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Abstract

Image reconstruction in very-long baseline interferometry operates under severely sparse aperture coverage with calibration challenges
from both the participating instruments and propagation medium, which introduce the risk of biases and artefacts. Interferometric closure
invariants offer calibration-independent information on the true source morphology, but the inverse transformation from closure invariants
to the source intensity distribution is an ill-posed problem. In this work, we present a generative deep learning approach to tackle the inverse
problem of directly reconstructing images from their observed closure invariants. Trained in a supervised manner with simple shapes and
the CIFAR-10 dataset, the resulting trained model achieves reduced chi-square data adherence scores of x2; < 1 and maximum normalised
cross-correlation image fidelity scores of pnx > 0.9 on tests of both trained and untrained morphologies, where pxx = 1 denotes a perfect
reconstruction. We also adapt our model for the Next Generation Event Horizon Telescope total intensity analysis challenge. Our results
on quantitative metrics are competitive to other state-of-the-art image reconstruction algorithms. As an algorithm that does not require
finely hand-tuned hyperparameters, this method offers a relatively simple and reproducible calibration-independent imaging solution for
very-long baseline interferometry, which ultimately enhances the reliability of sparse very-long baseline radio interferometry imaging results.
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1. Introduction Thyagarajan (2022) showed that diversity in structures can be pro-
duced by a hybrid mapping reconstruction algorithm by adopting
different initial models. Other independent analyses of the EHTC
data on M87 (e.g. Arras et al. 2022; Broderick et al. 2022; Carilli
& Thyagarajan 2022; Lockhart & Gralla 2022; Miiller 2024; Feng
et al. 2024) generally produce consistent ring-like morphologies,
but finer characteristics (i.e. on the ring thickness, and surface
brightness dynamic range) can vary substantially between vari-
ous methodologies or prior assumptions. This underscores the
importance of an accurate calibration, wherein minute errors can
sometimes lead to divergent results.

Alternatively, much of the complexities of the calibration pro-
cess can be bypassed by considering specific combinations of inter-
ferometric measurements. These combinations, known as ‘closure
quantities’, are traditionally split into closure phases (Jennison
1958; Thyagarajan & Carilli 2022) and closure amplitudes (Twiss,
Carter, & Little 1960). As closure quantities are immune to
multiplicative station-based noise properties, they can serve as
calibration-independent true observables, carrying robust infor-
mation on source properties limited only by additive thermal noise
and non-station-based errors (Blackburn et al. 2020; Lockhart &
Gralla 2022). Moreover, closure quantities carry robust informa-
tion on a source’s intrinsic polarisation (Broderick & Pesce 2020;
Samuel, Nityananda, & Thyagarajan 2022). Therefore, the inverse
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Very-long baseline radio interferometry (VLBI) is a technique
used to measure spatial correlations from distant signals, lever-
aging baselines on continental or planetary scales to probe
extremely small angular scales (~10 pas). The measured correla-
tions between receiver elements in the array, known as visibilities,
can be used to infer the source intensity distribution (Thompson
et al. 2017). Naturally, data produced by a limited number of
receiver elements separated on such large spatial scales implies
severely sparse coverage on the aperture plane, necessitating accu-
rate signal calibration from the heterogeneous array elements for
restoration of signal coherence and accurate image recovery.
Calibration of a VLBI measurement dataset is often a metic-
ulously fine-tuned iterative process that involves converging on
the calibration corrections required to produce model visibili-
ties consistent with the observation from iteratively refined model
images. Different assumptions during the calibration process can
have significant effects on fine details of the image reconstruc-
tion (e.g. Event Horizon Telescope Collaboration et al. 2019¢). For
instance, on the observations of M87 (Event Horizon Telescope
Collaboration et al. 2019b) produced by the Event Horizon
Telescope Collaboration (EHTC; Doeleman et al. 2009), Carilli &
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minimising objective functions containing closure data terms pro-
duces calibration-independent images. Similarly, closure quanti-
ties can be used as a constraint in compressive sensing techniques,
which encode the image with a sparse set of multi-scale basis func-
tions (e.g. Mertens & Lobanov 2015; Miiller & Lobanov 2022;
Miiller 2024).

Recently, noteworthy advances in machine learning have
attracted attention for their integration into problems relevant to
radio astronomy. A large variety of machine learning techniques
have been applied successfully for interferometric image recon-
struction, from classification networks (e.g. Thyagarajan, Hoefs,
& Wong 2024), normalising flow (e.g. Sun & Bouman 2020; Sun
et al. 2022; Feng et al. 2024), and vision transformers (e.g. Lai
et al. 2025). Our work builds off of the proof-of-concept study of
Lai et al. (2025), which showed that generalised closure quantities
in the co-polar formalism described in Thyagarajan, Nityananda,
& Samuel (2022) can be leveraged directly for image reconstruc-
tion by exploiting a transformer’s attention mechanism to extract
meaningful features from global interrelationships within the clo-
sure dataset. In this work, we present a generative deep learning
solution for image reconstruction in the VLBI regime, which we
call GENDIRECT, consisting of a conditional diffusion model with
an unsupervised convolutional neural network (CNN). We vali-
date GENDIRECT with a variety of tests on trained and untrained
morphologies, and various levels of noise. Furthermore, we apply
the method on the synthetic datasets of the Next Generation Event
Horizon Telescope (ngEHT) total intensity analysis challenge
(Roelofs et al. 2023b) and quantitatively compare our performance
to other submissions which use state-of-the-art reconstruction
algorithms.

The content of this paper is organised as follows: in Sections
2 and 3, we introduce the co-polar data products of VLBI radio
observations and the closure invariant formalism, respectively.
In Section 4, we describe established image reconstruction meth-
ods and present our generative machine learning approach, which
estimates the conditional image distribution given closure invari-
ants as input. We also describe the training strategy for the deep
generative model. In Sections 5 and 6, we present and validate
the results of the proposed image reconstruction pipeline, apply-
ing our method to the ngEHT total intensity analysis challenge
datasets and comparing with other reconstruction methods. We
present a summary of this work and conclusion in Section 7.

2. Primer on VLBI data products

Radio interferometers measure the complex visibility function,
V(u), representing the spatial coherence of received signals. The
van Cittert-Zernike theorem, that relates the visibilities to the sky
intensity distribution, under some approximations can be sim-
plified to a two-dimensional Fourier transform (Thompson et al.
2017). If we consider that the observed visibilities, V/,, measured
between a pair of stations, (a, b), can be corrupted by complex
station-based factors, g, representing both amplitude and phase
distortions, then we can represent the relationship between true
and measured visibilities as V,, = g,Vaug, + €. Here, €4 is an
additive thermal noise term represented by a zero-mean Gaussian.

Special interferometric ‘closure quantities’ can be constructed
from combinations of Fourier components, which eliminate the
complex station-based multiplicative terms (Thompson et al.
2017). Traditionally, closure phases (Jennison 1958; Thyagarajan
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& Carilli 2022) and amplitudes (Twiss et al. 1960) are con-
structed from closed triangular and quadrilateral loops of array
elements, respectively. For N, stations, the total number of
(N; —1)(N; —2)/2 closure phases and N;(N; —3)/2 closure
amplitudes is always fewer than the total number of real-valued
visibilities by a factor of 1 — Ni — ﬁ, resulting in a loss of infor-
mation, notably of the absolute position and total flux density of
the source. However, closure quantities are robust against multi-
plicative station-based gains, providing calibration-independent
information on the source morphology. Furthermore, closure
quantities also carry information on a source’s intrinsic polari-
sation characteristics (e.g. Broderick & Pesce 2020; Samuel et al.
2022), which are independent of leakage terms between different
polarisation feeds. For these reasons, closure quantities have been
integral to calibration and synthesis imaging in radio astronomy
(e.g Rogers et al. 1974; Readhead & Wilkinson 1978; Cornwell &
Fomalont 1999).

3. Closure invariant formalism

Thyagarajan et al. (2022) and Samuel et al. (2022) recently pre-
sented a generalised formalism of ‘closure invariants’ for co-polar
and polarimetric interferometric measurements, respectively. In
this work, we focus on co-polar closure invariants developed in
Thyagarajan et al. (2022). Within the Abelian gauge theory for-
malism, closure invariants can be obtained using triangular loops.
An advariant is defined on triangular loops consisting of any
pair of array elements (a, b) pinned on a fixed reference vertex
indexed at 0,

é)ab = V(/)a(vf;yl;)ilvl/;o = |g0|2-AOab- (1)

Here, |gp|? is an unknown scaling factor identical on all complex
advariants associated with the reference vertex, which can be can-
celed out by normalising to any one non-zero advariant or any
p-norm of the advariants to obtain a complete and independent
set of closure invariants. Under this formalism, the total number of
Nf — 3N, + 1 real-valued closure invariants is identical to the total
number of closure phases and amplitudes, and contain equivalent
information.

Although the exact equivalent information is present in both
formalisms, closure invariants derived from the Abelian gauge
theoretic framework offer several advantages compared to the
traditional closure phases and amplitudes (Thyagarajan et al.
2022). Traditional closure quantities are historically determined
on closed triangular and quadrilateral loops, necessitating sepa-
rate treatment for each, but the complete set of closure invariants
can be obtained entirely from independent triads, the simplest
non-trivial loop. This provides a unified treatment of closure-
based information in co-polar interferometry. Moreover, with the
presence of thermal noise and complex gain error, the tradi-
tional representation of closure information as amplitudes and
phases introduces statistically-dependent noise covariances (e.g.
Blackburn et al. 2020), which are often disregarded. Meanwhile,
even though closure invariants are neither Gaussian nor uncor-
related in general, covariances induced by choice of coordinate
system can be avoided when representing closure invariants by
their real and imaginary components. Additional detail is pre-
sented in Thyagarajan et al. (2022) and the polarimetric extension
in Samuel et al. (2022).
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4. Imaging methods

In this section, we briefly describe how VLBI data products are
utilised in the multitude of approaches to image reconstruc-
tion: CLEAN (Hogbom 1974) and its modern improved variants
(e.g. Cornwell 2008; Offringa et al. 2014), regularised maximum-
likelihood methods methods (e.g. Chael et al. 2018; Miiller &
Lobanov 2022; Mus et al. 2024), Bayesian methods (e.g. Arras et al.
2019; Tiede 2022), and machine learning methods (e.g. Schmidt
et al. 2022; Sun et al. 2022). VLBI Imaging is an ill-posed inverse
problem. The forward transformation from an intensity distribu-
tion on the sky to a set of observables is deterministic for a fixed
interferometric array, in principle, but the reverse transforma-
tion has innumerable viable solutions due to the sparse aperture

coverage.

