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Abstract
This paper introduces a simplified matrix method for balancing forces and moments in planar parallel manipulators.
The method resorts to Newton’s second law and the concept of angular momentum vector, yet it is not necessary to
perform the velocity and acceleration analyses, tasks that were normally unavoidable in seminal contributions. With
the introduction of natural matrices, the proposed balancing method is independent of the time and the trajectory
generated by the moving links of parallel manipulators. The effectiveness of the method is exemplified by balancing
two planar parallel manipulators.

1. Introduction
A reactionless mechanism is one that does not exert reaction forces and moments other than gravity on
its base regardless of the time and the trajectory of the mechanism. A mechanism like this is free of
vibrations minimizing the noise, fatigue and wear induced by the moving links increasing its dynamic
performance despite maximum speeds and accelerations [1]. The advantages of having mechanisms
with these characteristics have not gone unnoticed by researchers and so the topic has been of growing
interest for more than half a century, focusing in its beginnings on the balancing of planar mechanisms,
see for instance [2–8]. In spite of the considerable number of contributions in the area, the topic of
balancing mechanisms does not lose its relevance and is continuously enriched with new contributions,
improving existing methods or proposing novel theories. Maddahi et al [9] introduced a controller for
an inertial mobile vehicle using the Lyapunov’s feedback control method to balance the mechanism.
Meijaard and van der Wijk [10] approached the balancing of four-bar mechanisms by resorting to the
theory of principal vectors. In a previous contribution, van der Wijk et al [11] applied the same theory
to redundant planar parallel manipulators. Arakelian et al [12] developed a balanced Scotch yoke mech-
anisms endowed with a linear spring. Franco et al [13] introduced a method for partial-static balancing
of four-bar linkages where torsion springs are commanded to adjust the stiffness of the model. Yao and
Yang [14] proved that using non-circular gears is a viable option to reduce the fluctuations of the driving
torque in planar linkages. Van der Wijk et al [15] report an approach based on the inverse dynamics for
balancing a four-degree-of-freedom redundant planar parallel manipulator. Woo et al [16] introduced
an algorithm to optimize the torques of the kinematic pairs of a redundant planar parallel manipulator
with the virtue of being free of torque saturation. Baron et al [17] optimized the number of counter
rotary links to balance kinematically redundant parallel manipulators by resorting to parallelogram-like
closed chains. In short, the balancing of mechanism is a necessary task to generate robot manipulators
operating at high speeds [18–22].

This work is devoted to the dynamic balance of planar parallel manipulators. The rest of the contri-
bution is organized as follows. Section 2 reports the notation of variables associated with the closure
equations of a closed kinematic chain and their inclusion in what in the contribution are called natural
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Figure 1. Introductory notation.

matrices. In section 3, the force balance theory of planar parallel manipulators using natural matrices is
developed. The theory relies on Newton’s second law, and however, it is not necessary to perform the
acceleration analysis, a somewhat tedious task in most parallel manipulators. In section 4, the condi-
tions for the moment balance of planar parallel manipulators are elucidated. The method includes the
moment of inertia of the moving links as it is based on angular momentum vector, and however, similar
to the force balancing, it does not require the calculation of the angular momentum vector. In this case,
a natural skew-symmetric matrix is obtained which is associated with the angular velocity vector of the
links. For clarity, in section 5 the method is applied to the dynamic balance of two parallel manipulators.
Finally, some conclusions are given at the end of the contribution.

2. Natural matrix
Figure 1 shows a closed kinematic chain where the links are serially connected through helical pairs i−1$i.
Unless otherwise specified, the remainder of the contribution is considered i = 1 ∼ n. In that regard, in
planar mechanisms only zero and infinite pitch screw exist. There, 1 denotes the fixed link while the
moving links are labelled 2 ∼ n clockwise starting from the base link 1. The i−th link has a mass mi and
a moment of inertia Ji about the axis passing through the centre of mass Ci and normal to the XY−plane.
The degree-of-freedom F of the linkage is the number of generalized coordinates qi(i = 1 ∼ F) grouped
in the vector q = [

q1 q2 . . . qF

]T .
More of the notation of the closed kinematic chain of Figure 2 is as follows. Attached to the base

