tested

positive on the mammography test, what is the

number of women expected to actually have

breast cancer?

Note that the new sample of women who tested posi-

tive is of the same magnitude (same size) as the positively

diagnosed women in the original sample (100).

Participants in the “probability question” conditions

read the following question:

Based on the data presented, write down your

best estimate regarding the following question:

A woman was tested positive on the mammog-

raphy test. What is the probability that she actu-

ally has breast cancer? (give a number between

0% and100%).

2.2 Results and discussion

The correct answer according to the normative Bayesian

rule is 8% in all four conditions on the probability ques-

tion (P1 to P4) or 8 out of 100 in all four conditions on

the frequency question (F1 to F4). To test our first hypoth-

esis that increasing the number of necessary steps should

reduce the number of correct answers, we compared the
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Table 3: Data presented and steps needed to solve the problem.

Condition Sentences presented ¬H H Total Steps to get the solution∗

one step 1, 3, 4, 5 D 8 92 100 Step 4

¬D

10 1000

two step 1, 2, 4, 7 D 8 92 100 Steps 3, 4

¬D

10 990 1000

three step 1, 2, 6, 7 D 92 100 Steps 2, 3, 4

¬D 2

10 990 1000

four step 1, 2, 6, 7 D Steps 1, 2, 3, 4

¬D 2 898

10 990 1000

∗ Steps to get the solution:

1. (D ∩ ¬H) = (¬H)− (¬D∩¬H) = 990− 898 = 92

2. (D∩H) = (H)− (¬D∩H) = 10− 2 = 8

3. (D) = (D∩H) + (D∩¬H) = 8 + 92 = 100

4. P (H/D) = (D∩H)/(D) = 8/100

overall percentage of correct answers in each condition.

As shown in Figure 1, the one step conditions for both

question formats led to the highest percentage of correct

answers (55.2% for F1 and 32.3% for P1). The lowest

percentage of correct answers in the two question formats

was found for the four step conditions (10% for F4 and

13.8% for P4). This monotonic reduction in the proportion

of correct answers as a function of increasing the number

of necessary steps (when the two formats are combined)

was significant in a one-tailed chi-square linear-by-linear

association test (χ2(1,n=234) = 15.601, p<0.001). This

linear reduction was also significant when we tested each

of the two question formats separately: frequency format

(χ2(1,n=118) = 12.992, p<0.001) and probability format

(χ2(1,n=116) = 3.823, p=0.025). Interestingly, as can be

seen from Figure 1, the greatest drop as a result of one

additional step occurred between F1 and F2 (55.2% to

20.7%, respectively). However, in all the other frequency

and probability conditions, adding an additional step led to

a moderate reduction in the percentage of correct answers.

One exception was the small improvement between F2 and

F3, but this improvement was not significant.

To test the second hypothesis that lower scale compati-

bility between data and question reduces performance, we

compared the percentage of correct answers in the com-

patible format (data and question in frequencies) versus

the percentage of correct answers in the incompatible for-

mat (data in frequencies, question in probability) for each

number of step conditions. In the one-step condition, this

percentage was indeed much higher in the compatible for-

mat (55.2%) than in the incompatible format (32.3%) and

this difference was significant in a one-tailed chi-square

test (χ2(3,n=217) = 17.713, p=0.037). When the number

of steps was greater than 1, however, no significant dif-

ference between the compatible and incompatible formats

was obtained. Although the compatible format elicited a

higher percentage of correct answers (23.33%) than the

incompatible format (14.29%) in the three-step condition,

this difference was not significant in a one-tailed chi-

square test (χ2(1,n=58) = 0.771, p=0.19). Moreover, in

both the two- and four-step conditions, the compatible for-

mat elicited lower rather than higher percentages of cor-

rect answers. Here again, however, the differences were

not significant. Thus, compatibility had an effect when the

question was relatively simple (i.e., one step condition),

but this effect was eliminated when the question became

more complicated.

Overall, these results partially replicate the natural fre-

quency effect that was reported in previous studies (Brase,

Cosmides, & Tooby, 1998; Cosmides & Tooby, 1996;

Gigerenzer & Hoffrage, 1995) showing that when all the

data are presented in a natural frequency format, partic-

ipants do significantly better on the frequency question

than the probability question. However, the results also

support the mental steps hypothesis that performance on a

Bayesian question (with natural frequency data) will dete-
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Figure 1: The percentage of correct answers when data are

presented in frequencies.
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riorate when the number of mental steps needed to solve it

are increased, independently of the question format.

