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Abstract

We are concerned with the solvability of variational inequalities that contain degenerate
elliptic operators. By using a recession approach, we find conditions on the boundary
conditions such that the inequality has at least one solution. Existence results of Landesman-
Lazer type for a nonsmooth inequality and a resonance problem for a weighted p -Laplacian
are discussed in detail.

1. Introduction—Background

The present paper is concerned with some solvability results for equations and varia-
tional inequalities that contain degenerate elliptic operators. Our interest is in problems
at resonance or problems with boundary conditions other than the Dirichlet condition,
which can be formulated as variational inequalities of the form

A(x,Vu)(Vv-Vu)dx+ / g(x,u)(v-u)dn+j(v)-j(u)
Jn (1 1)

ueK.

Here A is a degenerate nonlinear elliptic operator that corresponds to a weight function
m(x) where dfi = m(x)dx. We have also that A : fi x K" -> R" satisfies the
coercivity (ellipticity) condition A(x, v)v > am(x)\v\p, and the growth condition

\A(x, v)\ < pm(x)\v\p-\ a.e. x e fi, Vu e W,

where g(x, u) is a lower order perturbing term, / belongs to the dual space, K is
a closed convex set, and j is a convex, lower semicontinuous functional. Those
1 Department of Mathematics and Statistics, University of Missouri-Rolla, Rolla, MO 65409, USA;
e-mail: vy@umr.edu.
© Australian Mathematical Society 2003, Serial-fee code 1446-1811/03

409

https://doi.org/10.1017/S1446181100008117 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008117


410 VyKhoiLe [2]

variational inequalities are, in general, noncoercive. Our goal here is to examine exis-
tence results for nonlinear, noncoercive, degenerate, elliptic equations and variational
inequalities of the form (1.1).

The variational inequality (1.1) is the weak form of various differential equations
with obstacles or unilateral conditions. For example, the obstacle problem

- div(A (x, Vu)) + g(x, u) > 0,

u> if,
[-div(A(x, Vu)) + g(x,u)](u- \(r) = 0 in ft,

with u = 0 on 3 £2 (\j/ is a given function on £2), has (1.1) as a weak formulation with
j = 0 and K = [v € X : v > \J/ in £2} (see, for example, [9,25] for the derivation).
On the other hand, the equation

-div(A(x,

with the unilateral boundary condition

du du
u > \fr, — > 0 , ( u - V O — = 0 on 3ft,

3/1 dn

(\j/ is a given function on 3£2) can be written in the weak form (see [18]) as the
inequality (1.1) withy = 0 and K = {v €X w > f on 3fi}, or K = X and

10 if v > ^ on 3S2;

oo otherwise.

In the above examples, X is an appropriately weighted Sobolev space, chosen based
on the above ellipticity and the growth conditions of the principal operator A. The
degeneracy of A comes from the dependence of A on VM and also from the weight
function m(x) in the above ellipticity condition. In fact, the value of A(x, VM) may
vanish at the points where VM = 0 or m(x) = 0.

Degenerate equations and inequalities, in particular those containing the p-Lap-
lacian, have many applications in nonlinear elasticity, fluid mechanics (flow through
porous media), glaciology, petroleum extraction, etc. (see for example [13,15,22,
33] and the references therein). Recent applications of degenerate equations and
inequalities to sandpile evolutions, river networks and problems in superconductivity
have been investigated in [7,38^40].

The study of degenerate elliptic equations seems to have been initiated by the
pioneering work of Murthy and Stampacchia [35], where equations of the form

f [(a,y II,, + dj u)<t>Xi + (&,«,,. + cu)4>] dx= I F(j>, V
Jn Jn
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were studied. Here the a,y 's satisfy a degenerate elliptic condition

i.j

where m(x) > 0 may be 0 at points of Q. The paper was followed up by the works
of Trudinger, Alvino, Trombetti, Ivanov, Mkrtycjan and others (see [2,3,23,43] and
the references therein). Attention to degenerate equations has been recently renewed
with the works of Drabek, Kufner, Leonardi, Nicolosi and others (see [12,14,16,
17,32,36] and the references therein). In those papers, several existence results for
degenerate elliptic equations with Dirichlet boundary conditions were established by
topological arguments and/or existence results for equations containing Leray-Lions
operators. In [31], Le and Schmitt examined existence questions concerning positive
solutions of degenerate nonlinear elliptic equations and variational inequalities by
using topological tools such as the fixed point index and fixed point theorems.

