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Abstract Meter-scale large-aperture gratings are essential in petawatt-class picosecond laser 

systems. Their grating mounts must support heavy-load arrays and high alignment accuracy 

due to high energy density and long beam paths. However, nonlinear errors from parasitic 

motions and transmission gaps can significantly degrade precision.This study presents a 

kinetostatic modeling and error calibration framework for the grating mount, incorporating 

an improved particle swarm optimization (PSO) algorithm. The nonlinear error model 

combines energy-based and pseudo-rigid-body methods, with equivalent representations of 

structural gaps and parasitic motions. To capture multi-source nonlinear interactions, a 
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global–dynamic multi-subgroup PSO enhances calibration via coordinated global 

exploration and local refinement. Experiments indicate, compared with conventional 

models, first-round compensation reduces average errors by over 65.4%, 79.8%, and 74.8% 

in rotation, tip, and tilt, respectively. The method integrates nonlinear pose modeling, unified 

gap representation, and an enhanced PSO strategy, offering an effective solution for error 

compensation in meter-scale, heavy-load compliant mechanisms. 

Key words: Parallel compliant mechanisms, Kinematic calibration, Inertial confinement 

fusion, Improved particle swarm optimization, Identification algorithm  

I. INTRODUCTION 

In high-power laser systems, optical components are prone to laser-induced damage (LID) 

under intense irradiation, limiting the maximum achievable output energy[1, 2]. A common 

solution is to enlarge the optical aperture to reduce the optical fluence and improve damage 

resistance. However, larger apertures lead to heavier structural loads. In addition, high energy 

density often involves more laser beams, requiring the adjustment mechanisms to support compact 

array configurations. Furthermore, beam paths extending hundreds of meters impose stricter 

demands on the alignment accuracy of optical elements. 

To address the above challenges in high-power laser systems, extensive research has been 

conducted on adjustment mechanisms, with related technologies implemented in systems such as 

OMEGA-EP, PETAL, NIF, and SG-II [3-8], including those incorporating compliant mechanisms. 

Owing to their high precision, frictionless motion, and zero-clearance characteristics, compliant 

mechanisms are widely employed in precision applications such as micro-positioning and optical 

alignment[9]. Accordingly, a variety of compliant modeling methods have been extensively 
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developed. At present, small-deflection modeling of compliant mechanisms generally falls into 

four categories[10]: (1) Castigliano’s second theorem, based on strain energy and the first 

derivative relationship between input and output displacements[11-13]; (2) elastic beam theory, 

based on the relationship between load and work[14, 15]; (3) the compliance matrix method, 

involving coordinate transformations and matrix compositions [16-18]; and (4) the finite element 

method (FEM).To reduce modeling complexity, Howell et al. introduced the pseudo-rigid-body 

model (PRBM) [19, 20], which approximates flexible members using a combination of rigid links 

and torsional springs. Additionally, energy-based methods based on potential energy 

minimization[21, 22], and hybrid modeling frameworks combining analytical expressions with 

numerical integration[9, 23, 24], have been proposed to improve modeling efficiency, accuracy, 

and adaptability. These methods are typically applied to compliant mechanisms at the millimeter 

or centimeter scale under light to moderate loading, where deformations remain small. However, 

they often neglect parasitic displacements caused by rigid-body rotations, parallel coupling, and 

motion interdependencies. In high-power laser systems, large-scale adjustment structures typically 

employ meter-scale frames with local compliance and global rigidity to support optical elements. 

Even minor deflections in such systems can induce millimeter-scale parasitic displacements, which 

nonlinearly affect the posture and hinder meeting microradian-level alignment precision. Although 

models such as the chained beam-constraint approach[25, 26], nonlinear finite element 

analysis[27], and elliptic integral solutions[28] can account for parasitic displacements, their high-

order nonlinear formulations result in low computational efficiency and limited applicability to 

error modeling and calibration in complex spatial mechanisms. 

Kinematic calibration primarily consists of error modeling, identification, and 

compensation[29]. However, structural clearances at rigid joints are often challenging to observe 
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directly. One approach is to model the clearances equivalently as dual spring-damper systems and 

derive the corresponding mechanical transmission relationships[30, 31], or to characterize them 

using probabilistic distributions[32], with extensions to more complex three-dimensional analyses 

[33, 34]. Subsequently, kinematic models are established based on screw theory, using the Product 

of Exponentials (PoE) formulation[35], transformation matrices, or vector methods[32, 36] to 

relate joint clearances to end-effector poses. For rigid joint clearances in compliant mechanisms, 

force equilibrium equations can be derived by incorporating pseudo-rigid-body models[37, 38]. 

