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Abstract
Environmental gains of electric cars can be optimized with the use of lightweight and recyclable magnesium
in the vehicle’s structural components. Ductility improvement of low-density Mg-Al alloys will extend their
use in automotive body applications. The authors achieved 63% ductility improvement in Mg-6wt%Al with
trace Y (1.5 ppm) due to the β-phase refinement and predicted that higher levels would not perform as well.
As predicted, 0.3wt% of Y addition investigated in this study led to lower mechanical performance and
β-phase refinement than those obtained with trace additions. The tensile ductility and yield strength
increased by ~13% and 16%, respectively, and the compression strain to fracture by ~22%. Scanning electron
and optical microscopy, X-Rays diffraction, mechanical testing and thermodynamic calculations were used
to investigate the effect of 0.3wt% Y on the microstructure of Mg-6wt%Al. The matrix dissolution revealed
the close association of the Al2Y and the β-Mg17Al12 phases.
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1. Introduction

Future autonomous cars will rely on computer systems, sensors, and satellite navigation which require
extensive electronics that increase the vehicle’s weight (Gao et al., 2014). Due to their high strength-to-
weight-ratio, magnesium (Mg) structural alloys are a viable solution for vehicle-weight reduction in
future cars. Mg-6wt%Al (Mg-6Al) casting alloys demonstrate the optimum level of strength and ductility
for most automotive applications but further increase in their ductility will lead to their extended use in
crashworthy car-body components (Friedrich & Mordike, 2006). The Mg17Al12 precipitate, the main
second phase, improves strength but reduces ductility (Friedrich & Mordike, 2006; Nave et al., 2000).

Studies have shown that yttrium (Y) additions can improve the ductility of Mg-Al alloys (Su et al.,
2010; Tahreen et al., 2016). When Y is in the solid solution of α-Mg then it can improve its mechanical
properties via: (1) decrease of the Stacking Fault Energy (SFE) activating the pyramidal <c+a> discloca-
tions (Sandlöbes et al., 2012) or (2) forming long period stacking ordered (LPSO) phases when a
transition metal is present (Kawamura & Yamasaki, 2007). However, with Al present, the solubility of
rare earths in α-Mg is nil, instead brittle precipitates (Pourbahari et al., 2017; C. Wang et al., 2015;
L. Wang et al., 2019) form. Researchers have observed that the modification of β-Mg17Al12 in Mg-Al-Y
alloys is responsible for improved mechanical properties (Boby et al., 2013; Cai et al., 2018; Kashefi &
Mahmudi, 2012; S.-R. Wang et al., 2009). Previous work (Korgiopoulos & Pekguleryuz, 2020) by the
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authors has shown that the refinement of β-Mg17Al12 improves the ductility ofMg-6Al cast alloys at trace
Y additions. This has been attributed to co-precipitation (at close temperatures) of the Al4MgY phase
with the Mg17A12 phase. Thermodynamics also predicted that the formation temperatures of the two
phases deviate at higher Y levels leading to a loss in nucleant effectiveness.

2. Objective

The current work investigates the effect of Y additions (0.3wt%) to see if β-phase refinement and ductility
improvement seen in trace levels of Y are also observed at higher Y levels and to elucidate the role of Y on
the mechanical properties of Mg-6Al based alloys.

3. Methods

Mg-6Al-0.3Y (in wt%) alloy was synthesized using commercial purity (99.98%) Mg, 99.9% pure Al
granules and 99.9% pure Y rods. The total mass of the alloying additions was 617 gr using 95% recovery
factor for Al and 60% for Y. The alloying additions were made at 720 °C in a graphite crucible under
CO2/SF6 protective atmosphere. A graphite crucible was used because it is affordable, and it does not
react with magnesium. The cleaning after casting is efficient and leaves no residuals that could possibly
contaminate the subsequent castings. The molten alloy was then poured under protective atmosphere
into a preheated (400oC) steel mold to produce a flat plate. The actual composition (in wt%) of the alloy
according to inductively coupled plasma atomic-emission spectroscopy is: 6.26%Al, 0.29%Y, 0.02%
impurities (Fe, Mn) withMg as balance. A scanning electronmicroscope (SEM-Hitachi SU3500) with an
energy dispersive X-ray spectroscopy (EDS) detector was used for microstructural investigation. The
grain size of α-Mg was measured with the intercept method using a Nikon-Epiphot 200 optical
microscope after etching the samples with 4.2gr picric acid, 10ml acetic acid, 10 ml distilled water
and 70 ml ethanol. The ImageJ software (Rasband, 2011) was used to measure the precipitates and the
grain size. The crystallographic information was obtained by XRD (Bruker D8 Discovery X-Ray
Diffractometer-Cu source) in the bulk sample and after matrix extraction by using 5% acetic acid. The
mechanical properties were evaluated by tensile and compression testing (MTS 810) at room temper-
ature with a strain rate of 0.001s-1. Thermodynamic calculations (FactSage with FTlite database) (Bale
et al., 2002) based on the CALPHADmethod have been performed in equilibrium and non-equilibrium
conditions (Scheil cooling).