link 1, there is a reference frame O1X1Y1 whose origin O is located at the nominal position of one of the
kinematic pairs of body 1. Then, the orientation of the moving links is notated by angles θi measured
ccw from the X−axis. Furthermore, the moving links have nominal lengths ai while the fixed link is
characterized by a length a0. The inclusion of natural coordinates (x̄i, ȳi) requires the introduction of
reference frames OiXiYi attached to the moving links. Without loss of generality, the i−th Xi−axis is
placed between the axes of the two helical pairs of the corresponding link. Thus, the coordinates of the
centre of mass of each link are notated as Ci = (x̄i, ȳi) expressed in the corresponding reference frame.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001267
Downloaded from https://www.cambridge.org/core. IP address: 3.139.233.79, on 26 Jan 2025 at 21:41:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001267
https://www.cambridge.org/core


3046 Jaime Gallardo-Alvarado

Figure 2. The five-bar linkage.

To generate the balancing conditions of the mechanism, it is required to express the coordinates of points
Ci in the reference frame O1X1Y1. To this end, using the rotation matrix Ri between the i−th link and
the base link 0 we have that ⎡

⎢⎣
xi

yi

1

⎤
⎥⎦ =

[
Ri rOi/O

0 1

] ⎡
⎢⎣

x̄i

ȳi

1

⎤
⎥⎦ (1)

where rOi/O is the position vector of the origin Oi with respect to the origin O.
The use of reduced sets of variables associated with the mechanism closure equations plays a central

role in the contribution. For example, given the closed kinematic chain nature of the mechanism, it is
possible to write a closed-loop equation as follows

a2 + a3 + · · · + an = d (2)

Thus, considering the vectorial decomposition of Eq. (2), a matrix U of variables may be defined as

U = [
cos θ2 cos θ3 . . . cos θn sin θ2 sin θ3 . . . sin θn

]T (3)

However, since from Eq. (2) two linear equations are available, then we have the opportunity to cancel
two variables, notated as w1 and w2, of U. Thereafter, two matrices V and W are defined as

V = [
v1 v2 · · · vn−2

]T
, W = [

w1 w2

]T (4)

where U =
[

V

W

]
. Afterwards, Eq. (2) may be rewritten as

AV + BW = C (5)

where C =
[

d

0

]
, while A and B are matrices formed with the length links of the closed kinematic chain.

Finally, matrix W is computed as

W = B−1(C − AV) (6)

Hereafter, w1 and w2 are diluted in the rest of the variables simplifying the balancing of the mechanism.
Using matrix V and Eq. (1), the coordinates Ci = (xi, yi) of the centre of mass of the i−th link may

be expressed as

xi = gi +XiV, yi = hi +YiV (7)
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where gi and hi are obtained upon the parameters of the closed kinematic chain, that is, gi and hi are
generated with the lengths ai and the local coordinates x̄i and ȳi. Meanwhile, Xi and Yi are matrices
formed also with the parameters of the links and the natural coordinates of their centres of mass. Matrices
Xi and Yi, named in the contribution as natural matrices, remain unchanged over time and therefore are
considered as properties of the links.

The concepts presented in this section, especially those concerning natural matrices, even when lim-
ited to a closed kinematic chain, are so simple that they can be effortlessly extended to more complex
mechanisms, such as parallel manipulators.

3. Shaking force balancing
The shaking force balancing of the mechanism is based on the method recently introduced by Gallardo-
Alvarado [23]. The inclusion of this section is for the sake of completeness and for a better understanding
of the rest of the contribution. The shaking force balancing of mechanisms consists of cancelling the
forces transmitted by the moving links to the base link. The shaking force balancing problem is formu-
lated as follows: Given the mass and geometric parameters of the links of the mechanism, it is necessary
to determine the natural coordinates of the centres of mass of the moving links that allow the fluctuating
forces to vanish regardless of the instant of time and the trajectory generated by the moving links. In this
section, it is shown how this important condition may be satisfied by resorting to Newton’s second law
but without achieving the acceleration analysis of the mechanism.