These findings leave some questions unresolved. How

general is the observed advantage of frequency over prob-

ability in the one step condition? Does it reflect a general

scale compatibility effect or rather an exclusive advantage

of a full frequency format? Moreover, is the effect content

specific? Studies 2a and 2b were aimed to explore these

questions as well as test the effect of numeracy as another

independent variable (in Studies 2a and 2b) and reaction

time as an additional dependent variable (in Study 2b).

3 Study 2 — The generality of the

scale compatibility effect

3.1 Study 2a — The effects of scale compati-

bility and numeracy — with probability

data

To test whether the scale compatibility between data and

questions could be generalized to situations in which the

data are presented in a probability format, all participants

in Study 2a were given problems that were equivalent to

the one-step problems in Study 1, but the data were pre-

sented in a probability format. We manipulated the ques-

tions presented to participants to be either in a probability

format (in the compatible condition) or in a frequency for-

mat (in the incompatible condition).

Because scale incompatible conditions require more

mathematical transformations than compatible conditions

to solve the base-rate problem, we also made a predic-

tion concerning individual differences; namely that low

numerate participants (vs. high numerate) would be more

affected by the scale incompatibility between the data

presented and the question posed (for recent research on

this topic see Chapman & Liu, 2009; Hill &Brase, 2012;

Garcia-Retamero& Hoffrage, in press).In order to test

their numeracy ability, all participants were required to

complete a numeracy questionnaire and were classified on

this basis as either low or high numerate. The predicted

difference in correct answers between the two conditions,

compatible>incompatible, was expected to be higher for

low numerate participants than for high numerate partici-

pants.

3.1.1 Method

Participants. 130 MBA students (55 females, 75 males)

at a private mid-Atlantic university in the US served as

participants in the experiment. Their ages ranged from

21 to 34 (M=26.75, Sd=2.9). All participants were paid a

total show up fee of $8.

Procedure. We used the “mammography problem”

data, and instructions from the one-step questionnaire in

Study 1. However the data were presented in a probability

format as shown below in the following four sentences:

1. The probability of a woman to actually have breast

cancer is 1%. [P (H)]
2. The probability of a woman to be positively diag-

nosed (as having breast cancer) is 10%. [P (D)]
3. The probability of a woman with breast cancer to be

positively diagnosed is 80%. [P (D/H)]
4. The probability of woman who has been diag-

nosed positively not to actually have breast cancer is 92%.

[P (¬H/D)]

This problem can be solved in one step: P (H/D) =
1− P (¬H/D) = 100− 92 = 8.

Then, the participants were randomly divided into two

groups and each group was given either the probability

format question (in the “compatible condition”) or the fre-

quency format question (in the “incompatible condition”).

Finally, after a number of unrelated tasks, all partici-

pants took the numeracy questionnaire. We used a new

8-item numeracy scale (Lipkus & Peters, 2009) which is

an abbreviated version of the 15-item numeracy scale used

in Peters et al. (2007). The scale is comprised of 8 short

questions (e.g., “In the ACME PUBLISHINGSWEEP-

STAKES, the chance of winning a car is 1 in 1,000. What

percent of tickets in the ACME PUBLISHING SWEEP-

STAKES wins a car?”). Participants were asked to solve

all 8 items to the best of their ability, as quickly as they

could and without using a calculator. The full question-

naire and the percentage of correct answers on each item

are presented in Appendix A.
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Figure 2: The percentage of correct answers when data are

presented as probabilities.
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3.1.2 Results and Discussion

The mean Numeracy Score was 6.17 (median = 7) out of

8 (range 0–8, α=0.78).

We first conducted a logistic regression to test the effect

of scale compatibility as a categorical independent vari-

able and numeracy as a continuous independent variable

on the percentage of correct answers as the dependent vari-

able. In line with the compatibility hypothesis, we found

a significant main effect for scale compatibility (B=0.838,

Wald=4.99, p=0.025). However, our numeracy predictions

were not supported when numeracy was treated as contin-

uous variable since the main effect of numeracy and the

interaction between numeracy and scale compatibility did

not reach significance.