4.1 Current approaches

CLEAN (Hogbom 1974) confronts the imaging problem with
an iterative greedy matching strategy. In radio astronomy, it
is the most successful and influential deconvolution algorithm,
and its modern variants (e.g. Wakker & Schwarz 1988; Cornwell
2008; Offringa et al. 2014) remain extensively used today. Briefly,
CLEAN models sources in the field as point sources, iteratively
subtracting the scaled beam response until the algorithm has met
a termination criteria, where it is determined that no significant
sources remain present in the image. The final image recon-
struction is a model composed of many point sources convolved
with the clean restoring beam. The general assumption that the
observed emission is consistent with point sources can become
inadequate for modelling single objects at high resolution, such
as event-horizon scale structure. Modern variants can model the
sky as kernels at different scales (e.g. multiscale-CLEAN; Cornwell

2008) and are better suited to extended structure.

In contrast to direct deconvolution, forward-modelling meth-
ods update image parameters via optimisation algorithms on an
objective function. A class of regularised maximum-likelihood
methods (RML; e.g. Ikeda et al. 2016; Akiyama et al. 2017b;
Akiyama et al. 2017a; Chael et al. 2018; Blackburn et al. 2020),
which build off from maximum entropy methods (e.g. Frieden
1972; Narayan & Nityananda 1986), minimise the weighted sum
of data-fidelity and regularisation terms to obtain viable solutions
with desired characteristics imposed by the choice and weighting
of the regularisation terms. Regularisers can include entropy (e.g.
Frieden 1972; Gull & Daniell 1978; Narayan & Nityananda 1986),
the sparsity-promoting /1-norm (Honma et al. 2014), isotropic
total variation (Rudin, Osher, & Fatemi 1992), total squared vari-
ation (Kuramochi et al. 2018), total image flux density, and image
centroid position. By minimising an objective function contain-
ing only closure data terms, some forward-modelling algorithms,
such as EHT-IMAGING,* have shown that the closure quantities can
be leveraged directly for imaging. However, the global objective
function landscape, including a comprehensive hyperparameter
search, can be highly complex and it is impossible to know the
optimal weighting scheme for any image reconstruction prob-
lem a priori. Recently, Miiller et al. (2023) and Mus et al. (2024)
proposed a solution by utilising multiobjective optimisation tech-
niques to perform global searches across the hyperparameter

surface and find sets of locally optimal models.

*https://github.com/achael/eht-imaging.
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While other methods can struggle with presenting reliable
uncertainties, Bayesian imaging methods (e.g. Arras et al. 2019;
Broderick et al. 2020; Tiede 2022; Roth et al. 2024; Liaudat et al.
2024) formulate the imaging problem as one that is tractable by
Bayesian inference methods in order to obtain a posterior dis-
tribution of the image conditioned on the available data. These
methods require a sophisticated description of the data likelihood,
which encapsulates all of the information about the measure-
ment device and observing process, including corruption terms.
As such, existing methods have, for practical reasons of reducing
the compute time and requirements, opted to involve various sim-
plifications in the noise, sky, or prior models. Nevertheless, there
is no fundamental reason that more accurate models could not be
incorporated into the Bayesian framework.

4.2 Machine learning approach

Recently, machine and deep learning techniques have earned
widespread adoption within the field of astronomy across various
domains (Longo & Merényi 2019; Huertas-Company & Lanusse
2023), driven by the proliferation of large-scale datasets. Notably,
deep learning methods have demonstrated remarkable perfor-
mance on inverse problems, such as image or video denoising
and super-resolution (e.g. Zhang et al. 2017; Rombach et al.
2021; Donike et al. 2025). In the radio interferometric imaging
inverse problem, a diverse array of machine learning methods
have already been employed for both image reconstruction or clas-
sification, including CNNs (e.g. Sureau, Lechat, & Starck 2020;
Nammour et al. 2022; Schmidt et al. 2022; Chiche et al. 2023; Terris
etal. 2023), normalising flow (e.g. Sun et al. 2022; Feng et al. 2024),
denoising diffusion (e.g. Drozdova et al. 2024; Feng et al. 2024),
classifiers (e.g. Rustige et al. 2023; Thyagarajan et al. 2024), adver-
sarial networks (e.g. Geyer et al. 2023; Rustige et al. 2023), and
transformers (e.g. Lai et al. 2025).

In this section, we explore the Deep learning Image
Reconstruction with Closure Terms (DIRECT; Lai et al. 2025)
method, which employs the transformer and its attention mecha-
nism (Vaswani et al. 2017) to leverage closure invariants derived
from the Thyagarajan et al. (2022) formalism for direct image
reconstruction. Then, we discuss a diffusion-based deep gener-
ative model that builds on the work of DIRECT to model the
distribution of images consistent with both the training dataset
and the provided closure invariants. We also include a CNN which
learns the optimal compression for the set of sampled images and
ensures concordance between the measured and reconstructed
closure invariants.

4.2.1 DIRECT

The Deep learning Image Reconstruction with Closure Terms
(DIRECT; Lai et al. 2025) model is a deep neural network
approach designed to reconstruct source morphology from its
closure invariants observed through a VLBI array, such as the
Event Horizon Telescope (Doeleman et al. 2009). The machine
learning architecture is composed of a convolutional autoencoder
(e.g. Kramer 1992) with skip connections (e.g. He et al. 2016),
and a transformer encoder attachment (e.g. Vaswani et al. 2017;
Dosovitskiy et al. 2020). The purpose of the transformer is to
predict the latent features from the image encoder given only
measurable closure invariants as input.

Training DIRECT involved four loss functions: a morphologi-
cal cross-entropy classification loss, mean squared error between
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two sets of latent variables, and two independent image fidelity
loss terms associated with the decoded output from the image
encoder and the transformer. Each of the loss terms was weighted
according to a predefined schedule. After convergence, the result-
ing model was tested with a variety of source morphologies; the
results of which were comparable to deconvolution and forward-
modelling imaging algorithms in image fidelity metrics. DIRECT
was also tested against corruptions by applying synthetic thermal
noise to the input observables, and it achieved a reconstruction
fidelity score of 2 90% down to a signal-to-noise ratio of 10 on the
closure invariants. Despite its success, the results from DIRECT
were deterministic, rendering it difficult to interpret the confi-
dence of any individual image reconstruction, where the ground
truth is unknown. Moreover, DIRECT was not configured to
directly minimise the loss on the data terms, namely, the closure
invariants.

4.2.2 GENDIRECT

In this section, we introduce the novel generative DIRECT model
(GENDIRECT; Lai 2025) for VLBI imaging, which has two distinct
components. The first part of the neural network architecture is
based on textually-conditioned image generation (e.g. Rombach
et al. 2021) with denoising diffusion probabilistic models (Ho,
Jain, & Abbeel 2020), which has emerged as the new state-of-the-
art in image generation. As diffusion models effectively capture
non-linear relationships and excel at modelling complex data dis-
tributions, we use a latent diffusion model to learn the conditional
distribution of encoded morphologies from a training dataset
consistent with an input set of closure invariants. The second
component of the model is a standard multi-layer CNN which is
designed to compress a set of sampled images from the diffusion
model into a representative image reconstruction. In this section,
we describe both parts of the GENDIRECT model in detail.

The process of diffusion is a forward Markov chain process that
iteratively adds noise to an image until it is consistent with pure
isotropic Gaussian noise. The machine learning architecture learns
how to conditionally reverse the noising process at each step until
an image can be randomly sampled from noise. In Appendix A, we
provide a full description of the objective function in conditional
denoising diffusion models and additional details of our imple-
mentation. In brief, the network is optimised to model py(x|y) ~
Pdata(x]y), the probability distribution of the images x conditioned
on closure invariants y with learned model parameters 6. This can
be achieved by taking gradient descent steps based on the objective
function, defined as

Ldiffusion = Ex,,y,t,e, I:”ét — €9 (-xt) £, )’) ”Z:I > (2)

where E is the expectation operator for the difference between the
error € applied to the image x at timestep ¢t and the error predicted
by the network €y parameterised by 6. The probability distribu-
tion, Pda, modelled by the network is supplied by the training
dataset.

In practice, rather than applying diffusion on the image
directly, we leverage the convolutional autoencoder architecture
of the original DIRECT model (see Figure 1 of Lai et al. 2025) to
project images into lower-dimensional latent features. Therefore,
diffusion is applied to encoded latent features, which can subse-
quently be decoded into images. This latent diffusion approach
is introduced and described in Rombach et al. (2021). With this
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approach, the diffusion model optimises the distributional objec-
tive in the latent domain, allowing one to generate plausible sets
of latents conditioned on a given set of observed closure invari-
ants. We note that alternatively, one could replace the autoencoder
in the GENDIRECT architecture with one that is unrelated to
DIRECT; however, in our evaluation, we have observed that the
performance of the diffusion model is significantly deteriorated,
implying that in the process of training DIRECT, the latent fea-
tures are arranged in a manner that is conducive to being predicted
by closure invariants. It is not necessary for the DIRECT autoen-
coder to be trained with exactly the same VLBI array and obser-
vation synthesis as the one used for GENDIRECT. We employ a
UNet (Ronneberger, Fischer, & Brox 2015) architecture for the dif-
fusion model and a visual representation is presented in Figure 1,
where green bars represent convolutional layers. The set of output
images sampled from the diffusion model, py, is then fed into the
second component of the GENDIRECT system.