Most existing studies focus on two-dimensional joint clearance modeling, whereas research on 

clearance error compensation in compliant spatial mechanisms remains limited, underscoring the 

need to advance this area to further enhance system accuracy. 

Error identification and compensation are fundamentally optimization processes aimed at 

minimizing system-level errors. For simple systems, finite element simulations can be directly 

applied; for more complex systems, geometric errors and compliance parameters are often 

linearized to construct Jacobian matrices, which are then solved using least-squares methods[39]. 

However, these approaches encounter significant limitations when applied to nonlinear or high-

dimensional parameter problems. To improve accuracy and convergence, various enhanced 

methods have been proposed, including hybrid algorithms that combine Levenberg–Marquardt 

with adaptive differential evolution[32], particle swarm optimization (PSO) based on measured 

trajectories[40], hybrid genetic algorithms with enhanced robustness[41], and calibration 

techniques that integrate extended Kalman filters with adjoint error models[42]. 

In summary, current modeling and error compensation methods for compliant mechanisms 

remain limited in addressing complex structural gaps and nonlinear multi-parameter optimization 

problems. Additionally, black-box approaches often lack theoretical interpretability regarding 
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error mechanisms. This study investigates a meter-scale heavy-load parallel adjustment structure 

that integrates rigid and compliant components, and proposes a kinetostatic modeling and error 

calibration approach based on an improved particle swarm optimization (PSO) algorithm. The 

proposed approach integrates compliance matrix methods with energy-based modeling to derive 

the strain energy expression of the compliant mechanism. A pseudo-rigid-body model is 

introduced to incorporate both parasitic motions and clearance effects within a unified modeling 

framework. Furthermore, an equivalent structural gap model is proposed to systematically capture 

nonlinear system errors, including elastic deformation and backlash in key components such as 

ball screws and flexible couplings. These sliding behaviors and their impact on posture adjustment 

accuracy are incorporated into a unified error model. The model enables simultaneous nonlinear 

coupling among input displacement, output displacement, and external loads, and adaptively 

switches between contact and clearance-slipping states of the mechanism. This enables the unified 

modeling of rigid, compliant, and clearance characteristics. For error identification, global 

sensitivity indices are employed to identify key parameters and enhance model specificity. 

Additionally, a global–dynamic multi-subgroup cooperative PSO algorithm is developed, 

incorporating subgroup division, regional updates, and isolation strategies. This approach balances 

local refinement with broad global exploration, enhancing the convergence stability and 

identification accuracy of high-dimensional nonlinear error models. 

The remainder of this paper is structured as follows. Section 2 describes the architecture of 

the compliant parallel adjustment mechanism designed for meter-scale large-aperture gratings. It 

elaborates on the construction and integration of the ideal kinetostatic model, the parasitic motion 

model, and the equivalent structural gap representation. Section 3 conducts global sensitivity 

analysis to identify the most influential error sources and introduces the global–dynamic multi-
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subgroup cooperative particle swarm optimization (PSO) algorithm along with its implementation 

process. Simulation results are presented to verify the feasibility of the proposed approach. Section 

4 reports prototype experiments that validate the effectiveness of the error model and its calibration 

strategy. Finally, Section 5 summarizes the entire study. 

II. KINETOSTATIC ANALYSIS AND ERROR MODELING OF 

COMPLIANT MECHANISMS 

2.1 Kinetostatic modeling of compliant mechanisms 

A device capable of supporting heavy loads and accommodating constrained spatial array 

configurations is shown in Figure 1. The mechanism consists of a far-center spherical joint formed 

by three flexure chains arranged in a triangular pyramid configuration, which provides a remote 

instantaneous center of rotation at their intersection and bears the system load. Two driving chains 

are symmetrically positioned on either side to control tip and tilt, while a third transverse driving 

chain, orthogonal to the others, is used to constrain or adjust the rotational degree of freedom. 

 

 
Figure 1 Configuration of the remote center compliance mechanism:(a) Structural model; (b)Side view;(c)Schematic 

diagram of the mechanism. 

