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Abstract

Background: Studies examining the role of geographic factors in coronavirus disease-2019
(COVID-19) epidemiology among rural populations are lacking. Methods: Our study is a
population-based longitudinal study based on rural residents in four southeast Minnesota
counties from March through October 2020. We used a kernel density estimation approach
to identify hotspots for COVID-19 cases. Temporal trends of cases and testing were examined
by generating a series of hotspot maps during the study period. Household/individual-level
socioeconomic status (SES) was measured using the HOUSES index and examined for associ-
ation between identified hotspots and SES. Results: During the study period, 24,243 of 90,975
residents (26.6%) were tested for COVID-19 at least once; 1498 (6.2%) of these tested positive.
Compared to other rural residents, hotspot residents were overall younger (median age: 40.5 vs
43.2), more likely to be minorities (10.7% vs 9.7%), and of higher SES (lowest HOUSES [SES]
quadrant: 14.6% vs 18.7%). Hotspots accounted for 30.1% of cases (14.5% of population) for
rural cities and 60.8% of cases (27.1% of population) for townships. Lower SES and minority
households were primarily affected early in the pandemic and higher SES and non-minority
households affected later. Conclusion: In rural areas of these four counties in Minnesota,
geographic factors (hotspots) play a significant role in the overall burden of COVID-19 with
associated racial/ethnic and SES disparities, of which pattern differed by the timing of the
pandemic (earlier in pandemic vs later). The study results could more precisely guide commu-
nity outreach efforts (e.g., public health education, testing/tracing, and vaccine roll out) to those
residing in hotspots.

Introduction

The rapid spread of coronavirus disease-2019 (COVID-19) has created a worldwide pandemic
with high morbidity and mortality rates [1]. Nationally, there is a disproportionate impact on
rural populations in terms of deaths and hospitalizations [2–5]. While rural areas initially
experienced lower testing and cases [6,7], since August 2020, the trends have reversed with
COVID-19 cases per capita in small/mediummetro and non-metro areas exceeding large metro
central and fringe areas after mid-August 2020 [8]. Death rates in non-metro areas also exceeded
death rates in metro areas from late August to mid-December 2020 [9]. Compared with urban
residents, people living in rural areas report less willingness to be vaccinated for COVID-19
[10,11], and, as our community-based survey indicated, less engagement in COVID-19 preven-
tive behaviors, for example, masking [12].

Minnesota’s Governor issued a Shelter-in-Place order fromMarch 27, 2020, toMay 13, 2020.
The first COVID-19 case in rural parts of the four-county Southeast Minnesota study area
(Dodge, Goodhue, Olmsted, and Wabasha Counties) was reported on March 17, 2020. From
March through October, the total number of COVID-19 cases was 142,311 in Minnesota
and 4880 in the four-county area that is the focus of this study [13], with rural areas accounting
for an estimated 41% of area cases based on Rochester Epidemiology Project data (REP;
an NIH-funded data linkage system for study populations).

We performed geospatial and temporal trend analysis of COVID-19 experience in rural parts
of four Southeast Minnesota counties (50% rural, i.e., with RUCA Code other than 1.1) [14], to
examine the influence of geographic factors in COVID-19 epidemiology in a Midwest region.
We also examined whether identified hotspots are associated with social determinants of health
(SDOH), focusing on socioeconomic status (SES) and housing characteristics. Understanding
the effects of where people live within counties, as well as SDOH, could more precisely guide
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outreach efforts and public health interventions (e.g., COVID-19
testing and vaccination) for rural populations.

Methods

Study Setting

Medical records-based research of the area population was
performed through access to COVID-19 laboratory test data
from the REP database. The REP database includes a majority
of residents in the study area, with their inpatient and outpatient
clinical diagnoses and address information [5]. Comparing REP
data to population estimates from the Census 2018 5-year ACS
data, geocoded REP records for those with research authorization
covered 75.0% of rural residents in the four-county study area
(90,975 of 121,241), ranging from 63.7% in Goodhue County to
93.2% in Olmsted County [5]. Since REP has an overall research
authorization level of 90.1% for a 27-county area of which the study
area is a part [15] the variation in coverage is the result of residents
getting health care from providers not covered by REP.