The second part of GENDIRECT is a convolutional neural net-
work (CNN), which simultaneously downsamples input images
and compresses the information from all provided images into
one final reconstruction. The advantage of the CNN is that it is
less restricted by the types of morphologies present in the selected
training dataset, enabling its reconstruction to outperform all of
the individual diffusion-sampled images and other averaging or
alternative aggregation strategies, especially on unseen datasets.
Additionally, we can explicitly optimise for the selected data met-
rics. In this work, the criteria for the optimal compression is based
on the y? likelihood function as

N P— A ; 2
o=y [W} , )

i %i

where C is the function that maps an image A to its closure invari-
ants, indexed by i, given a particular observation arrangement,
dy represents the CNN with parameters 0, and N is the total
number of closure invariants. The normalisation quantity o; is the
standard deviation uncertainty of the i-th closure invariant, which
is sensitive to the noise model and observation details. We note
that while we choose to minimise the x?, other loss functions (i.e.
L1 or mean squared error loss) and other aggregation operations
(i.e. mean rather than sum) can be equally valid. After sampling
images from the p, distribution learned by the diffusion model,
we perform a smooth cubic interpolation to upscale each image in
the sample before passing them into the CNN to learn the opti-
mal compression based on the Equation (3) objective function.
We find that introducing such redundancies from the interpola-
tion help manifest smoother final image reconstructions through
the CNN. The data-aware CNN is comprised of three layers of 2-D
convolutional operations, interspersed with non-linear activation
functions with a final activation function placed before the out-
put to enforce image positivity. We find that beyond a modest
depth, alterations to the design of the architecture do not sig-
nificantly influence the resulting reconstruction. It’s also possible
to use the interpolation and CNN to produce image reconstruc-
tions at a slightly different field of view or resolution than the
one used to train the diffusion model. However, because the CNN
output is sensitive to its input images sampled from the diffusion
model with a fixed field-of-view and resolution, the dimensions of
the final image reconstruction should be kept relatively consistent
with the input images, in order to remain aligned with the spatial
and frequency scales of the diffusion output.
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Figure 1. Diagram of the GENDIRECT architecture. In the diffusion network, closure invariants measured for images in the training dataset are used to condition the denoising
UNet and furthermore, as targets for the convolutional network. The conditional UNet is trained to reverse the diffusion process by taking gradient descent steps on the Leenpirecr
objective function, defined in Equation (2) The result is a sample of images, p, (X|y) ~ Paaw (X|y), which are inputs for the convolutional neural network. The CNN learns the optimal
compression for the set of the sampled images on the image axis based on the loss function defined in Equation (3), which ensures that the final reconstructed image is consistent

with the input closure invariants.

4.2.3 Training GENDIRECT

The two components of the GENDIRECT architecture are trained
independently with different philosophies. The diffusion model
is trained in a supervised manner, by utilising a training dataset
containing a wide variety of possible morphologies. The CNN,
on the other hand, is unsupervised and its input, a sample of
images from the diffusion model, remains unchanged throughout
its entire training process. Moreover, the trained CNN is not gen-
erally useful as it is designed to be highly specific to the input data
and closure invariants. As such, it will need to be retrained for each
independent reconstruction.

The training dataset of GENDIRECT’s diffusion model is iden-
tical to that of DIRECT and consists of a variety of extended
sources, which include Gaussians, disks, rings, ellipses, and
m-rings of first and second order (Roelofs et al. 2023a). However,
the majority of the dataset is comprised of the CIFAR-10 dataset
(Krizhevsky 2009), a set of 60 000 images representing ten natural
or man-made object classes (e.g. dogs, horses, planes, ships, etc).
As the original resolution of CIFAR-10 is merely 32 x 32 pixels,
we use a super-resolution 128 x 128 pixels version of CIFAR-10
resized by a PASCAL-based deep learning neural network (Schuler
2021). Random augmentations were applied to all images dur-
ing training to further expand the variety of images encountered
by the model. The augmentations included image flipping and
affine transformations such as rotating, rescaling, and shearing.
The CIFAR-10 images are augmented with an additional radial
tapering mask, defined as an element-wise multiplication opera-
tion between the original image with a disk blurred by a Gaussian
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kernel. The parameters of the disk and its blurring kernel are
randomised during training.

We train the diffusion model for 200 epochs with the ADAM
optimiser (Kingma & Ba 2014) and a fixed learning rate of 0.001.
Our variance schedule is cosine-based (Nichol & Dhariwal 2021),
which is designed to preserve information for longer time com-
pared to a linear-based schedule (e.g. Ho et al. 2020). We also select
T =1000 diffusion timesteps. The diffusion architecture is kept
relatively compact, with only ~4M trainable parameters; how-
ever, this number depends sensitively on the observation setup,
the volume of data, and the specific design of the denoising UNet.
A different setting (e.g. aperture coverage or field of view) can
require a more complex architecture to achieve ideal performance,
but a full exploration of the deep neural network design exceeds
the scope of this work. During training, we measure a running
average of the last 100 loss values from the diffusion model and
save the model with the minimum loss. The total wall-clock time
for training a diffusion model on the described dataset is ~10 h
on an NVIDIA H100 GPU, sensitive to the aperture coverage and
hence, the data volume.

In contrast to the diffusion model, the CNN is trained in an
unsupervised manner by passing the interpolated sample of gen-
erated images into the CNN at every epoch. The weights and
biases of the CNN are optimised for 2 000 epochs with an ini-
tial learning rate of 0.001, decaying by a factor of 0.999", where
n is the epoch counter, or until convergence. During validation,
we discovered that initialising the parameters of the CNN by first
optimising the network with the L; loss for 1 000 epochs can assist
the initial convergence of the model, thereby influencing the final
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reconstruction. As such, all results presented in Sections 5 and 6
adopt the L; loss for the first 1000 epochs before minimising x .
Identically to the diffusion model, we use the ADAM optimiser
(Kingma & Ba 2014) for the CNN. The total number of trainable
parameters is ~10M and the compute time for training the CNN
is on the order of a few minutes on the NVIDIA H100 GPU, sub-
ject to the data volume. Like the diffusion model, the dominant
bottleneck is the compute time allocated to measuring the closure
invariants from synthetic observation of the reconstructed image.

5. Results

In this work, we adopt the array configuration, observing
sequence, and subsequent aperture coverage of one of the datasets
in the ngEHT Analysis Challenges (Roelofs et al. 2023b, hereafter
R23). The analysis challenges are collections of publicly available
synthetic VLBI data, designed to promote rapid development of
imaging techniques and algorithms, especially pertaining to antic-
ipated capability upgrades with the ngEHT array. We discuss the
performance of our model on these datasets in Section 6.1. Here,
we briefly summarise the aperture coverage in one of the datasets,
which we adopt for our model.

We use the EHT-IMAGING software package presented in Chael
et al. (2018), hereafter referred to as C18, to synthesise 230 GHz
observations with a receiving bandwidth of 8 GHz for non-
variable sources placed at the location of M87, RA = 12"30™49.42°
and Dec = +12°23/28.04” (J2000). The array consists of the 8
stations comprising the original EHT2017 VLBI system (Event
Horizon Telescope Collaboration et al. 2019a): the Atacama Large
Millimeter/submillimeter Array (ALMA; Wootten & Thompson
2009; Goddi et al. 2019), the Atacama Pathfinder Experiment tele-
scope (APEX; Guisten et al. 2006), the Large Millimeter Telescope
(LMT; Hughes et al. 2010), the Pico Veleta IRAM 30 m tele-
scope (PV; Greve et al. 1995), the Submillimeter Telescope
Observatory (SMT; Baars et al. 1999), the James Clerk Maxwell
Telescope (JCMT), the Submillimeter Array (SMA; Ho, Moran,
& Lo 2004), and the South Pole Telescope (SPT; Carlstrom et al.
2011; Kim et al. 2018). Also included are three additional sta-
tions which were selected based on their favourable geographical
location for optimal aperture coverage (Raymond et al. 2021): the
Greenland Telescope (GLT; Chen et al. 2023), Kitt Peak 12m tele-
scope (KP; Ziurys et al. 2016), and the Plateau de Bure IRAM
Northern Extended Millimeter Array (PDB; Akiyama et al. 2017a).
Henceforth, the full array, consisting of 11 stations, is referred to
as the EHT2022 system (R23).

Following the challenge dataset, observations are synthesised
from the array with 10 min integrations interleaved with 10 min
breaks over a period of 24 h beginning on MJD =0, 1858-11-
17 midnight UTC. Within each scan, data is captured at a 10s
cadence. The dimensions of the nearly circular effective clean
beam is ~24 pasx23 pas and the aperture coverage is illustrated
on the top-left panel of Figure 3 in (R23). In the absence of any
aggregation operations, the total number of real-valued closure
invariants is 76 700. However, in order to minimise thermal noise
and keep the dataset at a manageable volume, we choose to aver-
age the visibility data within each 10-min scan. The compressed
dataset consists of 1 294 closure invariants for each observation,
1 248 of which are independent. However, we retain all closure
invariants for the neural network to learn from the positional
encoding for every antenna triad. In Appendix B, we investi-
gate the consequences of averaging closure invariants relative to
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averaging visibilities in the presence of thermal noise and mul-
tiplicative corruptions, concluding that while the former is often
quantitatively superior in the presence of time-dependent noise,
it’s unlikely that an enhancement in reconstruction fidelity would
be detectable in this study.