However, in most of the cited papers, Dirichlet boundary conditions were con-
sidered, which implies the coercivity of the operator defined by the principal part,
which consists of the highest order derivatives. In problems with resonance or with
Neumann or unilateral boundary conditions, the principal operators are usually non-
coercive. Those problems have not been investigated in detail so far. Because the
kernel of the principal operator is nontrivial, a priori estimates are not immediately
available, and topological methods, which have often been used before (see for exam-
ple [31] and the references therein) are not directly applicable. We will consider in the
present paper solvability conditions for these noncoercive problems with degenerate
operators. We use for this purpose a recession approach, that is, we try to relate
the solvability of noncoercive equations or inequalities with behaviour at infinity of
certain corresponding operators and functionals. The recession method seems to have
first been used by Hess in [21 ] to prove existence results for noncoercive equations.

We do not assume here that the problems have variational structures; hence they
may not come from minimisation problems. Since our existence results for degenerate
equations and variational inequalities can be derived as consequences of some general
abstract results, we first present an existence theorem for general variational inequal-
ities in Banach spaces. Afterwards, the general arguments and results are used to
investigate the solvability of variational inequalities that contain nonlinear degenerate
operators, such as the weighted p-Laplacian.

The paper is organised as follows. We begin with some abstract results in Section 2
and after that, in Section 3, apply them to examples of degenerate equations and
inequalities. In Section 2, we introduce a basic property, called Property (P), of a
class of noncoercive problems. The Property (P) for variational inequalities that we
define here is motivated by certain related concepts in [29,30] and [5]. We next show
in Theorem 1 that, under some compatibility conditions, problems with Property (P)
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are solvable.
Section 3 is devoted to existence results for variational inequalities containing de-

generate elliptic operators. The problems are formulated in appropriately weighted
Sobolev spaces. The perturbing terms could have general, subcritical rates of growth
at infinity, not necessarily sublinear, as usually assumed in problems with resonance
(by using recession methods). Also, the perturbing terms could depend on the gra-
dient of the unknown function and the problems may not have variational structures.
The variational methods usually used are therefore not applicable. We establish in
this section existence results of Landesman-Lazer type for nonsmooth problems that
contain general degenerate elliptic operators (Section 3.1). Section 3.2 is concerned
with the solvability of a resonance problem for a variational inequality containing a
weighted p-Laplacian.

The abstract existence results here are adaptations and generalisations of those
presented in [29,30] and hence will only be outlined in Section 2. On the other hand,
the justifications of the abstract and general conditions in Theorem 1 and Proposition 1
for our particular degenerate equations and inequalities in Section 3 require nontrivial
arguments and calculations and new properties and estimates in weighted Sobolev
spaces. The recession methods and results in Section 3 seem to be new for problems
concerning degenerate equations and inequalities. They also improve and generalise
a number of results in this field.

2. An abstract existence result

Let X be a reflexive Banach space with norm || • ||, dual X* and dual pairing (•,•).
Assume that K is a closed, convex subset of X and7 : X —> KU {00} is a convex, lower
semicontinuous functional. In what follows, -*• is used to denote weak convergence
in X or weak* convergence in X*. For simplicity, we suppose throughout the paper
that 0 e K andy (0) = 0 (in particular, D(j)DK ^ 0). We assume that A : X -» X*
is a bounded, continuous and pseudo-monotone operator (that is, if xn -»• x in X and
limsup(/\(jcn),xn — x) < 0, then liminf(A(xn),xn — v) > {A(x),x - v), Wv e X
(see [33] or [10])). Also, A is bounded by polynomial functions of ||w||, that is, there
exist positive numbers /J, c and d such that

\\A(u)\\ <c\\uf + d, (2.1)

for all u 6 X. We are concerned in this section with existence results for variational
inequalities of the form

u ) + j ( v ) j ( u ) ( f , v u ) , VvzK,

u 6 K,
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where/ e X*. Motivated by the definitions in [29] and [5], we consider the following
property of a class of noncoercive problems.

DEFINITION 1. The pair (A, j) is said to have Property (P) on the set K if the
following condition holds:

If {«„} is a sequence in K such that

llu.ll - • oo, (2.3)

limsup < ^ < 0 , V , > 1 (2.4)
II "nil*

and

TTT "" w> (2-5)

II "J l
with w satisfying

Kll < II "„ + *«> II, V n . V U R , (2.6)
then there exists «0 € K D D(j) such that

[(Aun,un-uQ)+j(un)~\
limsup — > 0. (2.7)

L ll«»ll J
Note that condition (2.6) is, in some sense, the orthogonality between w and un in

the Banach space X. We have the following existence result for (2.2).

THEOREM 1. Assume that (A,j) has Property (P) on K and the following compat-
ibility condition holds:

IfwercKis such that there exists a sequence {«„} C K satisfying (2.3)-(2.5),
and moreover,

limsup — \-Joo(w) < (/, w), (2.8)

then

-w € re K, (2.9)

jooiw) <{f,w)< min{-yo o(-u;) ,0}, (2.10)

and there exists a subsequence {«„,} C {«„} such that

(A(unt),w)=0, Vk, (2.11)

then the variational inequality (2.2) has a solution.