Similar coverage applies to residents with COVID-positive tests
in the region (including both urban and rural parts), with geocoded
REP records representing 76.4% of cases (3728 of 4880 cases)
through the study period. The rural population of these four
counties is 95.3% White (93.3% non-Hispanic White [NHW]),
with 3.1% Hispanic of any race, 0.7% Black, 0.5% American
Indian, 0.9% Asian, and 2.6% Other/Mixed [14]. Rural portions
of the region had a lower proportion of households in poverty
(3843 households of 48,401, 7.9%) as compared to urban house-
holds (9.6%) [14].

Study Design and Cohort

This is a population-based retrospective cohort study assessing
the temporal (semi-monthly) and geospatial distribution of
test-confirmed COVID-19 cases in the rural population from
March 17, 2020, to October 31, 2020.We used the geocoded portion
of the REP population living in rural areas (see rural classification
below) (denominator N= 90,975) and utilized the REP database
to identify people who had COVID-19 tests and corresponding test
results. For people testedmultiple times, the date of the first negative
test was retained for temporal analysis purposes, unless superseded
by a positive test. In that case, the date of the first positive test was
used for temporal analysis. The unit of analysis is thus persons tested
(n= 24,243), and not tests. SARS-CoV-2 testing was performed
according to manufacturer’s instructions for the real-time
reverse transcription polymerase chain reaction (RT-PCR)-based
cobas SARS-CoV-2 assay (Roche Molecular Systems, Inc.,
Branchburg, NJ), which received emergency use authorization from
theUS Food andDrugAdministration. This assay detects the SARS-
CoV-2 ORF1ab and E gene sequences; test results were reported as
target detected, target not detected, presumptive positive (when only
the E gene sequence was detected), or inconclusive (when PCR
inhibition was present).

The study was approved by the Mayo Clinic and Olmsted
Medical Center Institutional Review Boards.

Rural Classification

We identified “urban” as populations residing inside the City of
Rochester or the block groups (BGs) identified in RUCA Class
1.1 (see map in supplement). All other areas, including smaller
cities and townships, were considered rural and included in the

analysis [16,17]. By this two-way classification, the four-county region
is 50.4% rural and 49.6% urban [14]. The rural population of the 66
townships (unincorporated jurisdictions) in the study area ranged
from 170 to 2873 [14]. Township rural REP population density
ranged from 4.0 to 115.0 (mean 14.5) per squaremile. The population
of the 31 rural cities (incorporated jurisdictions) in the study ranged
from 91 to 16,338 (median 1268). There are 11 cities with populations
over 2500 (urban clusters by Census definition) [18]. City REP popu-
lation density averaged 553 per square mile.

Geospatial Analysis

1. Geocoding: The addresses of persons in the REP were geocoded
using parcel-based geocoding methods, yielding precise house-
hold location and housing characteristics (e.g., apartment,
mobile home community [MHC], or single-family house), in
relation to the epidemiology of COVID-19.

2. Weighting: Case density was weighted as in other related studies
[15]. As positivity of COVID-19 testing depends in part on the
level of testing, we accounted for the proportion of persons
tested for COVID-19 within the Census block group compared
to the overall rural population in each county, by applying a
weight derived by the formula: W=(BGpop/Rurpop)/(BGTP/
RurTP), where W is the weight, BGpop is the Census block
group population, Rurpop is the rural county population,
BGTP is the number of tested persons in the Census block
group, and RurTP is the number of tested persons in the rural
portion of the county. The resulting weights were then applied
to each positive test in subsequent analysis steps.