To further investigate these results, and since the nu-

meracy distribution was highly skewed in this sample of

participants, we performed a median split on the numer-

acy measure (for justifications of this procedure in skewed

samples see also MacCallum, Zhang, Preacher, & Rucker,

2002; Peters et al., 2006; Peters et al., 2007) and compared

the participants who were high numerate (7 or 8 correct,

n=70) to those who were low numerate (0–6 items correct,

n=60). In line with our hypothesis, the percentages of cor-

rect answers were higher among the high numerate partic-

ipants (70%) than the low numerate participants (48.3%)

(χ2(1,n=130) = 6.319, p=0.006). Strikingly, however, dif-

ferent patterns of results were observed in the high and low

numerate participants. As shown in Figure 2, for the low

numerate participants, there was a significant difference

between the percentage of correct answers in the compati-

bility condition (61.3%) and the incompatibility condition

(34.5%) (χ2(3,n=60) = 4.312, p=0.019). However, among

the high numerate participants, the difference in percent-

ages of correct answers between the compatible (77.4%)

and the incompatible conditions (64.1%) was smaller and

non-significant (χ2(1,n=70) = 1.459, p=0.113).

Taken together, these results lend credence to the scale

compatibility effect obtained in Study 1 and suggest that

this effect was not restricted to the full frequency format

alone. When the original data were presented as proba-

bilities, the probability question resulted in better perfor-

mance than the frequency question. Further, the median-

split analysis of numeracy ability supported our claim that

incompatibility conditions are more difficult because more

transformations are needed. This can be concluded from

the fact that high numerate participants, who scored bet-

ter on the numeracy questionnaire involving these kinds

of transformations, not only exhibited better performance,

but also showed less sensitivity to the scale compatibility

effect.

3.2 Study 2b — The effect of scale compati-

bility with a novel scenario

In Studies 1 and 2a we manipulated compatibility by

changing the format of the question while holding the for-

mat of data constant (frequency in Study 1 and probability

in Study 2a).

The aim of Study 2b was to integrate these two stud-

ies and test the scale compatibility hypothesis in one ex-

perimental design by manipulating both the data format

and the question format. Furthermore, to increase exter-

nal validity we created a novel scenario as a cover story

for the base rate task, and programmed this task as well

as the translation of the numeracy scale (Lipkus & Peters,

2009). This computerized setting enabled us to measure

Reaction Time (RT) in the base rate task and test another

facet of the compatibility hypothesis. Based on previous

findings indicating that simpler tasks are associated with

faster RTs (Ayal & Hochman, 2009; Payne, Bettman &

Johnson., 1993) we hypothesized that RTs would be faster

for compatible conditions than for incompatible ones re-

gardless of the specific data or question format.

3.2.1 Method

Participants. 166 undergraduate students (77 females,

89 males) enrolled at two universities in central Israel vol-

unteered to participate in this experiment for a show-up

fee of 20NIS ($5.60). Their age ranged from 18 to 51

(M=25.54, Sd=4.5). The participants were randomly as-

signed to four different versions of the computerized task.

Procedure. The study was programmed on visual basic

and was conducted in the computer lab of the two universi-

ties. The study employed a 2 (type of data: Frequency or a

Probability format) by 2 (type of question: Frequency or a
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Probability format) between-subject design, creating four

different conditions, each of which was made up of a dif-

ferent combination of data and question (i.e., FF, FP, PF,

PP). We used an original one-step scenario in this study

that we dubbed the fraud detection scenario. Participants

in all the four conditions read the following introduction

to this scenario:

A researcher at the Technion approached a well-

known insurance company and offered to in-

stall a device to detect policyholders who file

fraudulent claims. The device works by clas-

sifying the claims into two categories: 1. those

filed by honest claimants, 2. those filed by dis-

honest claimants. The device is not 100% ac-

curate. The researcher presented the insurance

company with data compiled during a longitudi-

nal study that examined the frequency of fraud-

ulent claims and the device’s ability to correctly

or incorrectly detect them as fraudulent.

Then, participants were presented with the data either

in frequency or probability format (see the first row of Ta-

ble 4). Note that participants were advised that the data

were never contradictory but some of the data could be

redundant or obsolete and therefore irrelevant to this as-

sessment.

After examining the data carefully, participants were

asked to click on the “Question” button, and answer this

question. Here again, the question was displayed either

in probability or frequency format (see the second row in

Table 4). It is important to note that the instructions en-

couraged all the participants to indicate their most accu-

rate assessment as quickly as they could and the software

measured their reaction time (RT) from the time they first

pressed the Question button to the time they finally sent

their answer and moved to the next question. In addition,

all participants completed the computerized version of the

8-item numeracy scale (Lipkus & Peters, 2009). At the

end of the session we thanked the participants and they re-

ceived a short debriefing about the general purposes of the

study.