Here re K denotes the recession cone of K, re K = f]l>0 tK andy',*, is the recession
functional associated withy, defined by joo(v) = l im^^y (tv)/t (v G X). We refer
to [42] (the finite-dimensional case) or [8,28,41] (the infinite-dimensional case with
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possible nonconvex sets or functionals) for basic properties of re K and j ^ , . In
particular, re K is the closure of the set [w e X : 3tx > 0, ax € K : a + tw e K, Vr >
tx}. We also note that if / = 0 andy — 0, then in (2.4) we can replace p > 1 by the
weaker condition p > 0.

Although not stated explicitly before in this form, similar results to Theorem 1 for
minimisation problems were established in [29]. Our proof of Theorem 1 follows the
same lines as in [29, Theorems 2.5 and 4.4] and is therefore omitted.

To conclude this section, we present a sufficient condition on A such that (A, j) has
Property (P). Although more restrictive, the condition is easier to verify and is satisfied
by several usual nonlinear operators. Proposition 1 will be applied later to show that
certain degenerate elliptic operators have Property (P). Its proof is straightforward and
is thus omitted.

PROPOSITION 1. Assume A — L + G, where L is homogeneous of degree p — 1 for
some p > 1, that is,

L(ku) = k"-1 L(u), VA.>0 , VueX, (2.12)

and G is completely continuous and satisfies

^ ) > ( )

Moreover, the functional <t> defined by <!>(«) = (L(u), u), Vu e X, is nonnegative,
weakly lower semicontinuous and

<t>(u-w) = <t>(n), V u e X, V io € <!>, (2.14)

(ct> = {w € X : <t>(io) = 0}) and there exists a completely continuous mapping
P : X -> K+ such that

<P(u) + P ( u ) > \ \ u \ \ " , W u e X . (2.15)

Under these conditions, (A,j) has Property (P)for any j convex and lower semicon-
tinuous.

REMARK 1. The approach used here is motivated by [29] and [30]. In these papers,
we examined sufficient conditions such that noncoercive minimisation problems have
minimisers. Although based on similar ideas, [29] and [30] aim at minimisation
problems and equations with variational structure, while we concentrate here on those
without variational structure, which is the case for elliptic equations and inequalities
with degenerate operators.
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3. Existence of solutions for unilateral degenerate elliptic problems

3.1. Existence results of Landesman-Lazer type for inequalities with degenerate
operators In this section, we apply the abstract results in Section 2 to existence issues
concerning variational inequalities and equations that contain degenerate, nonlinear,
elliptic operators. We consider variational inequalities of the form

u)+j(v)j(u)(f,vu), VveK,

\u 6 K.

Here £2 c IR̂  is a bounded domain, 1 < p < oo and /x is the positive measure
associated with a p-admissible function m in the sense of [20], that is, d\x = m{x)dx,
where dx is the usual Lebesgue measure in U.N. We denote by X = // lp(£2, /z) the
(first-order) weighted Sobolev space based on the weighted Lebesgue space Lp (£2, /z).
Here X is equipped with the usual norm

We refer to [20] for more detailed discussions on p -admissible weight functions and
their related weighted Lebesgue and Sobolev spaces.

We assume in (3.1) thaty is a convex, lower semicontinuous functional from X to
K U {oo}. The typical form of j is either

j(u) = f , u(x))dn or 7 (ii) - / tix, u(x))dS,
J

with \lr(x, u) being a Caratheodory function which is convex in u. As usual, dS
denotes the surface measure on 9 £2.

The set K is closed and convex in / / ' p(£2, /x) and is typically defined by some
obstacles, such as K = [u € X : u > \}r a.e. on Q], or by certain gradient conditions
such as K = {u € X : \Vu\ < c a.e. on £2}.

The nonlinear operator L : Hlp (Q, fi) -> [#'•''(£2, //,)]* is defined by

(L(u),v) = I A(x,Vu)Vvdx, (3.2)

where A : £2 x K^ —> \5&N, representing a degenerate elliptic operator, is a Caratheo-
dory function that satisfies the conditions

\A(x,v)-v>am(x)\v\P,
\\A(x,v)\<Pm(x)\v\p-\ a.e. x e £2, V u e K\

with a, $ > 0 (see [20,31]).
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A typical example of such an operator L is the quasilinear elliptic operator

(£.(«), V) = f J2 (E«ff(*. VlOfyil )
J a .-I \;=i /

The operator A is therefore given by

N

i,-(jc,m.- (i = l , 2 , . . . , ^ ) . (3.4)

The degenerate elliptic condition and growth condition in (3.3) are in this case

au (x, £)£,$, > am(x)\v\" and ^ (JC.

= \

(3.5)
/.; = ! i=l

for a.e. JC € £2, Vv € R". The latter condition holds if for all i,j e ( 1 , . . . , N] ,

ky(Jt,£)l < A>'«(JC)|I»|#'~2, for a.e. x e Q, Vu € R*.

