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1. Introduction. S(X) is the semigroup of all continuous self maps of the topological
space X and for any semigroup 5, Cong(S) will denote the complete lattice of
congruences on 5. Cong(S) has a zero Z and a unit U. Specifically, Z = {(a, a) :a e S} and
U = S x S. Evidently, Z and U are distinct if 5 has at least two elements. By a proper
congruence on S we mean any congruence which differs from each of these. Since S(X)
has more than one element when X is nondegenerate, we will assume without further
mention that the spaces we discuss in this paper have more than one point. We observed
in [4] that there are a number of topological spaces X such that S(X) has a largest proper
congruence, that is, Cong(Spf)) has a unique dual atom which is greater than every other
proper congruence on S(X). On the other hand, we also found out in [5] that it is also
common for S(X) to fail to have a largest proper congruence. We will see that the
situation is quite different at the other end of the spectrum in that it is rather rare for
S(X) not to have a smallest proper congruence. In other words, for most spaces X,
Cong(S(X)) has a unique atom which is smaller than every other proper congruence.

In Section 2, we study a rather general class of transformation semigroups which
includes all S(X). We show that the problem of getting information about the atoms in
the complete lattice of congruences on one of these semigroups can be reduced to
examining a certain lattice of equivalence relations on X. It turns out that there is a
natural correspondence between the atoms of the two lattices and we use this fact to get a
necessary and sufficient condition for any semigroup within this class to have a smallest
proper congruence. The results of Section 2 are then applied in Section 3 to the
semigroups of topological spaces and we are able to show, for example, that if X is either
totally separated or is completely regular, Hausdorff and contains an arc then S(X) has a
smallest proper congruence. We show further that the semigroup of every finite space has
a smallest proper congruence. All this indicates that semigroups of continuous selfmaps
which do not have smallest proper congruences are the exception rather than the rule.
However, there are examples and they are provided by what have come to be the
standard counter-examples in this business, namely, de Groot's spaces. The nature of the
smallest proper congruence is related to the connectedness of X and this is explored in
Section 4. If a semigroup 5 has a nontrivial kernel K (i.e., smallest two-sided ideal) then
the Rees factor congruence n{K), obtained by identifying all elements in K to a point, is
a congruence on 5. Now n(K) can turn out to be the smallest proper congruence on S.
We show that if X is completely regular and Hausdorff and contains an arc, then JI(K(X))
is the smallest proper congruence on S(X) if and only if X is pathwise connected where
K(X) is the kernel of S(X). We then produce another class of spaces with the property
that for any such space X, the two conditions just mentioned are also equivalent to the
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condition that S(X) have no prime ideals and these, in turn, are all equivalent to the
condition that S(X) have a largest proper congruence.

2. Some general results. Throughout the remainder of the paper, the symbol (x)
will be used to denote the constant function which maps all of X into the point x. Let X
be a set and let T(X) be any subsemigroup of the semigroup of all functions mapping X
into X which contains the identity map and all constant maps.

DEFINITION (2.1). An equivalence relation p on X will be called a T-equivalence if
(/(•*)> f{y)) e P f°r a 'l (x> y)e P a nd / 6 T{X). The collection of all T-equivalences on X
will be denoted by Teq(X).

DEFINITION (2.2). For each R e Cong(T(X)), we let

y(R) = {(x,y)eXxX:((x), (y))eR}.

The next result is an immediate consequence of the fact that (/(*)) = / ° (*)•

LEMMA (2.3). y(R) is a T-equivalence on X for each R e Cong(T(X)).

Since arbitrary intersections of 7-equivalences are ^-equivalences, we also have

LEMMA (2.4). Teq(X) is a complete lattice.

For any set Y we will denote the diagonal of Y x Y by A(F). That is, A(Y) =
{{y,y):yeY}.

DEFINITION (2.5). For each p e Teq(X), we let

C(p) = {«x),(y)):(x,y)ep}UA(T(X)).

LEMMA (2.6). C{p) is a congruence on T(X) for each p e Teq(X).

Proof. It is evident that C(p) is an equivalence relation. Moreover, composition is
compatible on the right because constant functions are left zeros and compatible on the
left since p is a 7-equivalence.

Now we consider the two functions C and y which map Teq(X) into Cong(7(A')) and
Cong(T(A')) into Teq(X) respectively. The next observation is an immediate conse-
quence of the definitions.