Since gi and hi, see Eq. (7), are invariant with respect to the time t then the force f i of the i−th link
may be written according to Newton’s second law as follows

f i =
d2

dt2

[
miXiVî + miYiVĵ

]
(8)

Expression (8) allows to compute the forces f i for each link of the closed kinematic chain. However,
the purpose of the balancing is to cancel the resultant forces of the moving links on the base link. That
is to say

n∑
i=2

f i =
d2

dt2

n∑
i=2

[
miXiVî + miYiVĵ

]
= 0 (9)

Hence, the shaking force balancing condition of the mechanism is established as follows
n∑

i=2

[
miXiVî + miYiVĵ

]
= 0 (10)

It is therefore somewhat curious that the balancing equation (10) is obtained by resorting to Newton’s
second law and yet the calculation of the time derivatives of the functions describing the motion of the
links is omitted, which could be considered an ambiguity. However, this apparent contradiction makes
sense if one takes into account that Eq. (9) is equal to the vector zero. On the other hand, considering that
in general matrix V is different to the null matrix, then to cancel the fluctuating forces of the mechanism
it must satisfy that

n∑
i=2

mi Xi =OX (11)

and
n∑

i=2

mi Yi =OY (12)

It is evident that the force balancing is complete, perfect, if the matrices OX and OY are both the
zero matrix O. Otherwise, the manipulator is partially balanced from the point of view of forces.
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Expressions (11) and (12) yield the conditions to obtain a planar force balanced parallel manipulator.
However, as the balancing problem was defined, the number of variables exceeds the number of avail-
able equations (11) and (12), so that, for the application of the method, it is necessary to assign values
to a sufficient number of variables x̄, ȳ. Afterwards, the natural coordinates of the centres of mass of the
moving links may be calculated. It is interesting to emphasize that the force balancing method resorts
to Newton’s second law and yet it is not necessary to perform the acceleration analysis. Furthermore,
these equations are composed only of the parameters and natural coordinates of the centres of mass of
the moving links and are available regardless of the trajectory assigned to the manipulator or its degrees-
of-freedom. Finally, it is interesting to note that the balancing of forces does not require the inclusion of
additional links, since with a simple redistribution of the masses of the links it is theoretically possible
according to Eqs. (11) and (12) to cancel the shaking forces generated by the moving links on the base
link.

4. Shaking moment balancing
A mechanism that is designed without taking into account the balancing of forces may face adverse
conditions, especially if it operates at high speeds. Thus, force balancing is a highly advisable task in
the design process of robot manipulators [24]. In that concern, the moment balancing can certainly
also contribute to the optimal design of mechanisms. The shaking moment balancing problem is stated
as follows: Given the inertial properties and geometric parameters of the links of the mechanism, it is
necessary to determine the natural coordinates of the centres of mass of the moving links that allow
the fluctuating moments to vanish regardless of the instant of time and the trajectory generated by the
moving links. This section addresses the issue of moment balancing in parallel manipulators by resorting
to the concept of angular momentum vector.

The angular momentum vector Li of the i−th link is defined as the combination of the moment pro-
duced by the linear momentum vector pi about a reference pole, usually the origin of the fixed reference
frame, and the effect of the corresponding moment of inertia Ji with the angular velocity θ̇i. In that
sense, the angular momentum vector has direction and magnitude, and both are conserved. The angular
momentum vector is computed as

Li = ri × mivi + Jiθ̇ik̂ (13)

where ri = xi î + yi ĵ is the position vector of the centre of mass Ci while vi is the velocity vector of
point Ci. Furthermore, Ji is the moment of inertia of the i−th link about the axis passing through the
corresponding centre of mass Ci. Note that the angular momentum vector Li depends on the chosen
origin. On the other hand, it is evident that the velocity vector vi may be expressed as

vi = ẋi î + ẏi ĵ (14)

Assuming that q is the vector of generalized coordinates, then according to the concept of first-order
influence coefficient [25, 26] it follows that

ẋi = ∂xi

∂q
q̇, ẏi = ∂yi

∂q
q̇, θ̇i = ∂θi

∂q
q̇ (15)

where q̇ is the vector of generalized speeds. On the other hand, θ̇i can be written as

θ̇i =
[

cos θi

∂ sin θi

∂q
− sin θi

∂ cos θi

∂q

]
q̇ (16)

Thus,
∂θi

∂q
= cos θi

∂ sin θi

∂q
− sin θi

∂ cos θi

∂q
(17)