 

As shown in Figure 2(a–b), the compliance mapping between a flexible chain and a single 

flexure element is established based on the right-hand rotation convention and the derivation by 
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Chen[43], Subsequently, the flexible chains are combined in parallel, and the elastic strain energy 

UAB is expressed as a function of the relative displacement ΔX between ends OA and OB: 

  
1

=
n
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i e i
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   (1) 

 
1 1

( ) ( )
2 2

T T

AB CB C BA A CB C BA AU X F T X T X K T X T X      (2) 

Where Ce denotes the compliance matrix of the flexure hinge; C and K represent the compliance 

and stiffness matrices of each flexure chain, respectively; n is the number of flexural elements in 

each chain; and Ti is the transformation matrix. Since each flexure chain is rigidly connected to 

the grating frame, the pose variation at the connection point OB can be indirectly represented via 

the center point OC. XC and XA represent the pose of the front-center point OC of the grating and 

the poses of the actuation endpoint OA of the flexure chain, respectively. TBA  and TCB are the 

corresponding position transformation matrices. 
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Figure 2 Simplification and combination process of the remote center compliance mechanism and its topological 

structure: (a) flexible hinge; (b) series substructure; (c) parallel substructure and coordinate system. θ, Δ, F and M 

denote angle, displacement, force, and moment, respectively (e.g., Δ includes Δx, Δy, and Δz). C indicates directional 

compliance, such as CΔx/Fx for axial compliance. 

 

By combining Figure 2(c) with Equations (1-2), the overall force–displacement 

relationship of the mechanism is obtained: 
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  (3) 

FAi and XAi represent the force and displacement at the driving (or fixed) end of the i-th flexure 

chain, respectively. According to the principle of force translation, the weight of the adjustment 

mechanism and the grating can be equivalently transferred to the front-center point OC of the 
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grating (hereafter referred to as center point OC), and the resulting equivalent load is denoted by 

FC. XC represents the position and orientation of point OC. Ki-jk denotes the 6×6 block stiffness 

matrix located at the j-th row and k-th column of the i-th flexure chain, as shown in the formulation 

of Figure 2(c). 

2.2 Flexure parameters and positional error modeling 

As the motion range and structural dimensions increase, axial parasitic displacements 

resulting from rigid-body rotation induced by flexure hinge deformation become non-negligible, 

as illustrated in Figure 3. Based on Taylor series expansion, the axial deformation displacement rA 

can be expressed as: 

    
2 2

2 21 cos =
2

A d Li

d

y z
r L K y z

L


  
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Where Ld denotes the distance between the corresponding flexure hinges. β represents the 

deflection angle of the flexure hinge. KLi represents the distance coefficient of the i-th flexure 

chain, and Δy and Δz are the displacements of the calculation point of the flexure chain along the 

y-axes and z-axes, respectively. 

Based on the coordinate transformation in Equation (2), the axial variation at the end of 

each flexure chain caused by motion interdependence is defined accordingly: 
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Where Ti-C3 and Ti-C4 are the inverse transformation matrices from the center point OC to the end 

points  and  of the flexure hinges in the i-th chain (see Figure 1(a)), (Ti-C4)[j,:] denotes the j-th row 

of the transformation matrix Ti-C4. 
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Figure 3 Schematic and theoretical relationship of axial displacement caused by deformation of flexible chain. 

 

2.3 Modeling of input errors in actuation and transmission 

Due to the high load of the proposed adjustment mechanism, commonly used precision 

actuation methods cannot simultaneously meet the requirements for load capacity and stroke. 

Therefore, a rigid transmission structure driven by motors is adopted. However, assembly 

clearances, transmission backlash, and elastic deformations in key components (such as ball 

screws and flexible couplings) can lead to actuation stagnation or hysteresis, significantly 

compromising the positioning accuracy of the mechanism. Based on the clearance mechanism 

illustrated in Figure 4, and the relationship in Equation (3), the axial force equilibrium of the chain 

is formulated as Equation (6). Subsequently, the actual additional equivalent structural gap 

displacement CAi for the i-th chain is derived, as shown in Equation (7): 
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Where fxAi denotes the virtual displacement required to fully balance the axial force resulting from 

flexible deformation and gravity in the i-th chain. For computational convenience, friction and 

clearance effects are integrated and defined as the hysteresis coefficient μ and the equivalent 

clearance CL, respectively. ul represents the maximum displacement caused by structural 

clearances. rAi denotes the axial deformation displacement of the corresponding flexure chain. xAi 

denotes the theoretical axial input displacement for the corresponding flexure chain. Ki-jk denotes 

the 6×6 block stiffness matrix located at the j-th row and k-th column of the i-th flexure chain, as 

shown in the formulation of Figure 1(a). 