LEMMA (2.7). C and y are both monotone functions and y°C is the identity map on
Ttq(X).

LEMMA (2.8). Let p e Teq(X) and R e Cong(7(A')). Then p c y(R) if and only if

Proof. Suppose p^y(R) and take ((x), (y))e C{p). Then (x,y)ep. Thus,
(x, y) e y(R) which means ((x), (y)) e R. On the other hand, suppose C{p) c R and take
any (x,y)ep. Then ({x), (y))eC(p) and hence ((x), (y))eR. Evidently, (x, y) e
Y(R).
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(By this lemma, (y, C) is a covariant Galois connection between Cong(T(A')) and
pf).)
For each pair of distinct points x, y eX, define

n(x, y) = {(/«, f(y)) -f e T(X)} U {(/(y), / « ) -f e T(X)}

and let r]e(x, y) be the smallest equivalence relation on X containing rj(x, y).

LEMMA (2.9). rje(x, y) is a T-equivalence on X.

Proof. Let (a, b) e rje(x, y). Since r]e(x, y) is the transitive closure of t](x, y), there
exists a sequence of points {c/}^ such that (a, ct) e r](x, y), (cN, b) e rj(x, y) and
(Cj,cj+l)eT](x, y) for 1 < / < N - 1 . Then there exist N + l functions {fi}"^1 in T(X)
such that fi maps {x, y} onto {a, c,}, /N+1 maps {JC, y} onto {cN, b) and ̂  maps {JC, y}
onto {c^j, c,} for 2<j<N. Then for any g e T(X), g°/i maps {*, y} onto {g(a), g ^ ) } ,
g % + 1 maps {x,y} onto {g(cN), g(6)} and g°fj maps {x,y} onto { g ^ O , g(cy)} for
2 :£y ^ N. It follows that (g(a), g(^)) e r/e(x, y) which means rje(x, y) is a T-equivalence.

LEMMA (2.10). Let A be an atom of Cong(T(A')), let (f g) eA and suppose f^g.
Then both f and g are constant functions.

Proof. Since f=£g, there exists an aeX such that f(a)¥=g(a). Let x=f(a) and
y = g(a). Then i]e(x, y) =£ A(X) and so C(rje(x, y)) =£ A(r(Z)). But it readily follows that
C(r]e(x, y)) c /1 and since yl is an atom, we must have C(?je(jc, y)) = A. It is now evident
from Definition (2.5) that/and g must be constant functions.

We observed in Lemma (2.7) that y°C is the identity map on Te.q(X). It follows
immediately from this that C must be injective on Teq(X) and y must be surjective from
Cong(T(X)) onto Teq(A'). As one would expect, however, C is far from being surjective
and y is far from being injective. But if we restrict these maps to the atoms of the two
lattices, the situation is quite different. Denote by ACong{T{X)) the collection of atoms
of CongCT(A')) and, similarly, denote by ATeq(X) the collection of atoms of

THEOREM (2.11). y maps ACong(T(X)) into ATeq(X) and C maps ATeq(X) into
/4Cong(T(Ar)). Moreover, y°C is the identity map on ATeq(X) and C°y is the identity
map on ^Teq(A') so that y actually maps ACong(T(X)) bijectively onto ATeq(X) and,
similarly, C maps ^ITeq^) bijectively onto ACong(T(X)).

Proof. Let A eACong(T(X)) and suppose p c y(A) where peTeq(X). Then
C(p)cA by Lemma (2.8) and we have either C(p) = A(T(X)) or C(p) = A. In the
former case, p = A(X) while in the latter, p = y(C(p)) - y(A) by Lemma (2.7). Thus,
y(A) is an atom.

Now let aeATeq(X) and suppose that R c C(a) where R e Cong(T(X)). Then
y(R) c a- in view of Lemma (2.7) which means that either y(R) = A(X) or y(R) = a. In
the former case, it follows easily that R = A(T(X)). On the other hand, if y(R) = a, it
follows from Lemma (2.8) that C(a) c R and thus C{a) = R. Hence, C{a) is an atom.
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We have already observed that y ° C is the identity on all of Teq(X) so it is certainly
the identity on ATeq(X). It only remains for us to show that O y is the identity on
ACong(T(X)). We first verify that

y is injective on ACong(T(X)). (2.11.1)

Let A, B e ACong(T(X)) and suppose y(A) = y(B). Let (/, g)eA and we may assume
t h a t / ^ g . Thenf=(x) andg = (y) for distinct points x,y eX by Lemma (2.10). Thus,
(x, v) e y{A) which means (x, v) e y(B). But this implies (/, g) = ((x), (y))eB and we
have shown that Ac f l . Since B is an atom, A = B and (2.11.1) has been verified. Now
we know that for any A eACong(T(X)), C°y(A) eACong(T(X)). Let C°y(A) = B.
Since y°C is the identity on ATeq(X), it follows that y(A) = y(B) and hence A = B by
(2.11.1).