The angular momentum vector is directly related with the balancing of mechanical systems since
the total angular momentum vector of a closed system remains constant. The shaking moment
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M i transmitted by the i−th moving link to the base link, see Schiehlen and Eberhard [27], is
given by

M i = d

dt
Li (18)

Based on Eqs. (13)-(15) it follows that

M i = d

dt

(
mixi

∂yi

∂q
− miyi

∂xi

∂q
+ Ji

∂θi

∂q

)
q̇ (19)

On the other hand, the substitution of Eqs. (7) and (17) into Eq. (19) leads to

M i =
{

mi (giYi − hiXi)
∂V

∂q
+ VT

[
mi

(
XiY

T
i −YiX

T
i

) + JiZi

] ∂V

∂q

}
q̇ (20)

where

Zi =
[

O −Zi

Zi O

]
(21)

is a skew-symmetric matrix formed with the parameters of the links. Similar to Xi and Yi, Zi is named
also a natural matrix of the i−th link. Thereafter, the shaking moments induced by the moving links to
the base link are nullified as long as the following condition is satisfied

n∑
i=2

{
mi (giYi − hiXi)

∂V

∂q
+ VT

[
mi

(
XiY

T
i −YiX

T
i

) + JiZi

] ∂V

∂q

}
q̇ = 0 (22)

To obtain the shaking moment balance conditions for the closed kinematic chain note that vanishing
the vector of generalized speeds q̇ lead to a triviality and this option is therefore immediately discarded.
The only way to satisfy Eq. (22) is by reviewing matrix V and the partial derivative ∂V

∂q . From the force
balancing analysis, it was deduced that V is different from the zero matrix so it is not possible to cancel
∂V
∂q either. With this in mind, it follows that the shaking moment balancing conditions for the closed
kinematic chain are given by

n∑
i=2

mi (giYi − hiXi) =OM (23)

and
n∑

i=2

[
mi

(
XiY

T
i −YiX

T
i

) + JiZi

] =OJ (24)

It is evident that the moment balancing is complete, perfect, if the matrices OM and OJ are both
the zero matrix. Otherwise, the manipulator is partially balanced from the point of view of moments.
Furthermore, as with Eqs. (11) and (12), Eq. (23) dispenses with the moment of inertia J and can there-
fore be used to complete the equations required in the force balancing of the mechanism. On the contrary,
Eq. (24) necessarily involves the moment of inertia J which presupposes a complete force and moment
balancing of the mechanism. In that sense, having the balancing equations is not a guarantee that the
balancing of the mechanism is carried out by completely eliminating the shaking moments, and so it
is sometimes necessary to resort to alternative complementary strategies, for example by modifying
the original topology of the mechanism with additional links. Finally, with Eqs. (23) and (24), together
with Eqs. (11) and (12), the range of possibilities for balancing planar parallel manipulators is substan-
tially increased improving the performance of these popular manipulators. However, the cancellation
of moments generated by the inertia properties of the moving links requires the inclusion of additional
links whose moments of inertia counteract these shaking moments. Although there are no restrictions
on the number of additional links, it is evident that they can increase the torque of the driving links.
Therefore it is necessary to find a balance between the number of additional links and the cancellation
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of the shaking moments. In other words, the cost/benefit of shaking moment cancellation by including
additional links may be questionable in some cases even if a perfect balance is achieved. For clarity, in
what follows the proposed method is applied to the dynamic balance of three parallel manipulators.

5. Applications
To exemplify the balancing method, in this section the method is applied to the dynamic balancing
of two parallel manipulators with widely different kinematic characteristics: the five-bar mechanism
and a non-redundant four-degree-of-freedom manipulator with configurable platform. For the sake of
completeness, and as a necessary step to complete the number of equations required for the moment
balancing in each case, the shaking force balancing of the complex linkages is also included.