3.2.2 Results and discussion

According to the normative Bayesian rule, the correct an-

swer for the fraud detection scenario is 50 out of 200 on

the frequency question or 25% on the probability ques-

tion. Correct answers were coded as 1 and wrong answers

were coded 0. We then compared the percentage of cor-

rect answers in the compatible conditions (FF and PP) to

the correct answers in the incompatible conditions (FP and

PF). In general, the accuracy level in Study 2b was much

lower than in Study 2a, but the main pattern of results

Figure 3: The percentage of correct answers as a function

of the compatibility between data and question.
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was replicated. In line with our scale-compatibility hy-

pothesis, there were more correct answers in the compat-

ible conditions (34.9%, 29 out of 83) than in the incom-

patible conditions (14.5%, 12 out of 83) and this differ-

ence was significant(χ2(1,n=166) = 9.361, p=0.001, one

tailed). Specifically (as can be seen in Figure 3), when

the data were presented in a frequency format, the per-

centage of correct answer was higher in the FF condition

(36.6%, 15 out of 41) than in the FP condition (19.5%, 8

out of 41), and this difference was significant (χ2(1,n=82)

= 2.961, p=0.043, one-tailed). Similarly, when the data

were presented in a probability format, the percentage of

correct answers was higher in the PP condition (33.3%, 14

out of 42) than in the PF condition (9.5%, 4 out of 42)

and this difference was significant(χ2(1,n=84) = 7.071,

p=0.004, one tailed). Importantly, a logistic regression

with data and questions as categorical independent vari-

ables and the correct answer as the dependent variable

confirmed the significant interaction between data and

question (B=0.606, wald=9.124, p=0.003) without signifi-

cant main effects for either the data or the question format.

The scale-compatibility hypothesis was further sup-

ported by the reaction time results (RT). The mean

RT in the compatible conditions (FF and PP, M=70.98,

SD=53.62) was significantly faster than the mean RT

in the incompatible conditions (FP and PF, M=95.21,

SD=74.35) (t = 2.408, p=0.0085 one-tailed). Specifically,

when the data were presented in a probability format, par-

ticipants in the PP condition (M=71.48, SD=55.80) were

faster than participants in the PF condition (M=90.03,

SD=74.72) but this difference was not quite significant (t

= 1.74, p=0.101 one-tailed). However, when the data were

presented in a frequency format, the RT of participants in
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Table 4: The two data and question formats presented in Study 3. Each participant was given one type of data and one

type of question.

Frequency format Probability format

Data presented 1. 75 out of every 1000 policyholders who

filed a claim filed a fraudulent one.

1. The probability that a policyholder who

filed a claim filed a fraudulent claim is 7.5%.

2. 200 out of every 1000 policyholders who

filed a claim were classified by the device as

being a “dishonest claimant”.

2. The probability that a policyholder who

filed a claim was classified by the device as a

“dishonest claimant” is 20%.

3. 50 out of every 75 policyholders who filed

a fraudulent claim were classified by the de-

vice as a “dishonest claimant”.

3. The probability that a policyholder who

filed a fraudulent claim was classified by the

device as a “dishonest claimant” is 66.7%.

4. 150 our of 200 policyholders who were

classified by the device as a “dishonest

claimant” filed a valid claim.

4. The probability that a policyholder who

was classified by the device as a “dishonest

claimant” filed a valid claim is 75%.

Questions presented In a new sample of 200 people who were ex-

amined by the device and classified as a “dis-

honest claimant”, how many do you think the

fraudulent claims? _____ (indicate a number

between 0-200)

In a new sample of 200 people, a claimant

was examined by the device and classified as

a “dishonest claimant”. What is the proba-

bility that he filed a fraudulent claim? _____

(indicate a percentage between 0% to 100%)

the FF condition (M=70.47, SD=51.98) was faster than the

RT of participants in the FP condition and this difference

was significant (M=100.52, SD=74.52 (t = 2.12, p=0.019

one-tailed). Importantly, a two way ANOVA with data

and question as the independent variables and RT as the

dependent variable revealed a significant interaction be-

tween data and question (F(1,162)=5.78, p=0.017) without

significant main effects for either the data or the question

format. That is, the RT results clearly showed that partici-

pants responded faster to compatible conditions than to in-

compatible ones. Nevertheless, the participants were also

more accurate in the compatible conditions that required

fewer data transformations.