3. Trend analysis: To examine temporal trends in the spatial loca-
tions of hotspots, we collected data for COVID-19 cases and
testing for all of March 2020 (3/17–3/31), early April (4/1–4/15),
late April (4/16–4/30), early May, late May, and so on, mapping
concentrations of cases for each time period. For purposes of
analysis, due to low numbers of rural cases, we grouped periods
March–June (148 city cases, 63 township cases), July–August
(194, 129), September (194, 130), October 1–15 (130, 98), and
October 16–31 (264, 147).

4. Determining hotspots: We applied a similar geospatial analysis
approach as used for our previous studies [19,20]. For areas
within cities, we mapped the kernel density of weighted positive
cases using a half-mile bandwidth. The half-mile bandwidth
made it possible to detect the influence of individual apartment
complexes, mobile home parks, individual subdivisions, and so
on. Larger bandwidths made it harder to detect the influence of
these geographic characteristics. Smaller bandwidths increased
the number of areas having high weighted case density but
lacking cases, due to the influence of positive cases located
surrounding but outside the “hotspot.” For each period and
for the combined analysis for March through October 2020,
we defined “hotspots” as areas with case density in the 90th

percentile or higher across rural cities in the four-county area
AND with relative difference at least 33% higher than expected
case density. Relative difference was derived using the formula
RD= (wOCD-ECD)/ECD, where RD is the relative difference,
wOCD is the weighted observed case density, and ECD is the
expected case density based on average incidence applied to
the REP population.

In all but 2 of 66 townships, population density is so low
throughout the township that expected case density per square
mile is less than 1, such that the relative difference approach
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described above yielded distorted results. As an alternative, we
identified households with positive cases and applied kernel
density methods with a one-mile bandwidth to identify positive-
case households that were within one mile of and within the same
grouped time period as another household with a positive case.
We assigned township hotspot status to these concentrations.

Other Pertinent Variables

Basic demographic characteristics (age, sex, race/ethnicity) were
extracted from medical records available from REP. For SES, we
used the HOUSES index, a validated individual-level socioeco-
nomic measure linked with addresses at the time of testing
(or at the end of study period for those not tested) [21]. Since
its original validation, HOUSES index has been widely used for
clinical and epidemiological studies concerning 38 different health
outcomes and behaviors as well as health care delivery in both chil-
dren and adults [22–46].

Data Analysis

Apart from geospatial and temporal trend analysis for COVID-19
cases in the community, we compared sociodemographic charac-
teristics of study subjects within hotspots with those outside
hotspots using logistic regression models. Separate analysis was
performed for small cities and townships. We also described
patterns of COVID-19 laboratory testing and positivity during
the study period, stratified by hotspot status (within vs outside
hotspots) and locations (small cities vs townships). Geospatial
analysis was performed using ArcMap 10.4.1 (produced by ESRI).

Results

Characteristics of Study Subjects

Of 90,975 rural residents included in the analysis, 51.7%
were female, 92.9% were White (90.1% NHW), 1.0% African

American, 0.8% Asian, 0.4% American Indian, and 3.6% other race
or two or more races (Other/Mixed); 4.7% reported Hispanic
ethnicity. The median age was 42.7 years old (inter-quartile range
21.1–62.1).

Prevalence of COVID-19, Temporal Trends and
Characteristics COVID-19 Cases

A total of 24,243 geocoded rural subjects (26.6%) were tested at
least once of whom 1498 (6.2% of tested and 1.6% of rural popu-
lation) tested positive. Since the first COVID-19 case was
confirmed on 3/17/2020, new cases per month peaked in early
July, declined in late July and early August, and increased again
to a higher peak (four times the July peak) in late October
(see Fig. 1). Similar trends were observed for positivity rate.

Figs. 2a–d show temporal (monthly) trends of COVID-19
cases in relation to demographics (2a for age, 2b for sex, 2c for
race/ethnicity, and 2d for SES).