A particular case of A in (3.4) is the degenerate p-Laplacian, that is, A(x,%) =
m(x)\t;\p~2%> for which (3.5) is clearly satisfied. A problem with a degenerate p-
Laplacian is studied in detail in the next section.

The mapping G : X -> X* is given by (G(u), v) = fng(x, u)vd(x, where
g : J 2 x R — • R i s a Caratheodory function with the growth condition

\g(x, u)\ < a(x) + b\u\'~\ (x€fi,«6 R),

where 1 < s < p* (p* is the Sobolev critical exponent), b > 0 and a e L*'(£l, ix) (s'
being the conjugate exponent of s). Moreover,

s(x U)U
liminf 6 ' > 0, for a.e. x e £2, (3.6)

and

g(jc, M)M > -cQ{x)\u\" - db(jc), (3.7)

for some do e L ' (^ , /z) and c0 6 Lv/(

We note that (3.7) is satisfied if the convergence in (3.6) is uniform with respect to
x € £2. Another specific case where (3.6) and (3.7) are satisfied is where g can be
written as a sum, g(x, u) = F(x, u) + H(x, u), where F and H are Caratheodory
functions on £2 x R such that H satisfies the sign condition

H(x,u)u>0, (3.8)
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for a.e. x e Q, all u e K with |u| large, and F satisfies a sub-(p — 1) growth condition,

F(x,u)u> —a ĵc) — l>,|«r,

where a{ € L\Q, ix), ax > 0, bx e K+, and a < p. In fact, in this case,

,. . 4.g(x,u)u . F(x,u)u
hm inf > hm inf > 0,
|u|->oo \u\P |II|-*OO \u\P

by the above growth condition. Moreover, for |w| > C (C > 0 sufficiently large),

g(x, u)u > F(x, u)u > -a,(Jc) - ^iM".

For |«| < C, we have

\g(x, u)u\ < a(x)\u\ + b\u\s < Ca(x) + Cb.

Hence, for all u e X,

g(x, u)u > -at(x) - bM" - Ca(x) - Cb,

with a, + Ca + Cs~lb e L'(£2, fi). This means that g satisfies (3.6) and (3.7).
We assume hereafter that the measure d\i = mdx satisfies the condition m €

La{Q.),m-^ € L*(ft), where a, £ > 1 and

|l/<T + l/£ <p/N, if p/N <l + l/$,
}l <CT < oo, if p/N > 1 + l/£,

which guarantees that the embedding Hlp(Q, ix) c-> Lp(f2, /i) is compact (see [31,
Proposition 1]).

Before stating the main result about the solvability of (3.1), we note that for
conditions of Landesman-Lazer type, it has been usually assumed that G has linear
growth from below, as in for example [5,6,11,21,27,34]. We consider here cases
where the perturbing term g has a more general (subcritical) growth condition from
below. The results, restricted to second-order, nondegenerate, semi-linear elliptic
equations containing the Laplacian, are in the same spirit as the results in [19] and
[24]. However, different variational methods are used in those papers, which require
variational structures (that is, the existence of potential functionals) of the problems.
Our results here therefore give another approach to those problems, which can also
be extended to problems without variational structures, to variational inequalities and
degenerate problems.

We also observe that the usual theorems of Landesman-Lazer type in [ 11,21,27,34]
and [19] can be obtained in a unified manner using Theorem 1 above.

We now prove the following result about the existence of solutions of (3.1). We
identify constant functions with real numbers, and therefore still use IR to denote the
set of constant functions.
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THEOREM 2. Assume g satisfies the growth condition (from below)

g(x, u)u > -C(JC) |K|« - d(x), a.e. x € Q, VM € R, (3.9)

where d e Ll(Q, n) andc € Z//(j-9)(ft,A0 (\ < q < s). Let

+ . , .. . - g(x,u)
gj(x) = hminf —,

9 U-KX) Uq~

If either

(i) re * D R = {0} or
(ii) 1 e re A, - 1 £ re A" (respectively - 1 € re AT, 1 £ re A") and fng+diJ, > 0

(respectively fn g~d/x < 0) or
(iii) KcrcK and

[ g+dn > 0 > f g'dfi, (3.10)

then (3.1) has a solution.