Finally, we further examined the effect of numeracy

and specifically the prediction that numeracy can serve as

moderator for the scale-compatibility effect. The numer-

acy distribution of this sample was less skewed and more

similar to previous findings (compared to the numeracy

distribution of Study 2a). The Mean Numeracy Score was

5.1 with 47% of the participants scoring 5 correct answers

or below (range 0–8, α=0.62).

Comparing the participants who were high numerate (6

correct answers or more, n=81) with those who were low

numerate (5 correct answers or less, n=78) replicated the

main effect for numeracy obtained in Study 2a. Specifi-

cally, the percentage of correct answers was higher among

high numerate participants (33%) compared to low numer-

ate participants 15.4% (χ2 (1, n=166) = 6.86, p<.01).

Logistic regression with numeracy as the continuous

independent variable and compatibility as the categori-

cal independent variable and the percentage of correct an-

swers as the dependent variable revealed a significant main

effect for numeracy (B=0.545, Wald=5.209, p=0.022)

and a significant main effect for compatibility (B=0.603,

Wald=8.386, p=0.004) showing that both were valid pre-

dictors of correct response on the fraud detection sce-

nario. However, the interaction between numeracy and

compatibility (which was significant in Study 2a) was not

significant in the present study (B=0.120, Wald=0.253,

p=0.615).The drop in the correct answer rate between

the compatible and incompatible condition was significant

both for the high numerate participants(44.2% to 22.2%,

χ2 (1, n=88) = 4.801, p=0.014 one-tailed) as well as for

the low numerate participants(25% to 5.3%, χ2 (1, n=78)

= 5.381, p=0.008 one-tailed).4

To sum up, the overall results suggest that the accu-

racy level as well numeracy ability were much higher in

Study 2a than in Study 2b, but the main pattern of re-

sults was replicated. The two studies strongly support the

scale-compatibility hypothesis and show that compatibil-

ity between data and question affects the accuracy level

on Bayesian tasks over and above the specific format and

numeracy ability. The idea that numeracy can serve as

a moderator for this compatibility was supported only in

Study 2a but not in Study 2b (see also Chapman & Liu,

2009 and Hill & Brase, 2012 for a review about mixed re-

4The same pattern of results was observed as well when we split the

participants according to the median split in Study 2a.That is, when the

high numerate group only included participants who scored 7 or 8 on the

numeracy scale.
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sults regarding this interaction between numeracy ability

and numerical formats). Importantly, our results demon-

strate that as the task gets more difficult (task 2b vs. task

2a) even the accuracy level of high numerate participants

is hampered by scale incompatibility.

4 Study 3 — Scale compatibility and

sample-size compatibility.

Studies 1, 2a and 2b focused on the effects of mental steps

and scale compatibility between data and questions. The

findings from these studies show that frequency questions

have an advantage over probability questions when the

data are presented in frequencies (and only one mental

step is required to reach the correct solution), but this ad-

vantage of the frequency question format is reversed when

the data are presented in probabilities: in this latter case,

a probability question format yielded a higher percentage

of correct answers. However, according to the evolution-

ary point of view, it can be argued that probability data

formats are seldom represented in reality since real life

situations embody data collections (and representations)

of concrete event frequencies rather than probabilities that

cannot be observed. Therefore, computing the posterior

odds in terms of natural frequencies rather than in terms

of probabilities is more likely to result in well calibrated

estimates of these odds, and ultimately, in better decisions

(Brase, Cosmides, & Tooby, 1998; Cosmides & Tooby,

1996; Gigerenzer & Hoffrage, 1995).

The next study challenges this assumption and suggests

that, even when the data are presented only in a natural

frequencies format, the advantage of the frequency format

over a probability format is limited to certain conditions,

and can be eliminated and even reversed under different

ones. We have already shown one such condition — the

complexity of the task as measured by the number of steps

needed to solve it, where the advantage of natural frequen-

cies disappeared when the task was more difficult. An-

other possible moderator for the frequency effect is what

we termed “sample-size” compatibility. More specifically,

we differentiated between two sources of compatibility:

scale compatibility and sample size compatibility. Scale

compatibility was already discussed in the introduction to

the first two studies, and sample-size compatibility is the

compatibility between the basic sample size from which

the data are drawn and the target sample size to which the

answer should be applied.