LEMMA (2.12). Let R e Cong(T(X)). Then R = A(T(X)) if and only if y(R) = A(X).

Proof. It is immediate that if y(R)*A(X), then Ri=A(T(X)). Suppose R*
A.(T(X)). Then (/, g) e R for two distinct functions / and g and we have f(x) ¥=g(x) for
some x eX. Then

which means (/(*), g(*))e 7W- T hus, y(7?) ̂  A(X).

DEFINITION (2.13). We will say that a lattice is weakly atomic if every nonzero
element has an atom below it.

THEOREM (2.14). Cong(T(X)) is weakly atomic if and only if Teq(X) is weakly
atomic.

Proof. Suppose Teq(X) is weakly atomic and let R e Cong(T(X)), where R =£
A(T(X)). By Lemma (2.12) we have y(R)^ A(X) and so there is an atom ae Teq(X)
such that acy(R). Then C(ar)gi? by Lemma (2.8) and C{a) is an atom by Theorem
(2.11). Now suppose Cong(T{X)) is weakly atomic and let p e Teq(X) where p =£ A(X).
Then C(p)±C(A(X)) = A(T(X)) since C is injective. Thus, AcC(p) for some atom
A e Cong(T(X)) and it follows that y(A) c y(C(p)) = p from Lemma (2.7). Moreover, it
follows from Theorem (2.11) that y(A) is an atom of Teq(X).

If a weakly atomic lattice has exactly one atom, then it must lie below every other
nonzero element. Our next result is therefore an immediate consequence of Theorems
(2.11) and (2.14).

COROLLARY (2.15). T{X) has a smallest proper congruence if and only if X has a
smallest proper T-equivalence. Furthermore, if A is the smallest proper congruence on
T(X) then y(A) is the smallest proper T-equivalence on X. Similarly, if a is the smallest
proper T-equivalence on X, then C(a) is the smallest proper congruence on T{X).

As one might expect, if Teq(X) does have an atom, then it must be of the form
Veixy y)- As one might also expect, not all T-equivalence of that form are atoms. In our
next result, we characterize the atoms of Teq(X).
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THEOREM (2.16). A e Teq(X) is an atom if and only if it satisfies the following two
conditions. . / •> /• .. . v ,*, *, -,\

A = Ve(x, y) for distinct x, y e X. (2.16.1)
If {a, b) e t]e(x, y) and a^b, then there exists a sequence of points {Zj}fLi in
X and a sequence of functions {fj}f=\X from T(X) such that f {a, b} = {x, zx),
fN+l{a, b} = {zN, y} andfj{a, b) = {zy_,, Zj}for2^j^N. (2.16.2)

Proof. Suppose (2.16.1) and (2.16.2) are satisfied and let B c. rje(x, y) where
B=f=A(X). Then (a,b)eB where a¥=b and it follows that y\e{a, b) c B c »je(jt, y).
Moreover, since (a, b) e r\e(x, v), it follows from (2.16.2) that (x, y) e rje(a, b) and this
implies r)e(x, y) c r\e(a, b). Consequently, B = r\e(x, y) and we see that r\e{x, v) is an
atom.

Suppose, conversely, that A is an atom of Teq(X). Then (x,y)eA where x±y.
Since r\e{x, y)c.A, we must in fact, have r]e(x, y) =A. Now let (a, b) e rje(x, y) where
a ¥^b. Then r)e(a, b) c r)e(x, v) and again we must have t]e{a, b) = t]e{x, y). Then
(x, v) e r)e(a, b) and since r)e{a, b) is the transitive closure of t]{a, b), condition (2.16.2) is
satisfied.