PROOF OF THEOREM 2. We prove the theorem under assumption (iii). The other
cases, being simpler, are carried out similarly. We also note that if K is a bounded
set, then re K = {0}, and (i) is satisfied. Equation (3.1) is of the form (2.2) with
X = Hip(Sl, it) and A = L + G. We check the conditions of Theorem 1. First,
we verify that (A,j) has Property (P) in X, using Proposition 1. By the assumptions
on A (see (3.8)), L satisfies (2.12). Assume that l iminfW K o o((G(«), u)/\\u\\p) < 0,
that is, there exists a sequence [un] in K such that ||Mn|| -> oo and

(G(un), un)
- 1 _ ] j r -<a<0. Vn. (3.11)

By passing to a subsequence, we can assume, without loss of generality, that
Un/\\un\\ ->• w in Hlp(Q, fx). By the compact embedding / / l p (S2 , fi) -» LP(Q., fi),
"n/ll«n| | -*• if in L P (Q, fj.). Passing once more to a subsequence, if necessary, we
can find a function we LP(Q, fi) such that

\un\/\\uj <uJ, Vn, (3.12)

and moreover,

",,/IKII -»• ru a.e. in n . (3.13)
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On the other hand,

I M - I I '

Noncoercive variational inequalities 419

,un)un _
| K - I ' V I I K - I I /

M"

If w(x) ^ 0, then un(x) is either (strictly) positive or negative for all n sufficiently
large (by (3.13)). Since

oo,

we have from (3.6), (3.13) and Fatou's lemma, that

lim inf I g<fi,».)»*(\±M\\. . f g(x,un)un /\un(x
iminf / I
n^°° J{xen:w(x)^0) \un(x)\P \ \\un\

^ f ,. . 4.g(x,Un)Un .. (\Un(x
> I hminf — — — - — • lim — —

Jixea:w(x)#» n^°° Wn(x)\" »-«> \ \\un\

,U)#0) L I"'-00

Also, it follows from (3.7) that

g(x, un(x))un(x)

(3.14)

iminf /
J{x<=n-.w(x)=o

> I limi
Jlxeii:w(x)=0)

du
Un\\P

g(x,un(x))un(x)
lim inf

|x€i2:ui(JC)=O) l l M n l l P

lim inf ( -coOO^r

dn

u j

=L -co(x) lim
:w(x)=0)

un(x)
= /" \w(x)\pdfx=O.

(3.15)

We note that Fatou's lemma is applicable in both (3.14) and (3.15), because from (3.7)
and (3.12),

g(x,un)un \un\p d"

\Un\\" \Un\\"
> -cow

p - d0

and cow" + do 6 Ll(Q, /x). Now, in view of (3.14) and (3.15),

lim inf— " ' " > lim inf / —^—j—- I —n— I dfi
\\un\\» ~ Jtx:,u(,)*0) \UH\P \\\UH\\J

. f g(x,Un)lln J
+ lim inf

\Un\\"

https://doi.org/10.1017/S1446181100008117 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008117


420 VyKhoiLe [12]

contradicting (3.11). This contradiction proves (2.13). On the other hand, for w e X,

Hence

<t>(w) =

Thus, for all u e X

<t>(« -

(L(w),w)= f
Jn

0 «

, W i

-w)= f A(x,
Jn

= • | V u > | =

E * ,

V ( M - w)) •

A(x, Vw) • VW^JC

0 a.e. in f2

V ( M - w)rfx

w =

A(x

j \Vw\pdix.
Jn

- constant.

, VM) • Vudx

Equation (2.14) results. Now, let P(u) = fn\u\p d\x, u e X. It follows from
the compact embedding W[ p(f2, fx) -̂̂  Lp{Sl, /x) that P is completely continuous.
Moreover, for all u e X,

P(u) > a f \Vw\" dn+ f \u\p dfi > C\\u\\p.
Jn Jnin

Hence (2.15) is also satisfied.
We have checked all the conditions in Proposition 1. Thus (A, j) has Property (P).

We now verify the compatibility condition in Theorem 1. Assume that (3.10) is
satisfied. Let w e re K and {«„} c A: be such that (2.3M2.5) hold. We use (2.4) with
k = q and then k = p. First, letting A. = p in (2.4), we get

„ .. (A(un),un) {L(un),un) . AG{un),un)
0 ^ h m SUP ^ 7 — V T - ^ hm SUP —TTTT^ + l i m i n f —TT-^ r -

{L(un),un) / O 1 , . . ,.
> hmsup (by (2.13)) > a hmsup —

\un\

p

by (3.3). Since wn := un/\\un\\ -* w,

0 = lim (J \Vwn\
p dfi) " > (f" (f \Vw\» d) "

by the weak lower semicontinuity of the semi-norm |||VM|||/.P(n). Thus |Viy| = 0 a.e.
in Q (note that the sets of measure 0 with respect to dfx and dx are the same), that is,
w is constant. Now, by letting k = q in (2.4), one gets

{A(un),un) \{L(un),un) (G(un),un)~\
0 > lim sup = lim sup

v
 I I M . I I '

 P L I K II* ll««ll« J
(G(un),un) f g(x,uH(x))un(x)

> hmsup = hmsup / da. (3.16)
| |«, II' Jn \\uj"
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By passing to a subsequence, if necessary, we can assume that «n(jc)/||«n || —> w(x),
for a.e. x G £2. Since w G R, we have three cases: iu > 0, w < 0 and w = 0.
Assume io > 0. It follows from (3.15) that for almost all x e Q, un(x) > 0 for all n
sufficiently large (depending on x), and moreover, un(x) -> oo, for a.e. JC G ft. Due
to the growth condition (3.9), we can use Fatou's lemma to obtain