Using the fixed aperture coverage, we train the diffusion model
for 200 epochs as described in Section 4.2.3 and the model with
the lowest running mean loss is saved. To generate an image
reconstruction, the conditional denoising UNet is initialised with
random Gaussian-distributed noise and closure invariants from
an unknown image are concatenated with features passed between
convolution layers within the UNet. The resulting latent repre-
sentation after T'=1 000 timesteps is decoded into an image. We
generate N =1024 images to serve as the input for the CNN
model to create the final image reconstruction while minimising
the closure invariants loss term. Figure 2 illustrates the output of
each layer in the GENDIRECT architecture for an example simu-
lated image of Sgr A*, which is not present in the training dataset.
We show a grid of 64 images sampled from the diffusion model
conditioned on closure invariants and the final reconstruction
from the CNN. All of the individual images sampled from diffu-
sion consistently depict a crescent-like morphology, indicative of
a reconstruction with relatively high confidence.

5.1 Evaluation metrics

We quantify the reconstructed image fidelity with the maximum
normalised cross-correlation metric, pnyx, as (C18; R23),

prx(Arees T) = 1T14 max |FUFAIFENY, @

where forward and inverse Fourier transforms are represented by
F and F!, respectively, and the operation I=1-1 /oy is any
image I normalised by its mean and standard deviation. The total
number of pixels is represented by M, normalising the pnx where
a unit score denotes a perfect reconstruction. In contrast to pixel-
by-pixel similarity metrics, the pnx is insensitive to the absolute
position and overall flux of the source, which prevents different
reconstructions from being unduly penalised by information that
is not constrained by closure quantities. Unless specified other-
wise, we measure the pyx of any reconstructed image, denoted by
Ayrec, with respect to an unaltered ground truth image, denoted by
T. Additionally, we evaluate the goodness-of-fit to data with the
reduced x? metric, which is commonly used in other studies to
evaluate data adherence in the context of image reconstruction,
despite non-linearities in the modelling approach. The reduced
x?* on closure invariants, denoted by x2, is defined as the sum
of error-normalised residuals previously defined in Equation (3),
divided by the number of independent closure invariants which is
the substitute for the degrees of freedom.

Both pnx and x2 operate on the final single-image reconstruc-
tion output from the CNN. However, the generative diffusion
component of GENDIRECT can produce a variety of intermedi-
ate images given a single set of closure invariants. In order to
quantify the performance of the diffusion component, we intro-
duce the continuous ranked probability score (CRPS; Hersbach
2000). CRPS is a metric used for measuring the distance between a
sample probability distribution function (PDF) and a true PDF.
Thus, the CRPS is sensitive to multi-modal posterior probabil-
ity distributions, a useful property for identifying the presence
of morphologically disparate image reconstruction clusters in the
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Figure 2. Illustration of the output from each layer of the GENDIRECT architecture and typical imaging procedure. The illustration utilises a simulated image of Sgr A*, which is
not part of the training dataset. Random noise is used to initialise the denoising UNet conditioned on closure invariants observed from the ground truth image to create a sample
of latent information, which can be decoded into images. We show 64 images sampled from the diffusion model, all of which show a crescent-like structure. The final image is

reconstructed by the CNN by learning the optimal compression of the diffusion sample.
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Figure 3. Plot of the maximum normalised cross-correlation image fidelity metric, pxx
(dots), of the final reconstructed image and the relative CRPS (crosses) of the diffu-
sion output as a function of the closure invariants’ signal-to-noise ratio on a simulated
observation of Sgr A*. Vertical dotted lines mark SNR thresholds of 31.4, 10, and 3,
which correspond to the median phase calibrated Stokes | component SNR of the pri-
mary M87 EHT dataset (Event Horizon Telescope Collaboration et al. 2019b), a SNR
threshold for self-calibration, and a threshold commonly used for low-SNR flagging,
respectively.

output of the diffusion model. In this context, we define the image
reconstruction CRPS as

M +o00
CRPS(A) = % Z/ [CDF;(A,) — CDF;(A)]*dA, (5)

where CDF;(A) is the cumulative distribution function of pixel
intensity for all diffusion model reconstructed images, A,, and
CDF;(A) is Heaviside step-function centered on the true inten-
sity of image A at the i-th pixel. As a pixel-by-pixel comparison,
we shift the images to maximise pxx with the ground truth image
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prior to estimating the CRPS. Though the numerical value of the
CRPS is not interpretable between reconstructions of different
sources, we use the CRPS value to measure performance of the
diffusion output on the same source under varying levels of addi-
tive noise in the following section. Therefore, the CRPS measures
the performance of the diffusion model only while pnx and x
measures the performance of the final single-image reconstruction
after passing the diffusion output into the CNN. We emphasise
that neither the CRPS nor pxx are used during model training.
They are metrics introduced for evaluating the performance of the
trained model.

5.2 Thermal noise corruption

As multiplicative station gain errors and phase corruptions are
removed by the closure invariant construction to first-order, we
consider how the additive thermal noise affects the signal-to-noise
ratio (SNR) of closure invariants and the subsequent reconstruc-
tion in this section. With the addition of the thermal noise term,
the uncertainty of the closure invariants are no longer agnostic of
the overall flux of the source. Thus, we test the robustness of the
model for sources normalised to a total flux of 1 Jy and we report
the performance with respect to the median closure invariant SNR.
We explore the performance of GENDIRECT as a function of SNR
by enhancing the system equivalent flux densities (SEFD) of all sta-
tions by the same multiplicative factor in order to achieve a desired
SNR. Then, we sample an observation at that SNR to produce a
reconstruction from the noisy closure invariants.

In Figure 3, we illustrate the performance of GENDIRECT on
simulated observations of the Sgr A* model displayed in Figure 2.
We measure the maximum normalised cross-correlation image
fidelity metric, pnx, and the relative CRPS of the diffusion out-
put as functions of the median SNR of closure invariants. In
this idealised scenario, GENDIRECT’s performance on the Sgr A*
model asymptotically approaches pnx = 0.99 at high SNR and its
resilience against noise is demonstrated by the consistent per-
formance down to SNR~ 3, only dropping to pnxx < 0.90 near
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Figure 4. Results of the GENDIRECT image reconstruction pipeline on a variety of test images, where the first five basic shapes (Gauss, Double, Ellipse, Ring, and Crescent) are
represented in the training dataset, but the latter three (m-ring, Centaurus A, and Einstein) are examples of untrained morphologies. The first row presents the ground truth image
from which visibilities and subsequently closure invariants are derived. The GENDIRECT middle row presents the final reconstruction from this work’s imaging pipeline, alongside
the maximum normalised cross-correlation pyx image fidelity metric. The bottom row displays the ground truth closure invariants as black diamonds and reconstruction closure
invariants as grey points. The final x2 goodness-of-fit metric is shown. The Einstein model is illustrated with an inverted colourmap for enhanced visual clarity.

SNR < 1. The performance of the diffusion model, as mea-
sured by the CRPS, follows a similar general trend, implying a
similar response to noise between the diffusion component of
GENDIRECT and the output of the CNN. If this performance is
maintained in non-ideal scenarios, it implies that under the stan-
dard SEFDs of the EHT2022 array, GENDIRECT can be used to
produce good quality reconstructions of sources with total fluxes
several times fainter than M87, and potentially as low as 0.1
Jy. While this was achieved with GENDIRECT trained on noise-
less synthetic observations, it’s conceivable that incorporating the
noise response of closure invariants during training can assist the
model in generating predictions with even greater resilience to
thermal noise.

As the closure invariants construction is not necessarily unique
(Thyagarajan et al. 2022), different forms of the closure invari-
ants can influence GENDIRECT’s response to noisy corruptions
due to heterogeneity in the array. Blackburn et al. (2020) demon-
strated that when the array’s sensitivity is dominated by a single
station, constructing closure phases centered around baselines
of that station would minimise the closure phase covariances.
Closure invariants would similarly benefit from strategic selection
of reference antenna, which define the specific manifestation of
these invariants. We confirm that varying the reference baselines
does not influence noiseless reconstructions, as the information
content is identical. However, we caution that the robustness
of the reconstruction to noisy corruptions will depend on these
decisions.

5.3 Trained and untrained morphologies

In this section, we present the product of the GENDIRECT recon-
struction pipeline in Figure 4 for both trained and untrained
morphologies, normalised to 1 Jy. The trained morphological
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classes are the 2D Gaussian, double Gaussian, ellipse, ring, and
crescent. The untrained morphologies include a fourth-order m-
ring (Roelofs et al. 2023a), Centaurus A model (Janssen et al.
2021), and Einstein’s face. In order to adapt Einstein’s face for
our model, we have augmented the image with a radial tapering
mask, similar to those applied to the CIFAR-10 dataset. The field-
of-view of all images is fixed to 225 pas x 225 pLas and the image
dimensions are 64 x 64 pixels.