EXAMPLE (2.17.1). Let R denote the space of real numbers and let T(R) be the
semigroup consisting of all constant functions together with all increasing homeomorph-
isms h from R onto R which fix 0. In this case Teq(R) has exactly two atoms and they are
»je(l, 2) and Jje(-1, -2) . Note that

77(1, 2) = {(x, v):x > 0 and y > 0}

so that 7je(l, 2) = TJ(1, 2) U A(R). It is immediate that (2.16.2) is satisfied so that r?e(l, 2)
is an atom. It follows in the same manner that r/e(—1, —2) is an atom as well. To see that
there are no other atoms, consider rje(x, y) which is distinct from both r]e{\, 2) and
rye(—1, -2) . There are essentially two possibilities: (1) x = 0 and y ¥=0 and (2) x < 0 < v.
Suppose (1) holds and y > 0 . Then (1,2) e JJC(JC, v) but no sequences of points and
functions satisfying (2.16.2) exist since all nonconstant functions of T(R) fix 0. The same
is true if y <0 . If (2) holds, then (1, 2) e t]e{x, v) but (2.16.2) cannot be satisfied in this
case either.

EXAMPLE (2.17.2). Let R denote the space of positive real numbers, let /(JC) = * 3 and
this time let T(R) denote the subsemigroup of S(R) which is generated by/together with
the identity map and all the constant functions. In this example, Teq(R) contains no
atoms whatsoever. Consider any rje(x,y). We may suppose that x<y. Then (x3, y3) e
T]e(x, y) but there exist no sequences of points and functions satisfying (2.16.2).

In view of Corollary (2.15) the problem of determining whether or not T(X) has a
smallest proper congruence and when it does, determining just what that congruence is,
has been reduced to the problem of determining when X has a smallest proper
T-equivalence and then determining the nature of that equivalence. We now have
everything we need to solve the latter problem. For a given semigroup T(X), let

o = P i {i)e(x, y):x,yeX and x
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Evidently, a depends upon the semigroup T(X) and so might be more properly denoted
by o(T(X)). Nevertheless, it will always be apparent just what semigroup is under
consideration so we will use the simpler notation o. Moreover the symbol a will be used
exclusively to denote the T-equivalence we have just defined.

THEOREM (2.18). X has a smallest proper T-equivalence if and only if o
Moreover, when X does have a smallest proper T-equivalence, that equivalence is a.

Proof. Suppose X has a smallest proper T-equivalence a. Then according to
Theorem (2.16), a = r]e{a, b) for distinct points a and b and we have oca. On the other
hand, a c.r)e{x,y) for all distinct x and y so that we also have a c o. Thus,
o=a* A(X).

Suppose, conversely that o ^ A(X) and suppose also that p =£ A(X). Then (a, b) e p
where a ±b and so y)e(a, b) c p. Thus, acp and o is the smallest proper T-equivalence
o n l .

We next introduce another equivalence relation on X which, for many semigroups of
the form T{X), coincides with the T-equivalence a. Let

li = {(x, y) e X x X: for each pair of distinct points a,beX,
some / e T(X) maps {a, b) onto {x, y}}

and let pe denote the smallest equivalence relation on X containing pL.

THEOREM (2.19). Either \ie = A(X) or pie = o.

Proof. It is sufficient to show that ne c r]e(x, y) for distinct x and y. Let (a, b)e \ie.
Since \ie is the transitive closure of \i, there exists a sequence of points {cy}jlx and a
sequence of functions {fi}^1 from T{X) such that/i{jc, y} = {a, c,}, fN+1{x, y} = {cN, b)
and^l*, y} = {cHU c,} for 2<y <N. Thus, both (a, ct) and (cN, b) belong to r\{x, y) and
the same is true of (cy_!, c,) for 2 ̂ j ^ N. It follows that (a, b) e r\{x, y).

COROLLARY (2.20). Suppose there exists a pair of distinct points a, b eX such that for
each pair of distinct points x, y e X, some f e T(X) maps {x, y} onto {a, b}. Then X has a
smallest proper T-equivalence.

Proof. \ie ^ A(X) since (a, b) e \ie.

In order that T(X) have a smallest proper congruence, it is necessary and sufficient
that a ^ A(X). The relation \ie seems to be more convenient to deal with than the relation
o and, in fact, most of the time we show that a semigroup has a smallest proper
congruence, we are able to do it by showing that (ie ¥= A(X). In other words, in most of
our applications, ne coincides with a. Nevertheless there are semigroups T(X) with the
property that \ie =£ a. We discuss such a semigroup in what follows.