(*> un(x))un(x)
d

.. . .g(x,Un(X)) [UnWW
hm inf • lim da

«> [ ( ) ] * - ' L l l« l lJ

> / hm i

~ Ja - « LJ
i^\l^Y [ 0, (3.17)

since u; > 0 and / n g^(x)d/x G (0, oo], by (3.10).
It is clear that (3.17) contradicts (3.16). Hence w cannot be positive. Similarly,

using the second inequality in (3.10), one can show that w cannot be negative either.
Consequently, w = 0. This implies w = 0 € re K and (A(un), 0) = 0. Moreover,
7^(0) = 0 = (/, 0) = min{-./oo(0), 0}, that is, (2.10) is satisfied.

We have proved that the compatibility condition in Theorem 1 holds. The existence
of a solution of (3.1) now follows from Theorem 1. The theorem is proved in case (iii).

Assume now (i). If ID G re A' satisfies (2.3)-(2.4), then, as shown previously,
u e l , Hence, w = 0. The remaining part of the proof is carried out as above. Now,
assume the first case of (ii). Since w e K D re K, we must have w > 0. But w cannot
be positive as in the proof for case (iii). Thus w = 0 and we have again the same
arguments.

We now consider the classical case of nonlinearity with linear growth from below.
We have the following extension of usual results as in [5,19,24] etc. to degenerate
equations and inequalities.

THEOREM 3. Assume g satisfies the growth condition g(x, u)u> — c(x)\u\ — d(x),
x G ft, u € K, where d G V(Q, /x) and c G L"'(Q,/JL). Let

gf(x) = liminf g(x, u), g^(x) = limsupgOc, M).

If either OS n re K = {0}, or 1 G re K, -1 i re K and

dn+joo(l)> (f, 1), (3.18)[ gt

https://doi.org/10.1017/S1446181100008117 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008117


422 VyKhoiLe [14]

or — 1 € re K, 1 g re K and

f gT d n - j n i - 1 ) < {f, I),
Jn

orRcrcK (that is, ±1 € re A") and

I g;dn-joo(-\)<{f, 1) < [ g+
Jn Jn

then (3.1) has a solution.

PROOF. Again, we apply Theorem 1. As in the proof of Theorem 2, A has Prop-
erty (P). We only need to check the compatibility condition. This is done in the case
where 1 6 re AT, —1 £ re K and (3.18) is satisfied. The proofs for the other cases
are similar. Suppose {un} and w satisfy (2.3)-(2.5) and (2.8). As in the proof of
Theorem 2, we can show from these assumptions that w e OS. From (2.8),

f (L(uH), un) {G(un),un)l .
hm sup — + — +joo(w) < {f, w).

L II "nil ||«J| JHence

Since w e OS D re /f, we must have w > 0. Assume u; > 0. We have

(G(un),un) .
hmsup—-— +joo(w) <(f,w). (3.19)

\\U\\

.. . . (G(un),ua) f g(x,un(x))un(x) f
hminf > I liminf dfj. > w I g7{x)dix. (3.20)

llwJI Jn \\un\\ Jn

It follows from (3.19) and (3.20) that wfngf(x)dii +;M(u;) < (/, w). From
the homogeneity of j ^ and (/, •), we have fng^(x)dfi -l-y'ooO) < (/, 1), contra-
dicting (3.18). Hence w — 0, for which (2.10) is obviously satisfied. Hence, by
Theorem 1, (3.1) has a solution.

3.2. A resonance problem with weighted /?-Laplacian In this section we present
another application of Theorem 1 to a resonance problem for a variational inequality
containing a weighted p-Laplacian. Consider the variational inequality given by

f |V«|"-2V« • V(v - u)dn - kn I \u\"-2u(v - u)d/x
Jn Jn

+ f g(x,u,Vu)(v-u)dn+j(v)-j(u)>0, VveK,
Jn

ue K.
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H e r e * = //„' (ft, /A) with the usual norm ||u|| = ||«||H(!<n.M, = ll|VM|||t,(n.M)) K c X
is a closed convex set and j : X —*• R U {00} is a convex, lower semicontinuous
functional, 0 e K and; (0) = 0.