5.1. Example 1: five-bar mechanism
Despite having only two degrees-of-freedom, the popular five-bar mechanism has been useful in a vari-
ety of applications ranging from prosthetics to haptic feedback, and other applications requiring precise
control of movement. Probably, its first application in a mechanism with a high technological devel-
opment is related to the ingenious Antikythera mechanism [28]. Tong [29] developed a high-stiffness
five-bar linkage where the synthesis is performed by using the concept of orthogonal paths. Ouyang et al
[30] designed a compliant mechanical amplifier by resorting to the five-bar topology. Ting et al [31]
solved the full rotability of the five-bar mechanism by introducing gears regardless of which kinematic
pairs play the role of generalized coordinates. Joubair et al [32] implemented a specialized calibration
procedure for reconfigurable planar robots. Ruiz-Torres et al [33] proposed a robot named CICABOT
formed with two parallel manipulators. Zi et al [34] developed a cable-driven hybrid planar parallel
manipulator. Cui et al [35] designed an automatic system for ankle rehabilitation. Essomba and Nguyen
[36] developed a remote motion centre with two decoupled angular degrees-of-freedom implemented in
a five-bar spatial mechanism. Briot and Goldsztejn [37] introduced a topological optimization method-
ology for industrial robots which was successfully tested on five-bar mechanisms. Qizhi et al [38]
introduced a robot whose main characteristic is to maintain a constant passive force of the mechanism,
thus obtaining a simplified control system. Dealing with existing literature approaching the balancing
of the five-bar mechanisms, some representative contributions are as follows. Lia and Sinatra [39] opti-
mized the lengths of the five-bar mechanism by dynamically balancing it. Lecours and Gosselin [40]
approached the balancing of the five-bar mechanism considering a range of payloads while de Jong et al
[41] introduced a screw-based balancing methodology available for the five-bar mechanism.

Figure 2 shows the topology of the linkage under balancing. The mechanism is formed with four mov-
ing links labelled 2, 3, 4, and 5 and the base link labelled 1. The links are serially connected through
revolute joints R within which stand out the revolutes R21 and R15 connecting the kinematic chain to the
base link 1. The axes of the revolute joints are mutually parallel limiting the mobility of the mechanism,
in fact, only two degree-of-freedom are available for it. An inertial reference frame O1X1Y1 with asso-
ciated unit vectors îĵk̂ is attached to the base link with the origin O1 coincident with R21. The moving
link lengths are designated as ai(i = 2 ∼ 5) while their corresponding orientation is designated by angles
θi(i = 2 ∼ 5) measured ccw from the X1-axis. To complete the notation, the base link is characterized by
a length d.

As an initial step, from the closed kinematic chain condition, it is possible to write a vector loop
expression as follows

a2 + a3 + a4 + a5 = d (25)

Therefore, the vector decomposition of Eq.(25) leads to two closure equations given by

a2 cos θ2 + a3 cos θ3 + a4 cos θ4 + a5 cos θ5 = d (26a)

a2 sin θ2 + a3 sin θ3 + a4 sin θ4 + a5 sin θ5 = 0 (26b)
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Considering that the trigonometric functions cos θi and sin θi are variables no matter if they refer in their
case to the same angle θi, then the matrix of variables U is defined as follows

U = [
cos θ2 cos θ3 cos θ4 cos θ5 sin θ2 sin θ3 sin θ4 sin θ5

]T (27)
Moreover, from Eq. (26) two linear equations are available. Choosing cos θ4 and sin θ4 as the vari-
ables w1 and w2, then the matrix of reduced variables V and the matrix of suppressed variables W
are established as

V = [
cos θ2 cos θ3 cos θ5 sin θ2 sin θ3 sin θ5

]T (28)
and

W = [
cos θ4 sin θ4

]T (29)
To continue with the balancing of the mechanism, it is natural to consider a symmetric five-bar mech-

anism. For example, it can be assumed that a2 = a5 = a and a3 = a4 = b. With this in mind, matrices A,
B and C, see Eq. (5), are obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
[

a b a 0 0 0

0 0 0 a b a

]

B =
[

b 0

0 b

]

C =
[

d

0

]

Thus, by applying Eq. (6) the matrix of suppressed variables W results in

W = 1

b

[
d − av1 − bv2 − av3

−av4 − bv5 − av6

]
(30)

Once the variables cos θ4 and sin θ4 have been suppressed, the parameters gi and hi as well as the
Xi, Yi, and Zi natural matrices for each moving link are calculated using the reference frames of the
mechanism, see Figure 2a. For brevity, only the parameters and natural matrices of link 4 are provided
here ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g4 = x̄4d/b, h4 = ȳ4d/b