EXAMPLE (2.21). Let R denote the space of real numbers with the usual topology, let
R~ denote the subspace of non-positive reals and let R+ denote the subspace of
non-negative reals. Let T(R) consist of all continuous functions which map R~
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homeomorphically onto R+ and also R+ homeomorphically onto R+ together with all the
constant functions and the identity map. We show first that \ie = A(R). Note that
(0, x) $ fi for x # 0 since for any {a, b) such that a=£0=tb, no / e T(R) can map {a, b}
onto {0, x}. Specifically, no map in T(R) other than (0) sends a nonzero element into
zero. On the other hand, if x ¥=y and x =t 0 =£y, then (x, y) $ fi since we can take a pair
{0, a} with a =£0 and there is no / e T(R) such that / maps {0, a} onto {x, y}. This is
because /(0) = 0 for each nonconstant function / € T(R). Thus, n = A(R) which means

However, o =£ A{R). Let a, b>0. We will show that (a, b) e r]e(x, y) for all distinct
x, y e R. This follows easily if x ^0¥=y for in that case, one shows in a routine manner
that (a, b) e r\e(x, y). Consider the case where one of the points, say x, is equal to 0. Then
we must show that (a, b) e r]e(0, y). Evidently, there exists a n / e T(R) such tha t / (y ) = a
and, of course, we must have / (0) = 0. Similarly, there exists a g e T(R) such that
g(y) = b and g(0) = 0. Thus, (0, a), (0, b) e rj(O, y) and hence (a, b) e t}e(0, y). This
proves that o=£ A(R) and, in fact, it is easy to see that

o = {{a, b) e R x R : a > 0 and b > 0} U A(R).

Thus, A' does have a smallest proper T-equivalence o but it is not (ie.

3. The smallest proper congruence on S(X). In this section (actually throughout
the remainder of the paper), X will be a topological space and the semigroup under
consideration will be S(X) the semigroup of all continuous selfmaps of X. In order to be
consistent with our notation we will, from this point on, use the term S-equivalence in
place of the term T-equivalence which we used throughout the previous section and the
complete lattice of 5-equivalences on X will be denoted by Seq(X). We will see that it is
really quite rare for S(X) not to have a smallest proper congruence. We will describe this
congruence in various instances by first determining the smallest proper 5-equivalence a
on X, which, in all the cases we consider here, coincides with \ie and then appealing to
Corollary (2.15), which tells us that the smallest proper congruence on S(X) is
C(o) = {(<*), (y)) e X x X:(x, y) e a} U A(5(JQ). We begin our considerations by de-
fining a relation ¥ o n J which differs from A(X) for spaces which are not To. Let

<S= {{x, y)eXxX:x and y belong to precisely the same open subsets of X}.

$ is evidently an equivalence relation on X and regarding it we have the following.

THEOREM (3.1). Suppose X is not To. Then <& is the smallest proper S-equivalence on
X. Consequently, C(^) is the smallest proper congruence on S{X), where

C(<S) = {((x), (y)):(x,y)e«J}UA(S(X)).

Proof. We show that <& = fie. Suppose (x, y)e(S and let a and b be distinct points of
X. Define f(a) =x and f(z) =y for z #a . Let G be any open subset of X. Since x and y
belong to precisely the same open sets, either x, y e G or x, y $ G. In the former case,
f~l[G] = X while in the latter, /~1[G] = 0 . Thus, / is continuous and (x, y) e n c fxe,
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which implies S c / j , . Since X is not 7 ,̂ it contains two distinct points a and b which
belong to precisely the same open sets so that <§=?tA(Ar). Let (x,y)efi. Then some
/ e S(X) maps {a, b} onto {x, y}. It follows that x and y must belong to the same open
sets also and thus (x, y) e <S. Since *S is an equivalence relation, it follows that fie c

 C3. We
have now shown that fie = <§=£ A (AT) so it follows from Theorem (2.19) that o = ne

 = c£
and the remaining assertions now follow from Corollary (2.15).

DEFINITION (3.2). A topological space is said to be Aleksandrov discrete if it is To and
arbitrary intersections of open sets are open.