Based on the axial load–gap relationship described by Equations (6–7), the computational 

state of the mechanism can be classified into two categories depending on the effect of structural 

clearance: 

(1) Gap-free region: All chains operate in a fully engaged, clearance-free state. In this case, 

modeling emphasizes the nonlinear effects introduced by strain energy in the compliant structure 

and parasitic motion. Errors can be accurately modeled, and compensation performance remains 

reliable. 

(2) Gap region: At least one chain is in a floating state due to structural clearance. In this 

case, both the force equilibrium condition and the sliding behavior of the gap must be considered 

for the affected chain. The model supports both forward and inverse solutions between the input 

Xi and the output XC  under such conditions. 
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Figure 4 Schematic diagram and theoretical relationship of transmission and joint clearance. 

 

By combining Equations (4–7), the overall equilibrium relationship of the mechanism is 

formulated as Equation (8),  enabling the forward and inverse solutions between the input Xi and 

the output XC for such compliant mechanisms. 
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  (8) 

Where RAi represents the axial variation at the end of each flexure chain due to motion 

interdependence, and CAi denotes the actual additional equivalent structural gap displacement of 

the i-th chain. 
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III. IDENTIFICATION AND CALIBRATION OF ERROR PARAMETERS 

3.1 Sensitivity analysis of error sources 

A coupling relationship exists between clearance-related errors and manufacturing or 

assembly errors. To reduce the calibration workload of the error model, it is necessary to screen 

error sources and eliminate those with low sensitivity. 

The distribution range for structural design parameter errors is set to ±10%. Assembly and 

creep errors are confined within a circular region with a 2 mm radius centered on the axis of the 

mounting hole. The equivalent hysteresis coefficient ranges from 0.75 to 1.00, and the equivalent 

clearance ranges from 0 to 0.5 mm. After screening, 45 error sources are defined for the 

mechanism, and each actual error value P is expressed as: 

  0 0 max min min'P P P P P P P             (9) 

Where P0 denotes the ideal value, P′ is the deviation value, ΔP represents the distribution range of 

each parameter error, and η is the percentage coefficient generated based on the Sobol sequence, 

and also represents the mapped location along the boundary of the corresponding dimension within 

the hypercube activity domain used in the subsequent particle swarm optimization algorithm. 
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Figure 5 The GSI of parameter errors: (a-b) Sensitivity distribution of the 45 error sources, (c) Definition of 

partial error source parameters. w denotes hinge width, a is fillet radius, l is segment length, and t1 and t2 are 

thicknesses used in the flexure hinges of the tripod remote-center mechanism, d and Φ denote the magnitude 

and direction of the flexure chain offset. 

 

The analysis is conducted using the Sobol global sensitivity analysis model, and the 

detailed procedure is as follows[44, 45]: 

(1) Initial sample generation: An N×2D sample matrix is generated using either the Monte 

Carlo method or a low-discrepancy sequence (e.g., Sobol sequence). The matrix is then divided 

into two independent sample sets, MA and MB, where N is the number of base samples and D is 

the number of error sources. 

(2) Construction of mixed matrices: For each error source, the i-th column of MA is replaced 

with the corresponding column of MB to construct a mixed matrix MAB
(i). A total of D such mixed 

matrices are generated. 
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Where θi and θi-target are the three attitude angle components within XC, representing the actual and 

target values, respectively, at the i-th data point among the total n points in each misalignment 

curve. MA[i] and MB[i] represent the data in the i-th column of the respective sample matrices MA 

and MB. 

(3) Model evaluation: The error model is evaluated using the samples from MA , MB, and 

each MAB
(i). This results in a total of N×(D+2) model evaluations, from which the error values are 

calculated according to Equation (8-9). 
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Where Pi represents the i-th error source, and f(.) denotes the total pose deviation between the error 

model (as defined in Equation (8)) and the ideal model under a specific set of error parameters P. 

θi and θi-target are the three attitude angle components of XC, representing the actual and target 

values, respectively, at the i-th data point among the total n points in each misalignment curve. n 

denotes the number of measured data points corresponding to n distinct posture configurations. 

(4) Variance decomposition and sensitivity index calculation: Based on the principle of 

variance decomposition, the total variance of the model output deviation is computed, and the 

total-effect Sobol index is subsequently derived. The total sensitivity Sobol index is calculated as 

follows[45]: 
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Where j denotes the total sensitivity Sobol index corresponding to the j-th error source. P~j denotes 

the set of all input variables except the j-th variable, Var(Y) represents the total variance of the 

model output Y, and VarP~j[.]denotes the variance taken over all variables except Pj. The EPj[.] 

denotes the expectation taken with respect to Pj, while keeping all other variables fixed. 