X4 =
[
a(1 − x̄4/b) b − x̄4 −ax̄4/b aȳ4/b ȳ4 aȳ4/b

]
Y4 =

[
−aȳ4/b −ȳ4 −aȳ4/b a(1 − x̄4/b) b − x̄4 −ax̄4/b

]

Z4 = 1
b2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 a2 ab a2

0 0 0 ab b2 ab

0 0 0 a2 ab a2

−a2 −ab −a2 0 0 0

−ab −b2 −ab 0 0 0

−a2 −ab −a2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

Note thatZ4 is effectively a skew-symmetric matrix, as it occurs with the infinitesimal rotation matrix.
Once the natural matrices have been determined, the balancing of forces and moments of the five-bar
mechanism can be carried out.
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5.1.1. Shaking force balancing of the five-bar mechanism
Based on Eq. (11), six force balancing conditions for the five-bar mechanism are obtained as follows

m2bx̄2 + m3ab − m4ax̄4 + m4ab = 0 (32a)

m3bx̄3 − m4bx̄4 + m4b2 = 0 (32b)

−m4ax̄4 + m5bx̄5 − m5ab = 0 (32c)

−m2bȳ2 + m4aȳ4 = 0 (32d)

−m3bȳ3 + m4bȳ4 = 0 (32e)

m4aȳ4 − m5bȳ5 = 0 (32f)

It is interesting to note that the rank of the system of equations (32) is less than six considering the
natural coordinates as variables. This is explained by the decoupled nature of the involved equations.
In fact, it is easy to verify that the system of six equations is in reality composed of two independent
subsystems:

i) Eqs. (32a)-(32c) form a system of three equations in the unknowns x̄i(i = 2 ∼ 5)

ii) Eqs. (32d)-(32f) form a system of three equations in the unknowns ȳi(i = 2 ∼ 5)

Therefore, if the balancing of the mechanism is limited to the balancing of forces then it is necessary
to assign, perhaps intuitively, values to a pair of variables x̄ and ȳ and then determine the remaining ones
in terms of the chosen pair of variables. Otherwise, to complete the number of equations it is necessary
to resort to the moment balancing of the mechanism.

Finally, it is worth mentioning that the same balancing conditions are obtained when expression (12)
is applied instead of expression (11).

5.1.2. Shaking moment balancing of the five-bar mechanism
The first part of the moment balancing problem focuses on the linear momentum effect. The application
of Eq. (23) yields four conditions for the shaking moment balancing of the mechanism as follows

m4ȳ4 = 0 (33a)

m5ȳ5 = 0 (33b)

x̄2
4 − bx̄4 + ȳ2

4 = 0 (33c)

m4a
(
x̄2

4 + ȳ2
4

) + m5b
2(a − x̄5) = 0 (33d)

With the formulation of Eqs. (33), the dilemma of assigning intuitive values to two variables of the
force balance is automatically eliminated. Solving Eqs. (32) and (33) one obtains that the centres of
mass of the moving links must be given by

C2 = (−am3/m2, 0), C3 = (0, 0), C4 = (b, 0), C5 = (a(m4 + m5)/m5, 0) (34)

Condition (34) produces a balanced mechanism meeting expressions (32) and (33). However, the can-
cellation of the angular momentum vector of the linkage requires that expression (24) must be satisfied.
In that concern, the application of Eq. (24) yields four particular conditions as follows

m3a
2b2(m2 + m3) + m2(J2b2 + J4a

2) = 0 (35a)

m4a
2b2(m4 + m5) + m5(J4a2 + J5b

2) = 0 (35b)

J3 + J4 = 0 (35c)

J4 = 0 (35d)
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Figure 3. The five-bar mechanism with additional links and attached spur gears to links 2 and 5.

The first two conditions require the consideration of negative inertial properties of some links, which
must obviously be disregarded. The remaining conditions are valid only if the moments of inertia J
of links 3 and 4 are considered insignificant, which undoubtedly leads to an incomplete momentum
balance. Thus, to obtain a full shaking moment balance of the mechanism, it is necessary to modify
the original topology of the planar linkage. For example, the addition of spur gear pairs, as shown in
Figure 3, is a recommended practice [4]. This option does not affect the results obtained for the shaking
force balance; however, it does increase the torque required to control the motion of the mechanism.