P. S. Aleksandrov has reserved the term discrete for what we here call Aleksandrov
discrete spaces [1, p. 28]. Such spaces arise naturally in the study of partially ordered sets
and isotone maps. See also [6]. When we use the term discrete, however, we will mean it
in the sense that has come to be more commonly accepted. That is, all subsets are open.

For an Aleksandrov discrete space X and a point x eX, we denote by Gx the
intersection of all open sets containing x. Define a relation si on X by

si = {(x, v) e X x X: Gx n Gy *= 0}

and let s$e be the smallest equivalence relation on X containing si.

THEOREM (3.3). Let X be an Aleksandrov discrete space. Then X has a smallest
proper S-equivalence a. If X is discrete then o = X xX and if X is not discrete then
a = sie. Consequently, S(X) has a smallest proper congruence C{o), where

C(o) = {((x),(y)):(x,y)eXxX}UA(S(X))

if X is discrete and
C(o) = {«x),(y)):(x,y)es4e}UA(S(X))

if X is not discrete.

Proof. If X is discrete, there are only two 5-equivalences on X, A(X) and XxX, so
it is evident that o = X x X in this case. We consider the case where X is not discrete and
we show that \ie = s$e which, of course, means o = s$e. Let (x, y) e (i. Since X is not
discrete, some Ga contains a point b^a and therefore, Gb c Ga. Let /be any function in
S(X) which maps {a, b} onto {x, y}. Then

Gb ̂ r'iGA nf-'iGy] =f~x[Gx n Gy\,

which means GxC\Gy± 0 . Thus (x, y)esi and it follows that \ie <=, sie.
Now suppose that (x, y) e si and let a and b be any two distinct points of X. Then

there is a z e Gx D Gy and hence Gz c Gx D Gy. Moreover, Ga ¥* Gb since X is To. It may
be that Ga £ Gb and Gb £ Ga or that one of the sets is contained in the other. If the latter
is the case, we may assume that Gac,Gb. Now define

f(w) = z if Gw^Ga
and

f{w)=x if Gw<j:Ga.
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Sets of the form Gv, v e X form a basis so it is sufficient to consider these in checking
continuity. If x e Gv then z, x eGxc.Gv and f~l[Gv] = X. It remains to consider the case
where z eGv and x $ Gv. In this case,

so that / is continuous. Furthermore, / maps {a, b) onto {z, x), which means (z, x) e fi.
Similarly, (z, y) e (i and thus (x, y) e ne. This implies that Me c (ie and hence o = \ie = s£e

when A' is a nondiscrete Aleksandrov discrete space. Again, the remaining assertions
follow from Corollary (2.15).

COROLLARY (3.4). The semigroup of every finite space has a smallest proper
congruence.

Proof. Let X be a finite space. If it is not To, the conclusion follows from Theorem
(3.1). If it is To, it is an Aleksandrov discrete space and the conclusion follows from
Theorem (3.3).

REMARK. Recall that the Sierpinski space is the two element space {a, b) where the
open sets are 0 , {a} and {a, b}. Let X be any infinite discrete space and let Y be the
discrete union of X with the Sierpinski space. Both X and Y are Aleksandrov discrete
spaces and topologically, they appear to be quite similar. Specifically, Y is just about as
close to being discrete as it could be. Nevertheless the smallest proper 5-equivalences in
the two cases differ radically. According to Theorem (3.3), the smallest proper
5-equivalence on X is X x X while the smallest proper 5-equivalence on Y is {(a, b),
(b,a)}UA(Y).

The next equivalence relation we introduce will be quite familiar. For any topological
space X, let

&> = {(x, y) e X x X; there is a path in X from x to y).

We recall that a space X is said to be totally separated if for distinct points x,y eX,
there exists a clopen set H with x e H and y £ H.

THEOREM (3.5). Suppose X is either totally separated or is completely regular,
Hausdorff and contains an arc. Then X has a smallest proper S-equivalence a. In the
former case, a = X X X while in the latter case, a = &. Consequently. S{X) has a smallest
proper congruence C(o), where

C(o) = {«x),(y)):(x,y)eXxX}

when X is totally separated and

C(a) = {(<*>, <y >):(*, y) e <?} U A(S(JT))

when X is completely regular, Hausdorff and contains an arc.