We achieve near-flawless performance on image fidelity met-
rics for all trained morphologies, with pxx 2 0.98. Note that any
departure in pyx from unity under 0.005 has been rounded up and
a shift in the position of some reconstructions, most evident for the
Gaussian and double Gaussian models, are consequences of ambi-
guity in the absolute position of the source when closure invariants
are the only available data terms. For four of the five trained mor-
phologies, the x&, data metric shows decent performance. The
conventional interpretation of reduced x2 centered around the
ground truth value of unity would not be applicable in this con-
text, as closure invariants exhibit non-trivial covariances between
each other and the construction of the closure invariants is a sig-
nificantly non-linear process. Consequently, the effective degrees
of freedom relevant to the reduced x2 is not straightforward.
Nevertheless, it is possible to control the final reconstruction x2,
value and minimise instances of overfitting to noise by implement-
ing convergence criteria during CNN training. The ring model
appears as an exception where it is faithfully reconstructed in
the image domain, but exhibits noticeably weaker performance
on x&; Indeed, while the pnx score is good, non-uniformities in
the ring surface brightness can be observed along its circumfer-
ence. By inspecting the output of the reverse diffusion process, we
observe that there is minimal morphological diversity in the sam-
pled images from the denoising UNet model. While indicative of a
reconstruction with high confidence, the final image produced by
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Figure 5. From left to right: Ground truth image, median image reconstruction, median absolute deviation image of all reconstructions, and ratio image of the median to the
median absolute deviation, which illustrates a ‘signal-to-noise’ ratio of image reconstructions. Large values in the ratio image indicate pixels with low variance relative to the
mean pixel intensity. Contours on the ratio image highlight pixels with high perceptual hash variance, which corresponds to higher morphological uncertainty. They are observed
to occur on regions of low signal-to-noise’ ratio, and thus do not signify an appreciable morphological difference.

the CNN retains characteristics of the diffusion sample, notably
its difficulty in adhering to closure invariants. By applying small
augmentations to the generated sample to regenerate the genera-
tive sample diversity, we can produce an alternative reconstruction
with a more uniform surface brightness and improved perfor-
mance on both metrics (pnx =0.99 and x&; = 0.45, not shown
here). Hence, we find that a suitable diversity of images for the
CNN to compress is a prerequisite for good performance on data
metrics. Therefore, we recommend inspecting the diffusion output
to ensure morphological diversity in the sample prior to applying
the CNN operation.

Despite not being represented in the training dataset, the
performance of GENDIRECT on the fourth-order m-ring is com-
parable to that of the trained morphologies. However, other
untrained morphologies, such as the Centaurus A edge-brightened
jetand Einstein’s face, are more considerable challenges. Although
human faces are not in the CIFAR-10 dataset, Einstein’s radially
tapered face is accurately reconstructed by GENDIRECT and the
adherence to data is also excellent. Facial characteristics such as
the eyebrows and eyes, outline of the nose, moustache, facial shape,
and brightness asymmetry between the cheeks can all be identified
in the reconstructed image.

The lowest image fidelity reconstruction in this untrained mor-
phology test set is that of Centaurus A, which still achieved pnx >
0.9. There is also a notable degradation in the x2 metric com-
pared to other morphologies. Spurious low luminosity artefacts,
which are parallel to the edge-brightened jet, can be observed.
These features resemble the artefacts shown in the closure-only
reconstructions in Figure 7 of C18, which are explained as local
minima in the regularised maximum likelihood objective func-
tion. In our case, the poor performance in xZ is the result of
the constrained field-of-view of images in the training dataset,
where extended low-luminosity emission is never present near
the edge of the image. By applying the identical radial tapering
mask as on Einstein’s face to Centaurus A and thereby remov-
ing these extended features, we are able to recover pyx = 0.98 and
x&; = 0.30 with no artefacts, which aligns with the performance on
other morphologies. The alternative augmented reconstruction of
Centaurus A is not shown in the figure. From this, we conclude
that as long as much of the overall flux is confined within the
fixed field-of-view of the model appropriate for the interferomet-
ric array, GENDIRECT would be capable of producing excellent
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image reconstructions under the constraints of sparse aperture
coverage typical of VLBL

5.4 Reconstruction confidence

By design, GENDIRECT functions as a generative imaging appli-
cation, enabling the pipeline to produce different final recon-
structions originating from the same input dataset. This property
enables us to visualise a distribution in image and data fidelity
metrics stemming from the generative variety, as well as produce
a standard deviation image by aggregating all reconstructions.
To isolate the generative diversity of reconstructions, we synthe-
sise a single noisy observation of the Sgr A* model described in
Section 5.2 at standard SEFDs. We artificially decrease the data
SNR by scaling the total flux of the source model to 0.5 Jy in
order to exaggerate the image reconstruction variation and visu-
alise reconstruction confidence at a lower SNR. We then create a
sample of final reconstructions by binning the diffusion-sampled
image dataset into 100 bins of 1 024 images each, from which one
CNN final reconstruction is created for each bin. We illustrate the
median and median absolute deviation of all final reconstructions
in Figure 5, which is more outlier-resistant than the mean and
standard deviation metrics. Because closure invariants are insen-
sitive to the overall flux and position, we normalise the flux of all
reconstructions and shift by the maximum cross-correlation prior
to computing the median and median absolute deviation. We also
measure the ‘signal-to-noise’ ratio between the median recon-
struction and its median absolute deviation. Large values in the
ratio image indicate pixels with low variance relative to the mean
pixel intensity, and therefore higher reconstruction confidence.
From Figure 5, we observe the ground truth, median recon-
struction, median absolute deviation, and ratio images, respec-
tively. The median absolute deviation and ratio images both
exhibit a thin crescent, which is reconstructed at high confidence.
Due to instabilities from low variance pixels, the ratio image
exhibits spurious features in its periphery, including the appear-
ance of a square-shaped image frame and an enclosed low ‘signal-
to-noise’ disk. As both the median flux and absolute deviation are
diminutive in these regions, it is difficult to interpret the image
morphology reconstruction confidence. Moreover, by normalis-
ing all reconstructions to the same overall flux without regard for
image structure, we can inadvertently introduce flux differences
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between perceptually identical image reconstructions. Therefore,
we separately define a proxy for image morphology reconstruction
confidence by leveraging perceptual hashing methods.

Perceptual hashing is a family of algorithms designed to quan-
tify image similarity, and it is generally used to identify redun-
dancy in an image dataset, cluster images, or perform reverse
image search (e.g. Samanta & Jain 2021). While more advanced
algorithms create hashes from the discrete cosine or wavelet trans-
formed images, we directly hash our images by thresholding the
intensity based on the 90th-percentile of the image’s non-zero
flux distribution. We then visualise the variance of hashes from
the large sample of image reconstructions by plotting the percep-
tual hash standard deviation as contours on the right-most panel
of Figure 5. The contours indicate regions of greater uncertainty.
The advantage of the hashing operation over the ratio image is
that complex structure is no longer manifested over perceptually
insignificant regions, such as near the image periphery. Rather, we
can immediately identify a thin boundary across the ring circum-
ference, where variations in the ring size between reconstructions
measured at the threshold intensity are expected to remain on
the order of one pixel width, which corresponds to ~3.5 pas.
The size of the internal depression also remains consistent to
one pixel width. However, the more non-trivial result is at the
faint edge of the reconstructed ring, where perceptual differences
between reconstructions can be identified where the emission is
boosted away from the line-of-sight. These differences in the loca-
tion of the faint edge between reconstructions manifest as a larger
contour-enclosed area, expressing higher perceptual hash uncer-
tainty. However, we observe that the perceptual hash uncertainty
contours cover regions of low ‘signal-to-noise’ ratio, and hence
they do not represent a significant morphological difference.

6. Discussion

One of the advantages in the approach we have taken with
GENDIRECT is that once we have selected the training dataset,
output image properties, data post-processing steps, and a fixed
architecture,” there remains a limited set of additional hyperpa-
rameters that can be tweaked to influence the reconstruction.
Unlike alternative imaging techniques, there are no tunable cal-
ibration datasets, explicit priors, nor regularisation terms with
independent weighting schemes. Rather, the augmented CIFAR-
10 dataset and simple geometric models impose an implicit prior,
and the diffusion model learns the effective regulariser based on its
training. Nevertheless, this procedure can introduce a few biases.
For instance, the image interpolation applied prior to the CNN
optimisation encourages reconstructions with smoothly varying
surface brightness distributions and image positivity is enforced
by a final non-linear activation function. The performance of
the diffusion model on any particular test source also depends
on the presence of structurally similar sources in the training
data, although the CNN refinement strategy aids generalisation on
unseen morphologies as seen in Figure 2. The decision to apply a
radial tapering augmentation on the CIFAR-10 dataset encourages
the model to favour reconstructing centralised emission sources
within its field-of-view. The remaining tunable hyperparameters
in GENDIRECT are related the cost function of the CNN: whether

"Note that while the network architecture is tunable in principle, sufficiently deep net-
works, when independently optimised for the desired task, are generally insensitive to
minute design decisions.
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it is x% as we have adopted or other equally valid loss func-
tions. Due to the sparsity of explicit tunable hyperparameters,
GENDIRECT provides a relatively simple and easily reproducible
imaging tool for VLBL

In the previous section, we described a suite of internal tests
we developed to evaluate the results of GENDIRECT on noise,
unseen morphologies, and reconstruction confidence. We demon-
strated the generative GENDIRECT deep learning model can suc-
cessfully reconstruct general morphologies under the challenging
constraints of extreme data sparsity characteristic of the Event
Horizon Telescope aperture coverage. Additionally, we find the
result is robust against station-based corruptions and thermal
noise. However, the model performance is best when much of the
overall flux of the source is confined within the fixed field-of-view
of the model. While all of the previous tests utilise our own syn-
thetic datasets, in this section, we test GENDIRECT on datasets
which use different noise models and critically, are not created by
our own aperture synthesis pipeline.

6.1 ngEHT Analysis Challenge 1

The ngEHT Analysis Challenges® are a set of public data chal-
lenges motivated by the anticipated performance upgrades the
ngEHT would deliver compared to the EHT array. These chal-
lenges are designed to encourage rapid development of imaging
algorithms and strategies tailored to datasets produced by the
ngEHT, particularly by expanding imaging techniques to accom-
modate both the time and frequency domain. There are four total
analysis challenges with increasing complexity, and each of them
tests a different component of the image reconstruction inverse
problem: 1. total intensity imaging, 2. dynamic imaging, 3. polari-
metric imaging, 4. parameter estimation. In this work, we focus
on Challenge 1, the total intensity imaging challenge, for which 8
datasets were provided, containing two sources (M87 and Sgr A*)
at two frequencies (230 and 345 GHz), synthetically observed with
two arrays (EHT2022 and ngEHT). Details of the ground truth
simulations, observation sequence to generate the synthetic data,
and noise properties are described in R23. Here, we summarise
the most pertinent details related to the specific adaptation of our
image reconstruction strategy.