While there were some fluctuations of COVID-19 prevalence
over time, the proportions by gender and age subgroups had
similar temporal trends. The highest prevalence of COVID-19
was among 20–44 years of age (2.3%), followed by 45–65
(1.9%). The proportion of racial and ethnic minorities (12.2% of
rural population, excluding unknown) among COVID-19 cases
was 33.3% in April and 22.8% in July and dramatically decreased
in August through October, to 7.0%. The proportion of Hispanic
persons (4.7% of the rural population) among cases was as high as
17.6% of total cases in April and 14.8% of cases in July, falling to
3.9% of cases in October. Overall, Hispanic persons accounted for
7.8% of cases.White cases exceeded theWhite proportion of popu-
lation (94.3%) only in October (94.6%). Despite disparities in
COVID-19 cases, little difference in testing rates was found by race:
29.1% African American, 26.5% Hispanic, 26.1% Asian, 26.6%
White, 27.5% American Indian, and 28.0% Other/Mixed race
(24.7% unknown/refused). Positivity rates were higher among

Fig. 1. Cases and Positivity by Period COVID-19 Four-County Rural Analysis Southeast Minnesota 3/11–10/31/2020.
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several minority groups than among NHWs, with rates of 5.9% for
NHW versus 9.7% for African American, 8.8% for Other race/
Mixed race, and 10.2% for Hispanic persons of any race.

The proportion of theHOUSES quartile Q1 (lowest SES) testing
positive exceeded its share of population during the March to June
period. The share of cases among persons in the lowest HOUSES
quartile was lower for all remaining periods, ranging from 68% to
96% of the overall average. For the share of cases among the highest
quartile (Q4) exceeded the average of all SES levels in all periods.
Hotspots in the March through June period (see Supplement)
included 3 large MHCs (2 in cities, 1 in a township) and 12 apart-
ment complexes in cities, identified through aggregating cases by
address and verifying the structure types at the addresses with
more than 11 REP records.

Testing proportion varied with city population. In cities under
1000, 23.2% of the population was tested versus 30.2% for cities
over 5000. Positivity rates in small cities ranged from 5.2% in
cities with population over 5000 to 6.1% in cities under 1000.
Township population size was related to testing but not positivity.
The testing rate in townships over 1200 was 27.6% versus 21.8%
in townships under 500. Cities had more cases per capita in
March–June, then townships had more cases per capita until late
October.

Geospatial and Temporal Trends of COVID-19 in Rural Areas

Temporal geospatial analysis county maps are provided in the
Supplement. Geospatial analysis results based on the entire study
period are summarized in Fig. 3. Note that because hotspots are
based on case density, overall March to October hotspots are
somewhat influenced by high case numbers in September and
October, when White, single-family, and higher SES households
experienced high numbers of cases per capita. See maps in the
Supplement for more temporal detail.

Hotspots occurring in cities tended to recur from month to
month, while township hotspots were consistent only in concen-
trations of housing outside but adjacent to cities.

Temporal trends differed for all minorities compared to NHW
persons, with cases per capita among the total racial minority
population exceeding the rate for NHW persons in March through
September (e.g., 16% higher in the July–August period), but lower
by 1% in October. Hispanic persons of any race (the largest
minority, 4,242 persons) per capita case rates were 2.2 times the
NHW rate in March–June, 3.4 times in July–August, 1.9 times
in September, and 0.8 times in October.

Finally, while all race, ethnic, and SES groups experienced an
increase in cases in September and October, the large absolute

Fig. 2. a) Count of Cases by Age Group by Month COVID-19 Four-County Rural Analysis Southeast Minnesota 3/11–10/31/2020. b) Cases per 100,000 Population per Day by Sex
Rural Four-County Area Study. c) Share of Cases by Race and Ethnicity by Month COVID-19 Four-County Rural Analysis Southeast Minnesota 3/11–10/31/2020. d) Share of Cases by
HOUSES Quartile COVID-19 Four-County Rural Analysis Southeast Minnesota 3/11–10/31/2020.
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increase in cases in October occurred chiefly due to an increase in
cases among the White population, higher SES, and in single-
family residential areas in rural communities.