Proof. It follows easily that if X is totally separated, then /ze = ju = X x X.
Suppose X is completely regular, Hausdorff and contains an arc. We show that in this
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case \ie = 0>. Let (x, y) e (i and let a and b be endpoints of an arc A in X. Then there
exists an / e S(X) such that f(a) = x and f(b)=y. Thus, (x, y) e 9>, and it follows that

On the other hand, suppose (x, y) e 0*. Then there exists a continuous function /
from the closed unit interval / = [0, 1] such that/(O) =x and/(I) =y. For any two distinct
points a, b eX, there exists a continuous map g from X into / such that g(a) = 0 and
g(b) = l. Thus, f°geS(X), f°g(a)=x and f°g(b)=y which means (x, y) e jue. Thus
(ie = 3P and the remaining assertions follow as in the previous proofs.

EXAMPLE (3.6). The results of this section tell us that for a great many spaces
X, S(X) does have a smallest proper congruence. Nevertheless, there are completely
regular Hausdorff spaces X for which S(X) does not have a smallest proper congruence.
In [2], J. de Groot proved the existence of 2C 1-dimensional, connected, locally connected
subspaces of the Euclidean plane with the property that the only continuous maps from
one such space into another are the constant maps and for any such space X, the only
continuous selfmaps are the constant maps and the identity map. S(X) is therefore a left
zero semigroup with identity containing c elements. It follows easily from Theorem (2.18)
that A" has no smallest proper 5-equivalence and thus S(X) has no smallest proper
congruence. However, Scq(X) does contain many atoms. In fact, if x, y eX and xi= y,
then t)e(x, y) will be an atom since (2.16.2) is vacuously satisfied and

rje(x, y) = {(x, y), (y, *)} U A(X).

The atoms of Cong(5(Ar)) are therefore all the congruences of the form

where x and y are distinct. Of course, X is completely regular and Hausdorff but it
contains no arcs.

For each of de Groot's spaces X, S(X) contains as few continuous functions as
possible. One can use these spaces to form another which has a greater variety of
continuous selfmaps but nevertheless, the semigroup has no smallest proper congruence.
Let {Ya}aeA be the collection of de Groot's spaces and let X be the discrete union of all
those spaces. As we noted previously, the cardinality of A is 2C. Let 3~A denote the
semigroup of all selfmaps of A. The semigroup S(X) contains a copy of 9~A. To see this,
choose ya e Ya for each aeA and for f eSTA and x e Ya, define <p(f)(x) = y/(ay One
easily checks that <p is an isomorphism from 3~A into S(X). To see that X has no smallest
proper 5-equivalence, choose two distinct points x and y both in the same Ya. Let/be any
function in S(X) and let/,, be the restriction of/ to Ya. If/, maps Ya into some Yp, /3 =£ a,
then/a. is a constant map. If/, maps Ya into Ya, it is either a constant map or the identity
map. This means that either (f(x),f(y)) = (x, y) or (/(*),/(y)) = (z, z) for some z eX
and hence that

r]e(x,y) = {(x,y),(y)x)}UA(X).
It readily follows that

o = H MX, y):(x,y)eXxX,x*y} = A(X)
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and therefore X has no smallest proper 5-equivalence by Theorem (2.18). Not every
5-equivalence of the form r\e(x, y) is an atom for this particular space but it readily
follows from Theorem (2.16) that for this particular space X, the atoms of Seq(X) are
precisely those t]e(x, y) where x and y are distinct and both belong to the same
component. It is perhaps worthwhile to emphasize the fact that if we want to show that a
semigroup has a smallest proper congruence and we are able to show that (ie =£ A(X),
then that is sufficient. But it is not enough to show that fie = A(X) in order to conclude
that S(X) does not have a smallest proper congruence. However, as Theorem (2.18) tells
us, we can draw that conclusion any time we are able to show that a = A(X).

4. Congruences and connectedness. K(X) denotes the kernel of S(X) and JT(K(X))
is the Rees factor congruence which identifies all elements in K(X) to a point. It is easily
verified that for any space X whatsoever, K(X) is the collection of constant functions.
Whether or not JZ(K(X)) is the smallest proper congruence on S(X) depends, in many
instances, upon the connectedness of X. Our first result is an easy consequence of
Theorem (3.5).

THEOREM (4.1). Suppose X is completely regular, Hausdorff and contains an arc.
Then o(K(X)) is the smallest proper congruence on S(X) if and only if X is pathwise
connected.