Study 3 was designed to test how these two sources of

compatibility work in concert. First, we again manipu-

lated scale compatibility by presenting data in natural fre-

quencies, and only manipulated the questions to be either

in a frequency or a probability format. Second and most

importantly, in each of the question formats we manip-

ulated the sample-size compatibility. Half of the partic-

ipants answered the question based on the same sample

size that was originally described in the data (i.e., the com-

patible sample-size condition), whereas the other half of

the participants answered the question based on a much

smaller sample size (i.e., incompatible sample-size con-

dition). In the frequency format questions, we expected

to observe higher performance in the compatible sample

size condition compared to the incompatible sample-size

condition. In the probability format questions, however,

no difference was expected between these two conditions

because probabilities can be transferred, independently of

the sample-size.

4.1 Method

4.1.1 Participants

92 undergraduate students (76 females, 16 males) at a uni-

versity in central Israel served as participants in the exper-

iment. Their ages ranged from 18 to 28 (M=22, Sd=1.84).

4.1.2 Procedure

All participants were given the same “mammography

problem”, frequency data and instructions from the one-

step questionnaire in Study 1 (which had a sample size

of 100.). The study employed a 2 (type of question: fre-

quency or probability) by 2 (compatible or incompati-

ble sample-size) between-subject design. Therefore there

were 4 groups of participants, each receiving a different

questionnaire.

The manipulated variables between the four groups

were the format of the questions (frequency vs. probabil-

ity) and the size of the target sample (n=100 in the com-

patible condition and n=25 in the incompatible condition)

on which the conclusion was to be drawn. Participants in

the two frequency conditions (F100 and F25) were given

the following question:

Based on the data presented, write down your

best estimate regarding the following question:

In a new sample of [100, 25] women who tested

positive in the mammography test, what is the

number of women expected to actually have

breast cancer?

The two probability conditions (P25 and P100) were

given the following question:

Based on the data presented, write down your

best estimate regarding the following question:

In a new sample of [100, 25] women who tested

positive in the mammography test, choose one

woman at random. What is the probability that
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Figure 4: The percentage of correct answers when data are

presented in frequencies.
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she actually has breast cancer? (Give a percent

between 0% and 100%).

4.2 Results and discussion

According to the normative Bayesian rule, the two fre-

quency question conditions differ in the correct answer:

8 out of 100 in the F100 condition and 2 out of 25 in F25

condition. However, in both probability conditions (P25

and P100), 8% is the correct answer.

The results support our hypothesis for sample-size com-

patibility. As shown in the left part of Figure 4, the fre-

quency question elicited a marked difference in percent of

correct answers between the two sample conditions. In the

F100 condition, where the two sample sizes were compat-

ible, 60.9% (14 out of 23 participants) answered correctly.

On the other hand, in the F25 condition, where the target

sample size was not compatible with the basic sample size,

only 35% (7 out of 20 participants) of the answers were

correct. A one-tailed chi-square test revealed that the dif-

ference between these two frequency conditions was sig-

nificant (χ2(1,n=43) = 2.865, p=0.0455 one-tailed).

As predicted, a different pattern was obtained in the

probability question. As shown in the right part of Fig-

ure 4, the percentage of correct answers on the probabil-

ity question condition was 50% in P100 (11 out of 22)

and 55.6% in P25 (15 out of 27 participants). However,

the difference between the two probability conditions was

not significant on the chi-square test (χ2(1,n=49) = 0.150,

p=0.349 one-tailed).

It is noteworthy that the predicted advantage of the fre-

quency question over the probability question (according

to scale compatibility) was found only when the sample

sizes were compatible (60.9% in F100 and 50% in P100) but

this difference was not significant (p=0.232 one tailed).

However, when the sample sizes were incompatible the

probability question yielded better performance (35% in

F25 versus 55.6% in P25) and this difference was almost

significant (χ2(1,n=47) = 1.95, p=0.082 one-tailed).