Comparison of Population Characteristics Inside
and Outside Hotpots in Rural Areas

Rural city hotspots accounted for 33.3% (325/975) of cases and
14.1% of rural city population. As shown in Table 1, people living
in city hotspots compared to other city residents tended to be
younger, included a similar or higher proportion of minorities
(except for African Americans), and higher SES. Hotspots and
non-hotspots had the same proportion of HOUSES Q1 (lowest
SES) residents through August at 23.2%, indicating the influence
of a high proportion of higher SES cases in September andOctober.

Rural township hotspots accounted for 48.8% of cases
(277/568) and 27.1% of township population. As shown in

Table 2, people living in township hotspots compared to other
township residents tended to be younger, included a higher
proportion of minorities, and were of higher SES.

Table 3 compares city and township hotspots with city and
township areas outside hotspots in terms of test positivity over time
and the cases (positive tests) per 100,000 population per day for the
five aggregated time periods in our analysis. In both cities and
townships, and for all periods, hotspots had higher positivity levels
and higher cases per 100,000 population. The rate of cases per
capita increased over 15 times from March–June to late October.

Discussion

The rural burden of COVID-19 is similar to that experienced by
other populations experiencing health disparities. Our longitudinal
geospatial analysis adds new information on geographic risk
factors significantly related to the overall burden of COVID-19

Fig. 3. City and Township Cumulative Hotspots COVID-19 Four-County Rural Analysis Southeast Minnesota 3/11-10/31/2020.
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and associated racial/ethnic and SES groups within rural commun-
ities depending on the timing of the pandemic. Geospatial analyses
showed consistent hotspots in several cities and in a few areas of
townships, even after adjusting for underlying population density.

While other studies have reported county-level geographic clusters
of COVID-19 cases [47,48], this study demonstrates the impor-
tance and utility of identifying geographic hotspots within
counties. Hotspots significantly accounted for the COVID-19

Table 1. Characteristics of Residents of Cities in Rural Area

Variable In hotspot Outside hotspot
Odds ratio*
(95% CI) P value*

Total N 8049 49,215

Sex Female, N (%) 4242 (52.7%) 25,844 (52.5%) 0.992 (0.947–1.040) 0.75

Hispanic N (%) 546 (6.8%) 2423 (4.9%) 1.406 (1.277–1.548) <0.0001

Race, N (%)
African American

75 (0.9%) 697 (1.4%) 0.657 (0.517–0.834) 0.0006

Asian 67 (0.8%) 385 (0.8%) 1.061 (0.817–1.377) 0.66

Other/Mixed** 395 (4.9%) 2243 (4.6%) 1.309 (1.150–1.490) <0.0001

Refusal/Unknown 105 (1.3%) 739 (1.5%) 1.079 (0.644–1.809) 0.77

White 7407 (92.0%) 45,151 (91.7%) Reference

Age, Median
(IQR)

37.0 (17.9, 55.9) 40.5 (20.3, 61.1) 0.994 (0.994–0.995) <0.0001

HOUSES, N (%)
Q1

1363 (17.2%) 11,419 (23.8%) 0.559 (0.521–0.601) <0.0001

Q2 1939 (24.4%) 13,149 (27.4%) 0.691 (0.647–0.738) <0.0001

Q3 2339 (29.5%) 12,741 (26.5%) 0.860 (0.808–0.916) <0.0001

Q4 2291 (28.9%) 10,737 (22.3%) Reference

Missing 117 1169

*P values for testing association between variables and hotspot status (in hotspots), using logistic regression. **Other/Mixed category includes other, mixed (2þ races), American Indian, and
Hawaiian/Pacific Islander.