Also XQ is the principal eigenvalue associated with the weighted p-Laplacian,
defined by

L \Vu\p du [ f r 1
Xo = min Ja\ ' ^ = min / |VM|P dfi : / \u\" d\i = 1 . (3.22)

Since the set S = {« € X : | n \u\p dfi = 1} is weakly closed and the mapping
u \-+ fa |VM|P du = \\u\\p

v is weakly lower semicontinuous, the minimisation problem
in (3.22) has a solution and Xo > 0. By Liusternik's theorem (see for example [26]),
M is a solution of (3.22) if and only if u is an eigenvector of the weighted p-Laplacian
corresponding to Xo, that is,

I I V M | " - 2 V M • V u d/i = Xo I \u\p~2uv dfi, V u e X .
Jn Jn

Assume that g : ft x R x Rw —*• K i s a Caratheodory function that satisfies the growth
condition \g(x, u,%)\< a(x) + bQu\"-1 + | £ | v ~ ' ) , a € Lv'(ft) and b > 0. Let

f f
(L(u),v)— I IV« | p V u - V u r f / i , (B(u),v)= I \u\p uvdfi,

Jn Jn
{G(u),v)= I g(x,u,Vu)vd/x,

Jn
and A = L — X0B + G. As usual, we denote the set of all eigenvectors corresponding
to Xo by E(X0) := (L - X0B). Equation (3.21) is of the form (2.2) with/ = 0.

We assume that G satisfies condition (2.13). Note that (2.13) is satisfied if g (x, u, £)
has the growth condition g(x, u,%)u > — bo(\u\p + | £ | p ) — do(x), (b{) > 0, d0 e
L'(ft, /x)) and Hminfiui-xxXgOt, u, | )M/ |M| P ) > 0, for a.e. JC € ft.

From the results in [33, Sections 2.5-2.6], we see from the above assumptions
that A is an operator of the calculus of variations type. Thus A is pseudo-monotone
on V. We now check that (A,j) has Property (P). Assume {«„} satisfies (2.3)-(2.6).
It follows from (2.4) and (2.13) that

((L-A.oflK.Mn) _ , - „ ,
lim sup —j < 0. (3.23)

Therefore, with wn = Hn/||«n||,

0 > limsup -—- \J \Vun\» d,x-Xoj \un\" rfj

= lim sup I f \Vwn\
pdti-X0 f |u>nl"rfM|.
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As fa \Vu\" dii - kofn \u\p d/j. > 0, V« € A- (by (3.22)) it follows that

"\=0.-kof \wn\
pdn\=0. (3.24)

From (2.5) and the compact embedding Hlp(Q, /x) <->• Lp(£l, fx), we have wn -*•
w in Lp(Q,/x) and thus fn\wn\

p d/x —>• fn\w\p dfx. Hence, by the weak lower
semicontinuity of || • ||p ,.„ ,

/ \ V w \ p dfx < l i m i n f / \ V w n \ p dfx = A o l i m / \ w n \ p d ^ = X Q i \w\p dfi.
Jn Jn Jn Jn

Again using (3.24), we have fn\Vw\p dfi = X.o fn\w\p dfx. Hence

\ Up

H«'.ll«1|-Mi.M) = ( / \Vwn\»d(x)

UP

= llu'llno'-'cn.,/)-

Since || • \\Hy(Qi/i( is uniformly convex (see [1,20]), this together with (2.5) implies
that

wn —> w in Ho
p {Q., fi). (3.25)

Now, letting X = —1| un \\ in (2.6) and dividing both sides of the inequality thus obtained
by HMJI, we get 1 < \\wn — w\\, Vn. This contradicts (3.25) and proves that (A, j)
has Property (P).

For r > 0, x € SI, u e Q, $ G RN, we denote

and

g ( * , M , £ ) = inf {liminf [

f . .
{li
I

goor(x,u,$)= sup {limsup
I

p {p
un—*-u

Assume now that g satisfies the growth condition (from below)

g(x, u, l=)u > -C(JC)|« |« - d(x)\$\r - e(x), (3.26)

where 0 < r < q < p , q > 1, e € Z-'(ft, /i), c e Lv/(v-'"(fi, /x), ^ G Lv / ( v- r ) (^, /it)
and c, d, e > 0. We have the following existence result for solutions of (3.21).
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THEOREM 4. The variational inequality (3.21) has at least one solution, under one
of the following conditions:

(a) g satisfies (3.26) with q = 1 and

/ g (x,w,Vw)wdfi

+joo(w) > 0,

for all w € £(A.0)\{0).
(b) g satisfies (3.26) with q > 1 and

g (x, w, Vw)wdfi

- Ioo,q-i(
x<w< Vw)wdn > 0, (3.27)

J{x€n:w(x)<0)

for all w e E(k0)\{0}.

PROOF. We prove (b); the proof of (a) is similar. As observed above, A has
Property (P). We check the compatibility condition in Theorem 1. Assume w e re K
and {«„} C K satisfy (2.3)-(2.5). Letting k = p in (2.4) and using (2.13), we get

„ ^ .. ((L - k0B + G)(un), un)0 > lim sup
U K - I I '

((L-k0B)(un),un) , ,. . (G(un),un)

<(L - k0B)(un), un)
> lim sup .