To mitigate the influence of sample-based variability on the accuracy of the total-effect 

Sobol indices, numerical experiments and statistical methods are employed for validation, focusing 

on the following aspects: 

(1) Convergence analysis: The base sample size N is adjusted to observe the fluctuation 

trend of the total-effect Sobol indices for various error sources. In the present model, the indices 

tend to stabilize when N≈400. Therefore, a base sample size of N=500 is selected, yielding a total 

of 23,500 samples, with each sample set corresponding to one misalignment curve. 

(2) Numerical properties:According to the Sobol index formulation, certain mathematical 

properties hold, such as STi ≥ Si and the non-negativity of STi. 

(3) Cross-validation:The consistency of total-effect Sobol indices is examined by 

calculating them from independently generated sample sets using different generation schemes. 

The normalized sensitivity distribution is shown in Figure 5. The results indicate that 

clearance size and the equivalent hysteresis coefficient are the most significant contributors to 

system errors, whereas machining and assembly errors have relatively smaller impacts, though 

their influence on fitting accuracy remains non-negligible. Additionally, θx (rotation) is mainly 

affected by parameters of the third chain, whereas θy (tip) and θz (tilt) are primarily influenced by 

parameters of the first and second chains. 
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3.2 Improved PSO-based parameter identification and calibration 

The target trajectory for calibration is discretized into multiple independent data points, 

with the relative driving inputs between points known in advance. By combining Equations (8–

11), the corresponding misalignment values are calculated. The identification problem is thus 

transformed into minimizing the deviation rate via the fitness function f(gbest), with the goal of 

obtaining the global optimal solution gbest. Since the pose uniquely corresponds to the input, a 

theoretical minimum of f(gbest)=0 exists. Accordingly, the objective function for parameter error 

identification based on the measured platform pose is thus established as follows: 

 arg
2

1

( ( ))
M

i i t et

i

f Mgbest j   



    (13) 

Where j denotes the j-th particle, and each particle contains measurement data from M posture 

points. The attitude angle θi is calculated by substituting the actual input XAi and the error 

parameters P into Equation (8). 

Based on the proposed PSO algorithm, a dynamic multi-subpopulation cooperative 

strategy is introduced. Its core mechanism is that, during the global particle swarm iteration, when 

the global best fitness f(gbest) satisfies the stagnation condition defined in Equation (14) for k 

consecutive iterations, a refined local search subpopulation is constructed by selecting neighboring 

particles based on a spatial proximity criterion (e.g., Euclidean distance) centered on the current 

global best solution. This subpopulation performs its search within a defined hypercube domain, 

with particle movements strictly confined through position correction and velocity damping 

mechanisms to prevent search overflow. An independent local best updating strategy is applied 

within the subpopulation, enabling deep exploration of the optimal region without interference 

from the global swarm. 
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 ( ( )) ( ( ))globalf f gbest t f gbest t k        (14) 

Where t is the current iteration number, ε is the predefined  threshold, and k is the tolerance window 

length used to determine whether the global search has stagnated in a local optimum trap. 

 

Figure 6 Error calibration flowchart based on an improved particle swarm algorithm. 

 

To restore global exploration diversity, all parameters of the remaining global particle 

swarm are reset to eliminate the limiting effect of historical information on population diversity. 

When a global particle enters the search domain of any local subpopulation, its position is projected 

and corrected, or its velocity direction is reversed, to ensure spatial decoupling between global 

exploration and local exploitation. 
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The overall algorithm flow is illustrated in Figure 6. The main hyperparameters are defined 

as follows: the particle count is set to 300, and the total number of iterations is 150. The initial 

distribution is generated using a quasi-Monte Carlo algorithm. The inertia weight ω starts at 0.8 

and linearly decreases to 0.4 during the iteration process. The acceleration coefficients c1 and c2 

are both set to 2.0. The maximum velocity in each dimension is set to 3%–7% of the corresponding 

parameter range. According to the global sensitivity analysis, dimensions with higher sensitivity 

are assigned lower maximum velocity limits. For subpopulation partitioning, the isolation region 

is defined as a hypersphere with a radius of 0.1 in the normalized vector space, centered on the 

selected particle. A maximum of 20 particles can be isolated in each round, and the upper limit for 

each local subpopulation is 6 particles. 