Overall, these results support previous findings reported

in Girotto and Gonzalez (2001), showing that the effect

of scale compatibility (in particular the advantage of fre-

quency questions over probability questions when the data

are presented in frequencies) can be overridden by sample-

size compatibility. In fact, when performance in the com-

patible sample size conditions serves as a baseline, assign-

ment to the incompatible sample-size problem impaired

the performance of participants in the frequency question

condition. However, it did not impair the performance of

participants in the probability question condition. In this

sense, the probability format may embody a strong adap-

tive advantage over the frequency format since the nor-

malized values between 0 and 1 can be easily transformed

from sample to sample without further calculations.

5 General discussion

The current research suggests that normative reasoning

in Bayesian-like-problems can be predicted by task com-

plexity as measured by two factors: the number of men-

tal steps required to reach the normative solution (more

mental steps lead to more errors) and compatibility be-

tween data and questions and between the sizes of the

reference and target samples (more compatible leads to

fewer biases). Four studies supported our theoretical pre-

dictions and demonstrate the main effects of these two

factors. Specifically, Study 1 confirmed the mental-step

hypothesis, showing that the number of correct answers

on a base rate task went down as the number of mental

steps required to reach the normative solution increased.

This study also lends support to the hypothesis regarding

the advantage of full frequency formats for easy tasks (the

one step condition). However, this finding might also be

explained by the compatibility hypothesis by showing that

when the data are presented in a natural frequency format,

a frequency question yields more correct answers than a

probability question.

Studies 2a and 2b further explored this scale compat-

ibility hypothesis, and showed that the compatibility fa-

cilitating effect is not exclusive to the frequency format.

When the data were presented in a probability format, a

probability question facilitated more correct answers than

a frequency question. This scale compatibility effect was

found over and above numeracy ability and also reflected

in faster reaction times for compatible conditions com-

pared to incompatible ones.
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Finally, Study 3 discovered another source of compat-

ibility; namely, the match between the reference sample

size from which the data are drawn and the target sample

size to which the answer should be applied. Our results

clearly demonstrate that, when these two sample sizes are

not compatible, probability questions yield more correct

answers than frequency questions even when the data are

presented in a natural frequency format.

The identification of mental steps and compatibility as

two factors affecting performance in base rate tasks sug-

gests that an integrative model may provide a way to rec-

oncile seemingly conflicting results in the literature and

across our four studies (Girotto & Gonzalez, 2001). The

natural frequency effect according to which frequency for-

mat leads to fewer cognitive biases (Brase, Cosmides, &

Tooby, 1998; Cosmides & Tooby, 1996; Gigerenzer &

Hoffrage, 1995, 2007; Hoffrage et al., 2002) was repli-

cated in the one-step condition in Study 1. Although the

emergence of this effect in this particular setting can be

attributed to compatibility between the data and the ques-

tion, it can be argued that people basically experience data

by natural sampling in response to the frequentistic nature

of objects, events and locations (Cosmides & Tooby, 1996;

Gigerenzer & Hoffrage, 1995, 2007). Thus, in many so-

cial situations the frequency questions are more compati-

ble with the data presented than the probability questions.

In these situations computing the posterior odds in terms

of natural frequencies rather than in terms of probabili-

ties is more likely to result in well-calibrated estimates of

these odds. However, our study also indicates that the ad-

vantage of the frequency format over probability is lim-

ited to the one-step condition, and is diminished in more

complicated tasks (see also Evans et al., 2000; Girotto &

Gonzalez, 2001, 2002; Lewis & Keren, 1999; Sloman et

al., 2003).

Furthermore, Studies 2a, 2b and 3 capture situations in

which the advantage of frequency questions over proba-

bility was even reversed such that probability questions

yielded better performance. These situations were ob-

served first in Studies 2a and 2b when the data were pre-

sented in a probability format and consequently the prob-

ability question became more compatible than the fre-

quency question. Strikingly, the higher success of thinking

in probability terms was pronounced in Study 3 when the

data were presented in natural frequency format, but there

was no compatibility between the reference and the tar-

get sample sizes. These results supports previous findings

in Girotto and Gonzalez (2001) about incompatible situa-

tions, and demonstrate that thinking in probability terms

has an inherent advantage over frequency terms, since

only probabilities can be transferred from one sample size

to another without additional calculations.

Finally, the current findings revealed a relatively high

rate of correct performance in the compatible and one step

conditions across studies 1, 2a and 3 (more than 50% of

the participants). This performance is impressive even if

we take into account the statistical background of the par-

ticipants, all of whom had taken at least one introductory

course in statistics. Still, in all studies this performance

declined dramatically whenever more mental steps were

required to reach the normative solution or when there was

incompatibility between the scales or the samples. It may

not be farfetched to assume that these incompatible situa-

tions indeed characterize many situations in modern life in

which information can be acquired through statistical data

in different formats. The key question that arises here is

what kind of cognitive tools people need to improve their

Bayesian reasoning and be able to solve more complicated

problems in their everyday environments.