Table 2. Characteristics of Residents of Townships in Rural Area

Variable In hotspot Outside hotspot Odds ratio* (95% CI) P value*

Total N 6930 26,781

Sex Female, N (%) 3504 (50.6%) 13,377 (49.9%) 0.976 (0.923–1.029) 0.36

Hispanic, N (%) 313 (4.5%) 990 (3.7%) 1.232 (1.082–1.403) 0.002

Race, N (%)
African American

33 (0.5%) 84 (0.3%) 1.546 (1.033–2.315) 0.034

Asian 73 (1.1%) 133 (0.5%) 2.161 (1.622–2.878) <0.0001

Other/Mixed** 252 (3.6%) 678 (2.5%) 1.542 (1.318–1.803) <0.0001

Refusal/Unknown 68 (1.0%) 284 (1.1%) 0.859 (0.463–1.605) 0.63

White 6504 (93.9%) 25,602 (95.6%) Reference

Age, Median
(IQR):

45.2 (21.3,61.1) 49.4 (23.8,64.6) 0.995 (0.994–0.996) <0.0001

HOUSES, N (%)
Q1

820 (11.9%) 2723 (10.1%) 1.003 (0.919–1.094) 0.95

Q2 863 (12.6%) 4894 (18.6%) 0.587 (0.541–0.638) <0.0001

Q3 1888 (27.5%) 7706 (29.3%) 0.816 (0.766–0.870) <0.0001

Q4 3303 (48.1%) 11,000 (41.8%) Reference

Missing 56 458

*P values for testing association between variables and hotspot status (in hotspots), using logistic regression. **Other/Mixed category includes other, mixed (2þ races), American Indian, and
Hawaiian/Pacific Islander.
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burden in the rural areas of these four midwestern counties. To our
knowledge, this is the first longitudinal geospatial analysis for
COVID-19 epidemiology at a neighborhood level in rural counties
in theMidwest region of the USA. As a practical matter of targeting
preventive measures and interventions, the hotspots identified
through this study establish a method to focus efforts in neighbor-
hoods at higher risk. This may be especially important during
periods in which pandemic surges make contact tracing difficult.
Testing and tracing efforts could be guided by identifying hotspots
within counties.

The areas identified as hotspots in our geospatial analysis
reflected a broad range of neighborhoods in terms of SES

depending on the timing of the pandemic, with lower SES and
minority households especially affected early (March through
June 2020) in the pandemic and higher SES households affected
later (July through October). This observation is novel and has
important implications for understanding and designing the public
health interventions. In these four rural counties, the relationship
between SES and race/ethnicity and risk of COVID-19 depends on
geographic location and timing (whether in an early or later stage)
of the pandemic. Results mirrored national trends in some respects
and in the urban settings [49]. Significant disparities in the burden
of COVID-19 occurred despite community factors mitigating
health disparities in this region such as higher median family
income than the national average. We found that for most months,
racial and ethnic minority populations were disproportionately
impacted by COVID-19, especially in the beginning of the
pandemic and those residing in townships, even in rural areas
where their share of population is low. These findings have impli-
cations for interventions regarding preventive measures and vacci-
nation. During the early phases of a pandemic, community health
interventions should focus on under-resourced populations.
During later phases, broader segments of the population need to
be engaged. Our study findings indicate that community health
interventions and allocation of resources (e.g., public health educa-
tion, testing/tracing, and vaccine roll out) could benefit from data
on the geographic distribution and neighborhood characteristics of
patients and populations in the context of timing of the pandemic,
given the well-recognized health effects of the places in which
people live [50] and other SDOH [47,48,51]. For example, the
study demonstrates that given a sufficiently rapid turnaround from
testing to geographic analysis, the findings could guide precise
outreach and other interventions based on geographic hotspots,
for example, to neighborhoods with housing types (e.g., apart-
ment) associated with hotspots. In this sense, the study represents
a proof of concept. Prompt development of analyses will enable an
evolving response to evolving conditions. As an application in our
study setting, a geospatial analysis-guided flu vaccine outreach
team went out during COVID-19 pandemic to vaccinate target
populations in hotspots with influenza vaccine (when COVID
vaccine was not available) to avoid the burden of influenza for
under-resourced populations who were already significantly
affected by COVID-19. This strategy can be applied to
COVID-19 vaccinations depending on the geographic vaccination
rates (e.g., hotspots for low vaccine uptake).