3.3 Simulation verification 

Preset error values are introduced into the ideal finite element model to generate simulated 

misalignment curves. The curves are then fitted and identified using the error model, and the results 

are compared against the initial preset values. The fitting results are shown in Figure 7, and the 

predefined and identified values of various error sources are listed in Table 1. "Initial Position" 

refers to the relative position of the flexure chain within the system under open-loop control. It is 

treated as an error source under the assumption that the initial position of the flexure chain is 

unknown during open-loop operation. The results show that the maximum identification deviations 

for the initial position of the driving module and the equivalent structural clearance are 2.7 μm and 

0.02 mm, respectively; the maximum deviation in directional error is below 0.015 μrad; the fitting 

error of the hysteresis coefficient is less than 1.3%; and the fitting errors of other low-sensitivity 

error sources are all below 10%.These results validate the effectiveness of the proposed calibration 

method both theoretically and numerically. 
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Table 1 Predefined and identified mian parameter by simulation (unit for errors are mm). 

No. Parameter name Predefined Identified No. Parameter name Predefined Identified 

1 Initial Position(1-th) -0.20 -0.1991 6 CL3-th 0.10 0.1200 

2 Initial Position(2-th) 0.32 0.3173 7 μ1-th 0.83 0.83239 

3 Initial Position(3-th) 0.40 0.3988 8 μ2-th 0.87 0.87135 

4 CL1-th 0.42 0.4207 9 μ3-th 0.93 0.94226 

5 CL2-th 0.25 0.2501 10 Other parameter error - <10% 

 
Figure 7 Simulation results: (a-c) Multi-directional misalignment with fitting curves, (d) Iteration convergence, (e) 

Residual error distribution. 

IV. EXPERIMENTAL VALIDATION 

4.1 Experimental setup 

Taking a 1400 mm × 420 mm large-aperture diffraction grating adjustment mechanism as 

an example, the experimental setup comprises a measurement system and an adjustment frame, as 

illustrated in Figure 8. The measurement system employs two laser collimators to independently 

measure tip–tilt and tilt–rotation attitudes, and an additional inclinometer to measure tip–rotation 

attitudes, thereby ensuring measurement accuracy and enabling multi-channel cross-verification. 
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Each attitude data point is extracted as the mean value from the stable interval during the settling 

phase following each adjustment operation. 

 
Figure 8 Prototype testing: (a) Experimental platform configuration, (b) Collimator and mirror configuration layout. 

 

Under constant external loading, the adjustment characteristics of the mechanism remain 

stable. Therefore, the calibrated model can be used for multiple iterative approximations. In 

practical testing, a closed-loop iterative compensation strategy based on the error model is adopted, 

as illustrated in Figure 9. The procedure is as follows: 

(1) Misalignment data acquisition: Measure the initial posture error corresponding to the 

target configuration by averaging values over the stabilized interval. 

(2) Error modeling and parameter identification: Input the misalignment curve into the 

proposed error model, identify high-sensitivity error sources, and complete parameter calibration. 

(3) Inverse computation of input displacement: Based on the calibrated model, compute 

the required actuation inputs (e.g., XA1,XA2,XA3) for the current posture. 

(4) Posture correction and error measurement: Re-drive the mechanism and record the 

resulting stabilized posture; then compute the deviation ΔXC from the target configuration. 

(5) Iterative refinement until convergence: If ΔXC remains large, repeat steps 3 and 4. 

Terminate the process once the deviation meets the accuracy requirement or the maximum number 

of iterations is reached. 
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Figure 9 Error calibration procedure and posture approximation process 

 

4.2 Acquisition of misalignment data and calibration of error parameters 

In open-loop control mode, actuators 1 through 3 are sequentially driven to perform 

reciprocal posture adjustments within the ranges of ±1 mrad@θx, ±5 mrad@θy, and ±3 mrad@θz. 

The uncoupled posture response curves of the prototype are recorded, and 77 sets of raw posture 

data under misaligned conditions are selected for further analysis. During reciprocal motion, a 

noticeable offset is observed when the prototype returns to its original position. This offset is 

regarded as a form of systematic drift error that cannot be captured by the current error model. As 

illustrated in Figure 10, the drift error in the three posture directions are approximately -

10 μrad@θx, −11 μrad@θy, and +25 μrad@θz, respectively. These systematic errors reduce the 

identification accuracy of fitness evaluations in the particle swarm optimization process. 