The EHT2022 array and observing sequence of all challenge
datasets are as described in Section 5, where 10-min scans in the
challenge dataset are simulated interleaved with 10-min breaks on
a 24-h track. The ngEHT array is composed of 10 additional sta-
tions, but we note that not all stations in both the EHT2022 and
ngEHT can observe at 345 GHz, limiting its aperture coverage.
Unlike the synthetic observations used to train our model, the data
of the challenge datasets include thermal noise estimated from the
receiver and atmospheric opacity. Moreover, visibility phases were
randomised between scans sourced by station-based multiplicative
corruptions. Their effects are removed by the closure invariants
construction as long as care is taken that the data are averaged
within each scan, where the phases are stable. The total flux of M87
is on the order of 1 Jy and the total flux of Sgr A* is around 3 Jy.

From its conception, the ngEHT Analysis Challenge 1 has
never been a blind challenge, as the input source models were
provided to all participants. However, once we fix the cost func-
tions and network architecture as described in Section 4, there
are very few hyperparameters in GENDIRECT that can be tweaked

“https://challenge.ngeht.org/.
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Figure 6. GENDIRECT reconstruction for all 8 datasets in the ngEHT Analysis Challenge 1, separated by the observation array (EHT2022 and ngEHT), frequency (230 and 345 GHz),
and source (M87 and Sgr A*). In all panels, the effective beam size and shape is illustrated in the bottom right corner. All reconstructions convincingly recover the black hole

shadow except the Sgr A* source observed with the EHT2022 array at 345 GHz.

to influence the reconstruction. To tackle the ngEHT total inten-
sity analysis challenge, we use the same training dataset filled with
non-astronomy augmented CIFAR-10 images described in Section
4.2.3, adopt a 225 pLasx 225 pas field-of-view over a 64 x 64 pixel
grid, and we choose to average the visibilities within each scan
before computing closure invariants. From there, we apply the
procedure described in Section 4.2.3 to train the GENDIRECT
model and perform the image reconstruction using the challenge
dataset’s data as illustrated in Figure 1.

In addition to the fidelity metrics introduced in Section 5.1, we
consider the traditional closure amplitude and phase x? metrics
as well. We compute the x? metrics on closure quantities derived
from pre-averaged visibility data in order to perform a direct com-
parison with other reconstruction strategies. Following R23, we
also implement the effective resolution metric, O, defined as the
FWHM of a 2D circular Gaussian kernel, G;°, convolved with
the ground truth image, such that the pnx of the blurred truth
with respect to the unblurred ground truth is identical to the pnx
measured for the reconstructed image. Leveraging the effective
resolution, we measure a proxy for the dynamic range, which is
defined as (R23),

_ max (T * (_};j;)

=——"", (6)
|Arec —Tx gezclzl

where T is the ground truth image and * denotes the convolution
operation with a Gaussian kernel characterised by the effective res-
olution of the reconstructed image, A... The new array, D, which
inherits the dimensions of the image, is the ratio between the
brightest pixels of the blurred ground truth image with the resid-
uals between the reconstruction and the blurred ground truth.
Dy, where D, = quantile (D, q) is defined by (R23) as a proxy
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for the dynamic range to evaluate the performance of distinct
reconstruction methods.

We present the GENDIRECT reconstruction for all 8 datasets
in Figure 6. Seven of the eight reconstructed images convincingly
recover the black hole shadow and accurately reconstruct its size
and shape when compared to the supplied ground truths. For the
one exception of the Sgr A* source observed with the EHT2022
array at 345 GHz, the aperture coverage at 345 GHz with the
EHT?2022 array is too sparse for a high-fidelity reconstruction and
no independent submitter presented a successful reconstruction of
the black hole shadow with that dataset (R23).

In Table 1, we compare the measured evaluation metrics
described in Section 5.1 for our M87 reconstructions with those of
independent submissions, whose results are presented in Table 1
of R23. As we do not attempt to reconstruct the image in the
full 1 mas field-of-view of the simulation, we compare our recon-
struction only to the submissions of Alexander Raymond, Nimesh
Patel, and a single reconstruction from TeamIAA (R23). These
submissions were selected for comparison because limitations had
been imposed on the reconstruction field-of-view, similar to our
work. Despite using only the closure invariants for image recon-
struction, the performance of the GENDIRECT images on most
image-related metrics are second only to A. Raymond’s recon-
structions. We achieve competitive performance on data metrics.
Overall, we identify similar trends in our results as those seen by
R23. The image reconstruction quality for 345 GHz is generally
worse than for 230 GHz due to lower source flux and poorer aper-
ture coverage. However, while the dynamic range of other recon-
struction methods typically improve with the enhanced aperture
coverage of the ngEHT array, the GENDIRECT dynamic range
stays roughly the same. The most probable reason for this is that
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Table 1. Reconstruction evaluation metrics for M87 comparing the GENDIRECT reconstruction to submissions of Alexander Raymond and Nimesh Patel, with one
reconstruction from TeamlIAA (R23). The submissions chosen for comparison are based on whether the reconstruction field-of-view had been constrained, similar to

this work.

Source Array v (GHz) Submitter Method xfphase )(lzcamp x3 PNX Ot Doa
mM87 EHT2022 230 N. Patel EHT-IMAGING 3.66 1159.6 - 0.77 21.2 418
M87 EHT2022 230 A.Raymond EHT-IMAGING 2.28 177 - 0.90 8.0 291
M87 EHT2022 230 This work GENDIRECT 1.21 1.58 1.15 0.86 10.1 494
m87 EHT2022 230 This work EHT-IMAGING™ 1.88 1.80 4.63 0.85 11.6 371
mM87 EHT2022 345 N. Patel EHT-IMAGING 1.20 7.29 - 0.79 16.7 734
M87 EHT2022 345 A.Raymond EHT-IMAGING 1.19 0.62 - 0.88 8.2 700
mM87 EHT2022 345 TeamlIAA SMILI 1.19 0.62 - 0.79 16.7 645
M87 EHT2022 345 This work GENDIRECT 1.19 1.63 1.39 0.85 12.3 356
m87 EHT2022 345 This work EHT-IMAGING™ 1.20 0.61 1.76 0.88 9.0 259
m87 ngEHT 230 N. Patel EHT-IMAGING 3.50 89.74 - 0.83 14.6 640
M87 ngEHT 230 A.Raymond EHT-IMAGING 1.65 2.14 - 0.92 6.2 532
m87 ngEHT 230 This work GENDIRECT 1.39 1.76 1.16 0.88 8.5 493
m87 ngEHT 230 This work EHT-IMAGING™ 1.95 3.51 2.64 0.86 10.1 381
M87 ngEHT 345 N. Patel EHT-IMAGING 1.20 9.99 - 0.79 16.7 853
M87 ngEHT 345 A.Raymond EHT-IMAGING 117 1.00 - 0.91 5.7 782
M87 ngEHT 345 This work GENDIRECT 1.17 1.04 1.60 0.87 9.9 397
m87 ngEHT 345 This work EHT-IMAGING™ 1.18 1.02 2.09 0.87 9.9 257

*Closure-only version.

our reconstructions utilise closure quantities, which are known to
have issues with dynamic range (e.g. Chael et al. 2018), whereas
the other submissions use the full visibilities. Another confound-
ing factor is that GENDIRECT is trained on an 8-bit image dataset,
which imposes limits on the dynamic range of the diffusion
reconstruction.

In Table 2, we compare the evaluation metrics for our Sgr A*
reconstructions with those of independent submissions. TeamIAA
provided submissions using three different algorithms (CLEAN,
EHT-IMAGING, and SMILI). As other submissions already use
EHT-IMAGING, we pick a single reconstruction from either
CLEAN or SMILI with the best pyx to present in the table. The
dynamic ranges of Sgr A* reconstructions are not reported in
Table 1 of R23. Unlike with M87, the GENDIRECT reconstruc-
tions rank first in image fidelity metrics for all datasets except the
345 GHz observation with the EHT2022 array, where none of the
submissions was able to accurately reconstruct the morphology of
the black hole shadow. The improved relative performance can
be attributed to the absence of a low surface brightness extended
jet, which would extend beyond the fixed field-of-view on which
the GENDIRECT model was trained. Rather, much of the over-
all flux of Sgr A* is confined within GENDIRECT’s field-of-view,
which is one of the conditions identified in Section 5.3 for the best
performance from the model.

6.1.1 Comparison with closure-only EHT-IMAGING

By restricting the data terms in the regularised maximum likeli-
hood algorithm, EHT-IMAGING, to the (log)-closure amplitudes
and closure phases, we can create and discuss closure-only recon-
structions for comparison with GENDIRECT on the imaging
challenges as part of this work. C18 presented descriptions of
their imaging workflows, and the code used in practice for M87
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Stokes I imaging on the April 2017 EHT observations is publicly
accessible in a GitHub repository.? To achieve the best possible
performance from many classical synthesis imaging algorithms,
such as EHT-IMAGING, it is important to tune and adjust the many
hyperparameters of the imaging operation, including the number
of iterations, image prior, initialisation, data terms, regularisa-
tion terms, and weighting distribution. However, GENDIRECT
presents a machine-learning approach for VLBI image reconstruc-
tion that achieves its results without any further adjustment for
all challenge datasets. Therefore, for this comparison, we do not
expend the effort to tune EHT-IMAGING for each reconstruction
as additional tweaking would affect reproducibility and it would be
impossible to ensure that the effort is distributed homogeneously.
Instead, we describe our generalised adaptation of EHT-IMAGING
for closure-only imaging, inspired by C18 workflows, to perform
the imaging task for all 8 challenge datasets under the same general
constraints as GENDIRECT.