4. Results and discussion

Mg-6Al-0.3Y alloy consists of partially divorced β-Mg17Al12, interdendritic Y-enriched precipitates and
the Al enriched a-Mg phase as determined by EDS (Fig. 1). Y is detected in Mg-Al-Y and Mg-Al-Mn-
Fe-Y precipitates. Both precipitates are closely associated with Mg17Al12 suggesting that they act as
nucleation sites. The Y-enriched precipitates range from fine to coarse and present in three different
morphologies, namely, spherical, square and plate-like, with the expectation that only the finer pre-
cipitates can act as refiners for the β phase. Table 1 shows the composition of the β-phase and Al2Y as per
the EDS analysis. NoYwas detected in the a-Mg solid solution. There is close association (Figs 1 and 2) of
the Al2Y precipitates with the Mg17Al12. Similar association has been observed before by the authors
(Korgiopoulos & Pekguleryuz, 2020) in Mg-6%Al based alloys for lower Y additions. XRD detects
(Fig. 3a) Mg-Al solid solution and β-Mg17Al12 peaks in the bulk alloy. After the matrix extraction
(Fig. 3b), thematrix disappears and the peaks for Al2Y andMg17Al12 become stronger. The peak intensity
of spectra b is lower due to the low amount and small size (average size ~10-50 microns) of the extracted
precipitates.

The Mg17Al12 (Table 2) in Mg-6Al-0.3Y is 25% finer than that in the binary Mg-6Al, but 41% coarser
than the alloy with trace Y amount. Additionally, high Y addition forms even coarser (~87μm2) Mg-Al-
Mn-Fe-(Y) andMg-Al-Y precipitates. The grain size of the cast Mg-6Al-0.3Y is also higher than the alloy
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with trace Y level and it is attributed to the coarsening of the Al2Y phase (Chang et al., 2013; Pan et al.,
2008; Zou et al., 2005).

Mg-6Al-0.3Y has the highest tensile yield strength (YS) of the three alloys (Table 3). Compared to the
Mg-Al with trace Y, the tensile ductility (% El), ultimate tensile strength (UTS), and the compressive
strength are lower (Tables 3 and 4). According to thermodynamic simulations conducted by the authors
(Table 5), the solubility of Y in Mg-Al-Y is practically nil. Instead, Y forms precipitates (ordered
intermetallics) with Al such as Al4MgY, Al3Y and Al2Y. In Mg-Al-0.3Y, Al2Y forms earlier (at higher
temperature) than the β-phase (Table 5) and has time to coarsen losing its effectiveness as a nucleant of
the β-phase and embrittling the alloy.

Figure 1. SEM/BSE as-cast microstructure of Mg-6Al-0.3Y and EDS maps. The red square shows the close associations of Y
enriched precipitates with Mg17Al12.

Table 1. EDS on the precipitates after matrix extraction

Precipitate Mg (at%) Al (at%) Y (at%)

Mg17Al12 57.2 � 0.4 42.8 � 0.4 –

Al2Y 2.3 � 1.2 61.5 � 1.9 36.2 � 0.7

Figure 2.Mg-Al-0.3Y alloy aftermatrix extraction. The red circles show the Al2Y precipitates associatedwith theMg17Al12 phase.
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5. Conclusions

The addition of 0.3wt% Y improves the tensile properties and the strain to fracture in compression of the
binary cast alloysMg-6wt%Al. The improvement in ductility andUTS is not as significant as lower (trace
level) Y additions. Al2Y precipitates (determined via XRD and SEM/EDS) are in close association with
the Mg17Al12 phase indicating their role as nucleants but the early formation of the Al2Y in the liquid in
Mg-Al-0.3Y leads to its coarsening, resulting in some loss inmechanical properties compared to the alloy
with the trace level of Y.

Figure 3. XRD results (a) Bulk alloy, (b) after matrix extraction.

Table 2. Precipitates size and α-Mg grain size as measured with Image J

Alloys
Mg17Al12 Size

(μm2)
Mg-Al-Mn-Fe-(Y)
Size (μm2)*

Mg-Al-Y Size
(μm2)

α-Mg Grain
Size (μm) Reference

Mg-6Al 32 � 15 1.56 � 0.06 – 96 � 13 (Korgiopoulos &
Pekguleryuz, 2020)

Mg-6Al with
trace Y

17 � 5 1.41 � 0.20 – 85 � 15 (Korgiopoulos &
Pekguleryuz, 2020)

Mg-6Al-0.3Y 24 � 6 7 � 3 14 � 10 105 � 17 Current work

*Only precipitates in Mg-6Al-0.3Y alloy contain Y.

Table 3. Tensile properties of as cast samples at room temperature

Alloy UTS(MPa) YS(MPa) El (%) Reference

Mg-6Al 206 � 5 74 � 6 8 � 2 (Korgiopoulos & Pekguleryuz, 2020)

Mg-6Al with trace Y 235 � 13 72 � 11 13 � 3 (Korgiopoulos & Pekguleryuz, 2020)

Mg-6Al-0.3Y 209 � 17 86 � 10 9 � 2 Current work

Table 4. Compression properties of as cast samples at room temperature

Alloy CS(MPa) CYS(MPa) Strain(%) Reference

Mg-6Al 276 � 8 105 � 8 23 � 1 (Korgiopoulos & Pekguleryuz, 2020)

Mg-6Al with trace Y 271 � 3 97 � 5 28 � 2 (Korgiopoulos & Pekguleryuz, 2020)

Mg-6Al-0.3Y 258�6 69�6 28�2 Current work
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