Therefore, before error modeling and parameter calibration, the raw misalignment curves must be 

corrected to eliminate the global offset. After completing this process, curve reconstruction and 

parameter fitting are performed. 
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Figure 10 Systematic offset error at sampled points 

 

 
Figure 11 Variation of the best residual error in each particle swarm during the iterative calibration of the measured 

offset posture. 

 
 

As shown in Figure 11, a temporary global particle swarm is introduced during the fitting 

process, yielding six sets of relatively optimal solutions. Among them, the solution with the 

minimum fitness function value (see Equation (12)) is selected as the final calibration result. Based 

on this result, the clearance state of each sampled posture point is classified using the error model 

as follows:  

(1) Fitting S1: All compliant chains are in compression (non-clearance condition). 

(2) Fitting S2: At least one compliant chain is in the clearance state. 

(3) Fitting S3: The three compliant chains exhibit a combination of tensile and compressive 

states (non-clearance state). 
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The corresponding fitting results are shown in Figure 12, and the error distribution under 

each clearance condition are summarized in Table 2. 

 
Figure 12 Fitted offset postures in each direction after calibration, along with the corresponding mechanism states at 

sampled points. Fitting S1: All compliant chains are in compression (non-clearance state).Fitting S2: At least one 

compliant chain is in the clearance state. Fitting S3: The three compliant chains exhibit a combination of tensile and 

compressive states (non-clearance state). 

 
Table 2 Fitting results of offset postures after calibration and the corresponding mechanism states(Remove 

systematic deviation) 

Fitting results 
fitting S1 (urad) fitting S2 (urad) fitting S3 (urad) 

θx θy θz θx θy θz θx θy θz 
Average 

value(urad) 1.22 0.81 1.31 1.45 1.54 0.97 1.20 0.90 1.55 

Maximum 

value(urad) 
2.70 2.00 3.50 3.45 4.11 4.38 1.56 3.08 4.29 

 

Figure 12(d), (h), and (l) illustrate the error model's predictions of the structural clearance 

state at each sampling point. The numerical values indicate the distance of each flexure chain from 

its equivalent clearance zero position (see fxAi in Figure 4). For example, in Figure 12(d), the first 

flexure chain remains within the clearance region and shifts forward axially. According to the 

indexing defined in Figure 1, this state results in an increased tip angle and a decreased tilt angle. 
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Further examining Figure 12(a–c), during sampling points 1–11, the value of  fxA1 increases 

significantly, corresponding to an increase in posture error that aligns with the trend of the 

misalignment curve. 

Similarly, in the region of sampling points 65–77 shown in Figure 12(i–k), the same 

mechanism is observed: the first flexure chain moves backward while still remaining in the 

clearance region, resulting in forward parasitic displacement. This causes actuation loss and results 

in an actual posture that is lower than the ideal value. 

In Figure 12(e–h), during sampling points 33–42, the first and second flexure chains 

sequentially enter the clearance transition zone as they move backward. This results in a gradual 

reduction in tip adjustment capability. Around sampling point 34, the first chain exits the clearance 

region, causing a brief rebound in the tip angle. Once both chains exit the clearance region, 

actuation capacity is restored, and posture variation returns to normal. 

4.3 Sub-section Validation of trajectory performance after offline compensation 

To further verify the effectiveness of the proposed method in correcting the posture of the 

meter-scale large-aperture compliant parallel adjustment mechanism, inverse calculations are 

carried out based on the calibrated error model. Starting from the defined zero posture, the required 

relative actuation inputs for the target positions shown in Figure 13 are computed. 
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Figure 13 Experimental results: Spatial distribution of sampling and validation points.Let 𝑆𝑖 denote the chain force 

state classification. Fitting S1: All compliant chains are in compression (non-clearance state).Fitting S2: At least one 

compliant chain is in the clearance state.Fitting S3: The three compliant chains each exhibit a combination of tensile 

and compressive states (non-clearance state). 

 

The initial compensation results based on the calibrated error model, along with the 

corresponding error reductions, are shown in Figure 14. The remaining errors are primarily 

attributed to modeling approximations in the flexure representation, systematic drift during data 

acquisition, and unmodeled factors such as control and measurement errors.  

Building upon this, a closed-loop control strategy is adopted (as illustrated in Figure 9), in 

which the deviation between the current and target postures is used to compute corrective inputs 

via the error model. This enables progressive posture correction. The final relative accuracy is 

presented in Figure 15, with detailed numerical results provided in Table 3. 