IlKnll'

Hence we have (3.23). Using the same arguments as in the proof of Property (P)
presented previously, we get

w e E(k0) (3.28)

and

wn - • w in //o'(fi,/i). (3.29)

Now, letting k = q in (2.4), one gets

n ^ r ((L - k0B + G)(un), un) (G(un),un)
0>hmsup —— >hmsup—-———.
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On the other hand,

{G(un),un) _ r g(x, un(x), Vun(x))un(x)

IKII« ~ Jn \\un\\i M

= f 8(x, \\un\\wn(x), \\un\\Vwn(x))wn(x)

Jn llMflll9"1 ^a' +f [ \ g(x, \\un\\wn(x), \\un\\Vwn(x))wn(x) d

w>0) J[w<0) J\w=0\J llMnll*"

Since wn -> w in L"(Q, /x).and Vion -»• Vw in [Lp(n, n)]N (see (3.29)), by passing
to a subsequence, we can assume without loss of generality that wn(x) -*• w(x),
Vwn(x) -*• Vw(x), a.e. in fi, and also |ion|, |Vion| < h, for all n, with some
h e Lp(Sl, fj.). For x € {w > 0), we have wn(x) > 0 for all n sufficiently large, and
therefore

hminfL ^ J M Wn(x)\

^ t . (3.30)

Similarly, forx € [w < 0}, wn(x) < 0 for n large, and

.. • Ag(x, \\ujwn(x), \\uJVwn(x)) , J
h m i n f L KiP Wn(x)\

g(x,\\un\\wn(x),\\un\\Vwn(x))

> «oo.,-i(Jf. Mx), Vw(x))w(x). (3.31)

If io(x) = 0, then, from (3.26),

f
7|.u,=0|

g(x,un(x), Vun{x))un{x) d

II " n i l *

c(x)\wj< dfi -—1—J d(x)\VwH(x)\rdfj.

~ iflTiF / e(JC)'/M-
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Since Vtu = 0 a.e. on the set {w = 0}, the limits of the terms in the right-hand side of
the above inequality are 0 as n -*• oo. Thus

hminf / — dn>0. (3.32)
n^°° J{w=0) II "nil"

Now (3.30)-(3.32) and Fatou's lemma imply that

(GOO, Un)lim inf
II "nil"

> I lim inf I + hm inf I I dfx
\ J{w>0) J{w<0)/ l l M n l r

f i- . c[g(x,un(x),Vun(x))un(x)1
> I lim inf — dfi

J{w>0) L II««II ' J
, f .. . Jg(x,un(x),Vun(x))un(x)l

+ I lim inf — d(i

> / g (x,w,Vw)wdfi+
J{w>0) 'q J\w<0{w>0) 'q J\w<0\

Hence

0 > / g (x,w,Vw)wd(i+ I gooq_](x,w,Vw)wdfj..

Together with (3.27) and (3.28), this implies that w = 0, for which (2.9) and (2.10)
are obviously satisfied. By Theorem 1, (3.21) has a solution. The proof of (a), in
which we use (2.8) instead of (2.4), is similar and is thus omitted.

An immediate consequence of Theorem 4, in the case p = q, is the following.

COROLLARY 1. Assume q = p in (3.26) and that

E(X0) = {\<po : A e OS}, (3.33)

where

<po(x) > 0, for a.e. x e Q. (3.34)

Then a sufficient condition for (3.27) to be solvable is

< o, !« , . ,_ , (* ,0o , V0O) # o //J n .
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REMARK 2. (a) Equations (3.33M334) are a well-known property of Ao when
dy, = dx is the Lebesgue measure (see [4] or [37]).

(b) Corollary 1 is a nonvariational analogue and extension of certain results in [24]
and [19]. In those papers, the authors consider the case where p = 2, dfx = dx
and g does not depend on VM. Hence the problem has a variational structure (that is,
the solutions of the equation are critical points of some potential functional). Their
condition is on the potential functional G of g, rather than on the function g(x, u)u.
Hence our results stated above (in the particular case where p = 2 and d/x is the
Lebesgue measure) are the nonvariational counterpart of the cited theorems in [24]
and [19]. The results presented here are also valid in other general situations, where
the equations or inequalities do not have variational structures. As considered above,
an example of such a situation is when the perturbing term also depends on the gradient
of the unknown function.

The investigation of minimisation problems by a different approach, concerning
equations and variational inequalities with variational structures, will be the subject
of a forthcoming paper.

(c) Theorem 4 also shows that the cases q < p and q = p can be proved at the same
time, hence unifying Theorem 3 and [19, Corollary 2]. The condition in Theorem 4 (a)
is usually referred to as a Landesman-Lazer type condition. Theorem 4 shows that the
Landesman-Lazer condition and the conditions in [19] and [24] have the same nature
and can thus be treated in the same way, using the recession approach in Theorems 1
and 4. In Theorem 4, when defining the limits, we do not require uniform convergence
as in [19,24], but only pointwise convergence with certain growth conditions.
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