First, we fix the reconstruction field-of-view to 225 as
x225pas and the image dimensions to 64 x 64, identical to
GENDIRECT. The prior is a 40 pas centralised 2-D circular
Gaussian. We add another Gaussian of identical shape, offset by
40 pas on both spatial axes and with 1% the total flux of the central
Gaussian. The purpose of the offset Gaussian is to break the sym-
metry and avoid gradient singularities. From there, our adapted
imaging procedure consists of three imaging rounds. Each round
has a maximum of 100 iterations and adopts the preceding round’s
output as its prior. Although C18 suggested that down-weighted
corrupted visibilities could be included in the initial minimisa-
tion steps to aid convergence, we avoid using visibilities altogether
and assign closure phases a weighting factor twice that of the log

dhttps://github.com/eventhorizontelescope/2019-D01-02.
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Table 2. Reconstruction evaluation metrics for Sgr A* comparing the GENDIRECT reconstruction to all other submissions (R23). While TeamlAA presented submis-
sions using three different algorithms (CLEAN, EHT-IMAGING, SMILI), we choose to display the one submission from either CLEAN or SMILI with the highest pnx for

comparison.

Source Array v (GHz) Submitter Xehase XLamp x3 PNX Oett
Sgr A* EHT2022 230 N. Patel EHT-IMAGING 6.08 347.88 - 0.80 45.5
Sgr A* EHT2022 230 A. Raymond EHT-IMAGING 3.02 8.27 - 0.89 25.2
Sgr A* EHT2022 230 TeamlIAA 140.97 130.20 - 0.90 23.4
Sgr A* EHT2022 230 This work GENDIRECT 1.02 1.34 1.12 0.96 20.0
Sgr A* EHT2022 230 This work EHT-IMAGING* 1.16 1.54 26.10 0.95 25.2
Sgr A* EHT2022 345 N. Patel EHT-IMAGING 1.03 20.32 - 0.64 61.9
Sgr A* EHT2022 345 A. Raymond EHT-IMAGING 1.03 0.85 - 0.78 26.0
SgrA* EHT2022 345 TeamIAA 71.44 66.33 — 0.79 24.5
Sgr A* EHT2022 345 This work GENDIRECT 1.03 1.30 1.15 0.76 46.3
Sgr A* EHT2022 345 This work EHT-IMAGING* 1.03 0.85 1.53 0.77 43.7
SgrA* ngEHT 230 N. Patel EHT-IMAGING 20.23 122.65 - 0.65 100.0
SgrA* ngEHT 230 A. Raymond EHT-IMAGING 1.14 1.87 - 0.93 18.1
Sgr A* ngEHT 230 TeamIAA 1.40 8.81 - 0.95 14.3
SgrA* ngEHT 230 This work GENDIRECT 1.14 1.79 1.40 0.98 12.5
Sgr A* ngEHT 230 This work EHT-IMAGING™ 1.17 2.22 5.14 0.97 16.3
Sgr A* ngEHT 345 N. Patel EHT-IMAGING 2.18 15.58 - 0.64 61.9
Sgr A* ngEHT 345 A. Raymond EHT-IMAGING 1.14 1.15 - 0.90 10.6
Sgr A* ngEHT 345 TeamIAA 1.17 1.23 - 0.89 11.7
Sgr A* ngEHT 345 This work GENDIRECT 1.14 1.20 1.58 0.96 7.6
Sgr A* ngEHT 345 This work EHT-IMAGING™ 1.16 1.27 6.76 0.92 18.0

*Closure-only version.

closure amplitudes in the first imaging round as they are more
valuable for producing sensible image priors. We use log closure
amplitudes over regular closure amplitudes because C18 found
that they were a more robust data term in closure-only imag-
ing applications. All closure quantities are generated from 10-min
aggregated visibility data in the challenge datasets. After the first
round of imaging, the weighting term of the log closure ampli-
tudes and closure phases are set to be equal in all subsequent

rounds.

All imaging rounds use the total squared variation regulariser
weighted consistently at 10% of the closure phase weighting term.
We do not use either the flux or centroid regularisers. Between
imaging rounds, the intermediate reconstruction is convolved
with a circular Gaussian, which is an operation that only affects
the closure amplitude data term. The size of the circular Gaussian
is set to the measured effective clean beam between the first two
imaging rounds and half the dimensions of the effective clean
beam between the final two imaging rounds. These blurring opera-
tions aid the convergence of the reconstruction and help to remove

spurious high-frequency features.

We note that three imaging rounds with interleaved convo-
lution operations may not be sufficient for minimising the sup-
plied data terms, even with down-weighted regularisers. However,
aggressively minimising closure terms may not always improve
the quality of the image reconstruction on image fidelity met-
rics, especially when the field-of-view is fixed. Therefore, we
have decided to fix the maximum iterations to the three afore-
mentioned imaging rounds and report the outcome, presenting
simple and reproducible EHT-IMAGING results as a reference for

GENDIRECT.
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The results of the reference EHT-IMAGING closure-only recon-
structions are presented in Tables 1 and 2 for the M87 and Sgr
A* models, respectively. Like GENDIRECT, we find that the per-
formance of EHT-IMAGING on M87, once limited to only closure
terms and a fixed field-of-view, achieves intermediate perfor-
mance on image fidelity metrics compared to other submissions.
We confirm that the performance of closure-only EHT-IMAGING
on dynamic range shares similar characteristics to the results of
GENDIRECT in that they underperform compared to visibility-
based reconstructions and there is no significant improve-
ment between the EHT2022 and ngEHT arrays. Nevertheless,
GENDIRECT achieves higher relative dynamic range on M87
compared to EHT-IMAGING on closure terms. Meanwhile for Sgr
A* models, GENDIRECT consistently outperforms the reference
EHT-IMAGING output on all datasets for which a successful recon-
struction is possible, although the enhancement in quantitative
performance is moderate.

It can be observed that minimising data terms containing clo-
sure phases and (log) closure amplitudes does not necessarily
help to minimise the closure invariants data term. Alternatively,
minimising the closure invariants data term, as we have done
with GENDIRECT, simultaneously minimises data terms with
closure phases and amplitudes. By combining closure quanti-
ties into the generalised closure invariants formalism, it would
be possible to eliminate one degree of freedom in regularised
maximum likelihood methods controlling the relative weighting
between the phase and amplitude terms. Moreover, when uni-
fied as closure invariants, one would not need to apply the usual
differential treatment for the uncertainties of closure phases and
amplitudes.
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7. Conclusion

Closure invariants are specially constructed interferometric
observables composed of combinations of measured visibilities,
which capture calibration-independent information about the
true source morphology. Recently, Thyagarajan et al. (2022) and
Samuel et al. (2022) presented a unified formalism of closure
invariants for co-polar and polarimetric interferometric measure-
ments, respectively. Later, Thyagarajan et al. (2024) showed that
simple machine learning classifiers can use closure invariants
to predict an unknown source’s morphological class. Then, Lai
et al. (2025) showed that, by leveraging a convolutional autoen-
coder architecture and the attention mechanism of a trained
vision transformer, the complete set of co-polar closure invariants
contains sufficient information for generalised direct image recon-
struction under the sparse aperture coverage of VLBIL. However,
the Lai et al. (2025) model performed suboptimally on data met-
rics because closure terms were not considered as a component of
the loss function. Moreover, the model was deterministic, render-
ing it difficult to interpret the confidence of any individual image
reconstruction.

In this work, we presented a generative machine learning
approach to interferometric image reconstruction using closure
invariants, which can produce a family of images for each pro-
vided dataset and minimise the supplied data terms. Below, we
summarise the main results:

e This work presented GENDIRECT, a novel machine learn-
ing architecture and imaging pipeline designed for VLBI
imaging with closure invariants. The model consists of a
supervised conditional denoising diffusion UNet and an
unsupervised convolutional neural network (CNN). For
the predictive pipeline, closure invariants condition the
denoising process to sample a set of images, which are
used by the CNN to produce the final reconstruction. Once
GENDIRECT is trained, there very few hyperparameters
that can be tuned for each individual reconstruction. Thus,
GENDIRECT provides a relatively simple and easily repro-
ducible imaging tool for very-long baseline interferometry.
In following sections, we validated the performance of
GENDIRECT on varying levels of thermal noise, as well as
on both trained and untrained morphologies.

e Because GENDIRECT operates solely with closure invari-
ants, multiplicative station-based corruptions are canceled
out by construction. Therefore, we validate the perfor-
mance of GENDIRECT on additive thermal noise. Despite
being trained on noiseless synthetic observations, the
result of GENDIRECT is fairly resilient to high levels of
noise, maintaining consistent performance down to a clo-
sure invariant SNR ~ 3, implying that GENDIRECT can
achieve excellent performance on sources as faint as, and
potentially fainter than, M87.

e On all trained and untrained morphologies selected for
validation, GENDIRECT produces reconstructions with
onx > 0.9 on the maximum normalised cross-correlation
image metric, for which a value of unity is a perfect recon-
struction. On most reconstructions, the performance is
onx = 0.99, even for a reconstruction of Einstein’s face.
The data adherence as measured by the x&; metric is
also excellent. In the few exceptions, we can recover good
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performance on x; and improved pyx with minor adjust-
ments. We conclude in this section that as long as much of
the overall flux of the observed source is confined within
the fixed field-of-view of GENDIRECT, a high-fidelity
reconstruction is possible.

e We leverage the generative diversity of GENDIRECT to
quantitatively investigate reconstruction confidence. By
aggregating a large number of final reconstructions stem-
ming from a single input dataset, we visualise the median
and median absolute deviation images. Furthermore, we
define a proxy to visualise the image morphology recon-
struction confidence using perceptual hashing methods.
We find a high level of consistency throughout the recon-
structed sample, with small variations in the image mor-
phology in regions of low surface brightness.

e We apply GENDIRECT on the ngEHT total intensity anal-
ysis challenge, consisting of 8 synthetic datasets capturing
two horizon-scale source models with two arrays at two
different frequencies. We compare GENDIRECT’s per-
formance to closure-only EHT-IMAGING and other inde-
pendent challenge submissions, finding that GENDIRECT
achieves competitive performance on all datasets as
measured by quantitative image and data metrics.
Qualitatively, GENDIRECT resolves the ring morphology
in seven of eight datasets, with the only exception being
insufficiently constrained by the severely sparse aperture
coverage.