The results indicate that the maximum posture errors were reduced from 36.9 μrad, 

674.5 μrad, and 212.2 μrad to 14.5 μrad, 21.5 μrad, and 6.7 μrad in the rotation, tip, and tilt 

directions, respectively. As shown in Figure 14, the first-round compensation using the calibrated 

model achieved average error reductions of over 65.4%, 79.8%, and 74.8%, respectively. Among 

these, the clearance region (fitting S2) contributed up to 38.6% of the maximum error. After full 

closed-loop iteration, the final average error reduction ratios exceeded 59.7%, 79.1%, and 76.7% 

in the respective directions. 
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In summary, the experimental results confirm that the proposed error model and calibration 

method significantly improve posture control accuracy for meter-scale heavy-load rigid–flexure 

hybrid parallel adjustment mechanisms. 

Table 3 Comparison of attitude deviations before and after calibration (Units: μrad, absolute values). 

Computational 

state 

fitting S1 (urad) fitting S2 (urad) fitting S3 (urad) 

θx θy θz θx θy Θz θx θy θz 

Mean 

error 

Small-deflection model[21, 

22](Before calibration) 
10.36 129.29 68.83 17.80 201.70 96.45 11.51 562.33 53.73 

After calibration 6.34 22.98 18.40 7.60 26.09 12.87 5.90 119.94 9.89 

Iterative approximation 4.22 6.61 1.40 2.43 7.40 2.52 3.57 8.36 3.03 

Proportion of calibrated 

systematic error 
65.4% 86.7% 74.8% 66.4% 90.4% 88.9% 70.6% 79.8% 86.4% 

Max. 

error 

Small-deflection model[21, 

22](Before calibration) 
20.12 182.15 86.75 36.92 576.19 212.22 32.92 674.49 199.37 

After calibration 16.82 41.23 23.06 25.01 99.34 29.73 16.38 157.74 22.59 

Iterative approximation 14.59 21.54 3.78 6.08 21.39 6.75 9.37 21.66 6.74 

Proportion of calibrated 

systematic error 
59.7% 87.7% 76.7% 38.6% 85.9% 88.8% 70.2% 79.1% 91.7% 

 

Figure 14 Error situation: before and after compensation.(Data points are sorted in ascending order of total 

adjustment magnitude.) 
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Figure 15 Error distribution after compensation and iterative approximation.(Data points are sorted in ascending 

order of total adjustment magnitude.) 

 

V. CONCLUSION 

This study tackles the challenge of nonlinear error modeling and compensation in high-

precision posture adjustment of meter-scale, large-aperture optical elements supported by flexure-

based parallel mechanisms. A kinetostatics-based modeling and error calibration method is 

proposed for heavy-load rigid–flexure hybrid structures, and an improved PSO algorithm is 

integrated to establish a comprehensive modeling–identification–compensation framework. 

In the modeling phase, unlike conventional flexure modeling approaches typically applied 

to small-scale, lightweight, and idealized structures, the proposed method combines compliance 

matrix techniques with energy-based modeling to characterize deformation energy. A pseudo-

rigid-body modeling approach is introduced to capture parasitic displacements in meter-scale 

structures. Additionally, an equivalent structural clearance model is developed to systematically 

describe the nonlinear effects arising from elastic deformation and backlash in components such 
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as ball screws and flexure couplings. These behaviors are equivalently modeled through 

mechanical relationships and integrated into the parasitic displacement formulation. 

The resulting model supports nonlinear coupling among input displacement, output 

displacement, and external loads, and adaptively switches computational strategies based on the 

mechanism’s state (e.g., full contact or clearance-induced slip). This enables unified modeling of 

rigid, compliant, and clearance behaviors, thereby enhancing the model’s applicability. For error 

identification, a global sensitivity analysis is conducted to pinpoint dominant error sources. A 

global–dynamic multi-swarm cooperative PSO algorithm is developed to enhance convergence 

stability and inverse identification accuracy in high-dimensional nonlinear systems. 

Based on this model, a closed-loop error compensation strategy is implemented and 

experimentally verified on a prototype platform. Through feedback-driven iterative correction, the 

maximum posture errors are reduced from 36.9 μrad, 674.5 μrad, and 212.2 μrad to 14.5 μrad, 

21.5 μrad, and 6.7 μrad, respectively. These results verify the effectiveness of the proposed method 

in addressing error modeling and compensation for meter-scale, heavy-load, rigid–flexure hybrid 

mechanisms. The study provides a viable technical approach for precision alignment, posture 

control, and error compensation in large-scale structural applications such as high-power laser 

systems. 
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