The mixed findings on numeracy ability and compati-

bility revealed one possible response to this problem. In

Study 2a, high numerate participants exhibited better rea-

soning in Bayesian-like problems, but also showed less

sensitivity to the effect of scale compatibility. (For simi-

lar results on different cognitive tasks, see Lipkus & Pe-

ters, 2009, and Peters et al., 2007.) In Study 2b, there was

indeed a main effect for numeracy, but even the accuracy

level of high numerate participants was hampered by scale

incompatibility (Garcia-Retamero& Hoffrage, in press).

These results imply that when the task is difficult to

solve the situational factors such as the compatibility be-

tween the data and the question affect performance over

and above individual differences. Nevertheless, when the

task is more solvable it can be argued that more general

and flexible numerical ability to translate one scale to an-

other or to transfer information from one sample size to

another sample size is more ecologically adaptive than de-

veloping expertise in one specific format. From an adap-

tive point of view, even if frequency were a more natu-

ral and primary mode of thinking that can simplify the

understanding of a problem, as suggested by the natural

frequency approach, the encoding of frequency inputs in

absolute numbers seems cognitively inefficient and might

lead to many biases that simply stem from focusing on

concrete numbers (e.g., Anderson, 1983; Pacini & Ep-

stein, 1999). Instead, ecological and adaptive Bayesian

reasoning requires developing the numerical ability to

translate these frequencies into probabilities (or relative

frequencies) that can be easily transferred to different

questions, samples and times.
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Appendix — Numeracy scale

The 8 items in the Numeracy Scale developed by Lip-

kus and Peters (2009) [Numbers in parentheses present the

percentage of correct answers for each item].

The following questions aim to see how different people

assess quantities.

Please answer the following 8 questions as quickly as

you can and to the best of your ability. You do not need

and may not use a calculator for any of these questions.

1. Imagine that we roll a fair, six-sided die 1,000 times.

(That would mean that we roll one die from a pair

of dice.) Out of 1,000 rolls, how many times do you

think the die would come up as an even number?

Answer: _____________ times [88.5%]

2. In the BIG BUCKS LOTTERY, the chances of win-

ning a $10.00 prize are 1%. What is your best guess

about how many people would win a $10.00 prize

if 1,000 people each buy a single ticket from BIG

BUCKS?

Answer: _____________ people [90%]

3. In the ACME PUBLISHING SWEEPSTAKES, the

chance of winning a car is 1 in 1,000. What percent

of tickets in ACME PUBLISHING SWEEPSTAKES

win a car?

Answer: ________ % [80.8%]

4. If the chance of getting a disease is 10%, out of 1000

people, how many people would be expected to get

the disease:

Answer: _______ people [89.2%]

5. If the chance of getting a disease is 20 out of 100, this

would be the same as having

Answer: a ___ % chance of getting the disease.

[92.3%]

6. Suppose you have a close friend who has a lump in

her breast and must have a mammogram. Of 100

women like her, 10 of them actually have a malignant

tumor and 90 of them do not. Of the 10 women who

actually have a tumor, the mammogram indicates cor-

rectly that 9 of them have a tumor and indicates in-

correctly that 1 of them does not have a tumor. Of

the 90 women who do not have a tumor, the mammo-

gram indicates correctly that 81 of them do not have

a tumor and indicates incorrectly that 9 of them do

have a tumor. The table below summarizes all of this

information. Imagine that your friend tests positive

(as if she had a tumor), what is the likelihood that she

actually has a tumor?
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Tested

positive

Tested

negative
Totals

Actually has a tumor 9 1 10

Does not have a tumor 9 81 90

Totals 18 82 100

Answer: _______out of ________ [57.7%]

7. A bat and a ball cost $1.10 in total. The bat costs

$1.00 more than the ball. How much does the ball

cost?

Answer: ______ cents [49.2%]

8. In a lake, there is a patch of lily pads. Every day, the

patch doubles in size. If it takes 48 days for the patch

to cover the entire lake, how long would it take for

the patch to cover half of the lake?

Answer: _____ days [69.2%]

Thank You!!!
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