Proof. According to Theorem (3.5),

C(a) = {((x),(y)-(x,y)e»}UA(S(X))
whereas

JT(K(X)) = {«*>, (y): (x, y) e X x X) U A(S(X)).

Evidently, JT(K(X)) = C(o) if and only if X is pathwise connected.

DEFINITION (4.2). A space X has the internal extension property if every continuous
function from a closed subset of X into X can be extended to a continuous selfmap of X.

Any absolute retract has this property as well as any O-dimensional metric space [3,
p. 281]. In particular, Euclidean Af-cells, Euclidean N-spaces, Hilbert space and the
Hilbert cube all have it. The space

X = {(x, y) e / ? 2 : l<x 2 + y2 <5}

does not have it. Let h be any homeomorphism from

B1 = {(x,y)eR2:(x-3)2 + y2 = l}
onto

B2={(x,y)eR2:x2 + y2 = 5}

and suppose h can be extended to a continuous selfmap h, of X. Let

D = {(x,y)eR2:(x-3)2 + y2<l}

and let h2 = hx \ D. Now let k be any continuous selfmap of X which retracts X onto B2.
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Then h~l°lc°h2 retracts D onto B^ contradicting a well known theorem of Brouwer, and
therefore, we see that h cannot be extended to a continuous selfmap of X.

In our next result, we encounter the notion of a prime ideal. We will assume here
that a prime ideal of a semigroup is a proper subset of that semigroup.

THEOREM (4.3). Let X be any locally connected, compact, N-dimensional subspace of
Euclidean N-space whose components all have the internal extension property. Then the
following statements are equivalent.

n(K(X)) is the smallest proper congruence on S(X). (4.3.1)

S(X) has a largest proper congruence. (4.3.2)

S(X) has no prime ideals. (4.3.3)

X is pathwise connected. (4.3.4)

Proof. It is immediate from Theorem (4.1) that (4.3.1) and (4.3.4) are equivalent. If
X is pathwise connected, then S(X) has a largest proper congruence in view of Corollary
6 of [4] so that (4.3.4) implies (4.3.2). We show next that (4.3.2) implies (4.3.4). Suppose,
to the contrary, that X is not pathwise connected. Each component of X is pathwise
connected since each is a Peano continuum so that the path components and the
components of X coincide. Let

J = {f e S(X): Ran/ D A = 0 for at least one component A oiX),

where Ran/denotes the range of/. Since A'is locally connected, its components are open
so it can have only finitely many since it is also compact. One verifies in a straightforward
manner that / is a prime ideal of S(X). Consequently,

M = (Jx/)U ((S(X) - /) x (S(X) - J))

is a congruence on S(X). Now, M is evidently a maximal proper congruence so if S(X) is
to have a largest proper congruence, it must be M. Declare (/, g) e Q if whenever Y is a
subspace homeomorphic to X and one of the two functions is injective on Y, then the two
functions agree on Y. One verifies that Q is a proper congruence on S(X). Let {Aj}"=l

denote the components of X, choose a; e At for 1 < / < N and define f(x) = a; for x eAj.
Next, define a function g by g(x) = a, for x eAj, j ¥= 1 and g(x) = a2 whenever x eAx.
Then (/, g)eQ- M and we have a contradiction. Thus, we have shown that (4.3.2)
implies (4.3.4) so the two are equivalent.

We have seen that if X is not pathwise connected, then S(X) contains a prime ideal
(the ideal J defined previously) so that (4.3.3) implies (4.3.4). We show that (4.3.4)
implies (4.3.3). Suppose, to the contrary, that S(X) contains a prime ideal P. Then

V = (P x P) U ((S(X) -P)x (S(X) - P))

is a proper congruence on S(X). Next, for any / g e S(X), let (/, g) e W if and only if
whenever either of the functions is injective on any subspace of X which is homeomorphic
to the Euclidean N-cell, IN, then the two functions agree on that subspace. Corollary 6 of
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[4] assures us that W is the largest proper congruence on S(X). But V £ W. To see this,
let h and k be any two homeomorphisms from X onto X which differ on some subspace of
X which is homeomorphic to IN. Then h, k e S(X) - P so that (h, k) € V - W. This
contradiction leads us to to conclude that when X is pathwise connected, then S(X) can
have no prime ideals. That is, (4.3.4) implies (4.3.3) and the proof is complete.
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