Our study has important strengths. First, our study is a
population-based study leveraging a geographically well-defined
population, a self-contained health care environment, and the
REP, an electronic data repository for our region. Second, our
study is the first longitudinal temporal geospatial analysis for
COVID-19 epidemiology at a neighborhood level in rural counties
in the Midwest region. The prevalence of COVID-19 and the
analysis of hotspots reflected the number of tests, population
density, and household SES. Third, we believe the study methods
are generalizable to other rural areas wherever address data can be
found for tested persons and positive tests, regardless of the
proportion of cases in the population, although with lower inci-
dence, the bandwidth would need to be adjusted even in higher
density areas. If address data are not available (e.g., where only
the Zip code of the tests and cases is known), it would be possible
to identify “hotspot” Zip codes, but with much less precision as to
the neighborhood characteristics associated with the hotspots.
In our mixed urban-rural area, at least, zip code areas might not
be suitable as they are heterogeneous in terms of SES, housing type,

Table 3. COVID19 Test Data for Cities and Townships in Rural Area*

Variable
City

Hotspot
City Not
Hotspot

Township
Hotspot

Township
Not Hotspot

Total N 8049 49,215 6930 26,781

March–June

Tested (N) 731 5061 698 2255

Positive (N) 34 114 33 30

Positive % of
Tested

4.65% 2.25% 4.73% 1.33%

Cases/100,000
population/day

4.02 2.21 4.54 1.07

July–August

Tested (N) 590 3931 605 1754

Positive (N) 53 141 64 65

Positive % of
Tested

8.98% 3.59% 10.58% 3.71%

Cases/100,000
population/day

10.62 4.62 14.90 3.91

September

Tested (N) 396 2139 319 975

Positive (N) 70 124 61 70

Positive % of
Tested

17.68% 5.80% 19.12% 7.18%

Cases/100,000
population/day

28.99 8.40 29.34 8.71

October 1–15

Tested (N) 259 1298 193 624

Positive (N) 34 96 45 53

Positive % of
Tested

13.13% 7.40% 23.32% 8.49%

Cases/100,000
population/day

28.16 13.00 43.29 13.19

October 16–31

Tested (N) 260 1299 218 638

Positive (N) 85 179 74 73

Positive % of
Tested

32.69% 13.78% 33.94% 11.44%

Cases/100,000
population/day

66.00 22.73 66.74 17.04

*Note: Positive tests (cases) are not weighted by level of testing.
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race, ethnicity, density, rural-urban character, and other relevant
factors.

Our study also has several limitations. First, residents of cities
and townships of lower population were less likely to be tested.
Although we adjusted our analysis to account for testing, there
may have been unreported cases in these areas. Second, our reli-
ance on the REP as the data set means that some COVID-19 tests
and cases are likely missing from our analysis. In addition,
geocoded REP records for those with research authorization
covered 75.0% of rural residents in the four-county study area,
ranging from 63.7% in Goodhue County to 93.2% in Olmsted
County. Third, parts of our study setting have a high proportion
of health care workers compared to other settings, which may
affect the generalizability of our study. Fourth, our analysis was
not tested for spatial autocorrelation. Fifth, non-residential disease
transmission (e.g., at workplaces) was not accounted for. In addi-
tion, while we know from other sources that rural counties have a
lower level of vaccination and from the masking study [12] that
rural people who affiliate with the Republican Party have a higher
tendency to resist masking, neither vaccination status, masking
habits, or party affiliation are part of the data for this study.
Finally, in low density areas in cities, the kernel density approach
is influenced by positive cases outside the areas having high
weighted case density.

In conclusion, COVID-19 cases among the rural populations
increased significantly during the study period. In these four
Minnesota counties, geographic factors (hotspots) significantly
account for the overall burden of COVID-19 and associated
racial/ethnic and SES disparities in rural areas depending on the
timing of the pandemic. Results could more precisely guide
community outreach efforts (e.g., target populations, public health
education, testing/tracing, and vaccine roll out) to those residing in
hotspots.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/cts.2021.885
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