The performance of GENDIRECT highlights the potential of
calibration-independent data terms for co-polar interferometric
imaging. Moreover, we demonstrate the utility of novel machine
learning methods in solving inverse problems relevant to radio
interferometric imaging. In future work, we plan to continuously
develop GENDIRECT in the direction of dynamic, polarimetric,
and multi-frequency interferometric imaging. Furthermore, the
techniques underlying GENDIRECT can be adapted to currently
available public EHT data, notably data on M87 which evolve
over longer timescales compared to that of the aperture syn-
thesis imaging. The result, which we present in a future study,
would constitute an independent reconstruction utilising both
novel methods and data terms, offering an additional constraint
on source morphology and ultimately enhancing the reliability of
sparse VLBI imaging results.
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Appendix A. The diffusion objective

We first begin with a brief summary of the principles behind
denoising diffusion probabilistic models as described in the sem-
inal paper, Ho et al. (2020). Suppose that an image x, is sampled
from an underlying distribution g(xy). Forward diffusion on an
image is a Markov chain process which advances from timestep

t=0to T, defined as, A
qCelxi—1) =N (x5 fhes Utz) >

where 1, = /T — B; x;-; and 0 = B,Z for a time-dependent vari-
ance fB;. A normal distribution is denoted by N and Z is the
identity matrix. After T >> 1 timesteps, x; becomes consistent with
a pure isotropic Gaussian distribution. Therefore, given x;_,, one
could produce the new noisier image under forward diffusion
with x, = /T — Bixi—1 + +/Bi€r» with €, ~ N(0, T). By propagat-
ing the Markov chain forward from xg, it can be shown that the
relationship between x; to xy can be expressed directly through
reparameterisation as x;, = «/d;xo + /1 — d;€;, where @, =1— §;
and a; =T1__,a; (Sohl-Dickstein et al. 2015). Because a; is only
dependent on the predetermined variance schedule §;, it can be
precomputed to enable estimating x; from x, in a single sampling

of an appropriately scaled Gaussian noise distribution.

The objective of a diffusion model is to approximate the condi-
tional probability distribution p(x;_;|x;), representing the reverse
diffusive process, using a deep neural network. Under the assump-
tion that the reverse process is also Gaussian, we can approximate
the conditional probability distribution with a learnable mean

and variance o,

po(xe—1lxe) =N (xi—1; o (s 1), 07 (x4, 1))

where 0 describes the parameters of the neural network optimised
by gradient descent. Luo (2022) showed that the reparameterised

mean can be expressed as,

1o (xp, t) = L t)) ,

S

where €, (x;, t) is the Gaussian noise predicted by the network for
a particular dataset x; and timestep t. Therefore, the loss between
e and p, can be expressed solely in terms of the applied noise €,
and predicted noise €y(x;, t). Although %2 (x4, t) is also in princi-
ple learnable by the network (Nichol & Dhariwal 2021), we follow
after Ho et al. (2020) and Rombach et al. (2021) in optimising a
simplified form of the objective function Lgjmple, which achieves
comparable results or even outperforms the full objective function,

Esimple = Ex,,t,ét [Het — € (x4, 1) ”2] >

2
=E, e |:‘ € — €p (\/ajtxo + 1 —ase, t) H ] R

where E is the expectation operator. By taking gradient descent
steps on the above objective function, as Vi Lgmple, We can train a
neural network model to generate images that exhibit many qual-
ities similar to those in the training dataset using reverse diffusion
from a purely isotropic noise input. This framework has also been
explored by Feng et al. (2024) to generate data-driven image priors
for a variational Bayesian imaging method utilising normalising

flow techniques.
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In order to generate samples consistent with a particular input,
we need to manipulate the reverse diffusion process by condi-
tioning the prior data distribution with additional parameters, y,
as pg(x;—1|xs, ). We follow after Rombach et al. (2021) by map-
ping the conditioning features to intermediate layers of the UNet
via cross-attention layers (Vaswani et al. 2017; Devlin et al. 2018),
thereby optimising the conditional objective function,

EGenDIReCT = Ext,y,t,e, I:Het —€p (xt) t )’) HZ:I > (AS)

which ensures that the learned conditional image distribution,
po(x|y), approximates the training data conditional distribution,
Ddata(x]y). We note that Rombach et al. (2021) also describes a
domain-specific pre-trained encoder, 74(y), which is optimised
simultaneously alongside the diffusion model, €;,. However, we
find that conditioning the network on the y features directly results
in better performance in our evaluations.

Regarding the architecture of the diffusion model, we employ
the UNet model (Ronneberger et al. 2015), which consists of con-
volutional layers set in a symmetric contracting and expanding
pathways with residual connections (He et al. 2016) from the
contracting path that map features to their mirrored expanding
layers. The timestep, ¢, is encoded with the input by employing
sinusoidal positional embeddings (e.g. Vaswani et al. 2017). We
present a visual representation of the employed UNet architecture
in Figure 1, which illustrates how the forward diffusion process
is applied to the encoded latent features of input images from
the training dataset. Each diffusion step is predicted by the con-
ditional denoising UNet using the objective function of Equation
(2). Within the conditional denoising UNet, features from closure
invariants are concatenated with some of the convolutional layers
via the cross-attention mechanism, which conditions the denois-
ing process based on the input closure invariants. Additionally,
though it is not explicitly illustrated, the UNet is designed with
self-attention layers and standard convolutional layers without
attention.

Appendix B. Data compression by averaging closure invari-
ants

Throughout Sections 5 and 6, we have compressed the visibility
information on 10-min scans, where within each scan, data is cap-
tured on a 10s cadence. By aggregating information in this way,
we can compress the dataset into a more manageable volume and
improve the SNR. However, visibilities can be influenced by more
sources of data corruption than closure invariants. In this sec-
tion, we show that averaging closure invariants is generally a more
robust method of aggregating data than averaging visibilities prior
to computing closure invariants in the presence of noise. We also
discuss the circumstances for which the difference in the outcome
between the two methods can be substantial.

To demonstrate the difference between the two methods, we
run a simulation where we measure the sum of squared errors
(SSE) between noisy and true closure invariants resulting from
both processes. We utilise eht-imaging to synthetically perform a
12-h rotation synthesis noisy observation using stations from the
EHT array with standard SEFDs, capturing data at a 100s cadence,
and using the same Sgr A* model as in Figure 2 and Section 5.2. In
the first case, we average the visibilities across 600s windows before
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Figure Al. A multi-dimensional covariantillustration of the SSE ratio between averaging visibilities and closure invariants over the total flux density of the source, time-dependent
multiplicative gain corruption, and phase corruption. Each panel presents the variation in SSE ratio over two parameters, keeping the third parameter fixed at the nominal values

of 100 Jy, 0 gain error, or 0 phase error, as indicated by the dotted lines.
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Figure A2. Relationship between the median closure invariant SSE with the total flux density (left), time-dependent gain error (middle), and phase error (left). In each panel, the
other two parameters are fixed at nominal values of 100 Jy, 0 gain error, and 0 phase error to help isolate the effect of varying each parameter independently. The solid and dashed
lines correspond to the closure invariants SSE obtained from closure averaging and visibility averaging, respectively.

computing the closure invariants and in the second case, we com-
pute all of the closure invariants from the pre-processed visibilities
before averaging them over 600s windows.

Figure Al presents the median SSE ratio between the two
methods by varying the flux density of the source (a proxy for
signal-to-noise ratio for a fixed set of SEFDs), time-dependent
multiplicative amplitude corruption, and phase corruption. In
each panel illustrating the covariance between two parameters,
the third parameter is fixed at nominal values of 100 Jy (a proxy
for highest signal-to-noise ratio), 0 amplitude error, or 0° phase
error. Likewise, in Figure A2, two of the parameters remain fixed
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at nominal values while the effect of varying one parameter on
the median closure invariant SSE is illustrated independently
for both strategies. The advantage conferred by averaging clo-
sure invariants over visibilities is most sensitive to multiplicative
corruptions, while the alternative strategy of averaging visibilities
would only be preferable for a bright source with perfectly cali-
brated visibilities. Thus, whenever data compression is necessary
in future applications involving closure invariants, aggregating
the closure quantities rather than visibilities generally results in
more robust data terms. Adopting this strategy has the potential
to further improve the resilience of GenDIReCT to realistic noise
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corruption (additive and multiplicative). However, in this work,
where we have assumed no time-dependent multiplicative cor-
ruptions and principally explored the consequences of enhanced
thermal noise corruption on our reconstruction fidelity for 1 Jy
sources in Section 5.2, obtaining closure invariants after aggregat-
ing visibilities would not present a significant disadvantage nor
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affect the quality of image reconstructions in this work. We fur-
ther note that if the multiplicative corruptions are stable across
the averaging timescale, as is the case for the simulated ngEHT
total intensity analysis challenge data, then the disadvantage con-
ferred by obtaining closure invariants after averaging visibilities is
insignificant.
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