Considering that the angular velocity ratio between two spur gears is constant, then it is possible to
write restrictions credited to the additional links as follows

r2

∂θ2

∂q
+ r6

∂θ6

∂q
= 0, r5

∂θ5

∂q
+ r7

∂θ7

∂q
= 0 (36)

where ri(i = 2 ∼ 7) are the radii of the spur gears. Hence, one obtains the following natural matrices for
the additional links 6 and 7 as follows

Z6 = − r2

r6

Z2, and Z7 = − r5

r7

Z5 (37)

With the additional links 6 and 7 by applying Eqs. (24), most of the unrealistic conditions are elimi-
nated. Furthermore, one obtains that the moments of inertia J6 and J7 of the additional spur gears must
be given by

J6 = r6

[
m3a2b2

(
m2 + m3) + m2(J2b2 + J4a2

)]
/
(
m2r2b

2
)

(38)

and

J7 = r7

[
m4a2b2

(
m4 + m5) + m5(J4a2 + J5b2

)]
/
(
m5r5b

2
)

(39)

Despite the progress achieved in balancing the five-bar mechanism, the condition J3 = J4 = 0 is not
eliminated so that links 3 and 4 of the linkage are partially balanced. The links 3 and 4 can be fully
balanced by adding gears with rotation motions opposite to the corresponding links. However, such a
solution leads to a more complex mechanism and will also require a considerable increase in the torque
of the servomotors of the mechanism due to the increase of masses and inertias. On the other hand,
according to the calculated moments of inertia J6 and J7, the gears 6 and 7 can be chosen in such a
way that the performance of the mechanism is not compromised since, according to Eqs. (38)-(39), it is
suggested relationships like r6/r2 < 1 and r7/r5 < 1. For clarity, Figure 4 conceptually summarizes the
shaking force and shaking moment balancing of the five-bar linkage using additional links.

Finally, as expected, the symmetry of the moving links imposed to the mechanism is reflected in the
symmetry of the balancing results obtained.
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Table I. Parameters of the five-bar mechanism.

a = 300 [mm] b = 480.044 [mm] d = 300 [mm]
m2 = m5 = 2.065 kg J2 = J5 = 337.438 [kg . mm2]
m3 = m4 = 3.188 kg J3 = J4 = 524.708 [kg . mm2]
r2 = r5 = 400 [mm] r6 = r7 = 10 [mm]

2

3

5
6

7

C2

C3
C4

C5

4

Figure 4. Balanced five-bar linkage schematic.

5.1.3. Numerical application for the five-bar mechanism
Let us consider that the five-bar mechanism is composed of links whose parameters are listed in Table I.

According to Eqs. (34) one obtains the following natural coordinates

{
x̄2 = −0.463 [m], x̄3 = 0 [m], x̄4 = 0.480 [m], x̄5 = 0.763 [m]

ȳ2 = ȳ3 = ȳ4 = ȳ5 = 0 [m]

Afterwards, dealing with the shaking force balancing of the linkage, one obtains that matrices OX and
OY are both precisely the zero matrix, which ensures that the balance of forces of the five-bar mechanism
is complete or fully satisfied, an expected result. On the other hand, to achieve the moment balancing
of the mechanism, based on expression (23) the first condition of the moment balancing yields that the
matrix OM is also the zero matrix. Meanwhile, to compute matrix OJ , the application of Eqs. (38) and
(39) yield J6 = J7 = 0.018 [kg . m2]. Then, after a lengthy procedure, the second condition of the moment
balancing, see expression (24), leads us to the matrix

OJ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0. 0. 0. 0. 0.0003 0.0002

0. 0. 0. 0.0003 0.001 0.0003

0. 0. 0. 0.0002 0.0003 0.

0. −0.0003 −0.0002 0. 0. 0.

−0.0003 −0.0001 −0.0003 0. 0. 0.

−0.0002 −0.0003 0. 0. 0. 0.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

Finally, since not all the elements of matrix OJ vanish, then the five-bar mechanism is partially bal-
anced from the point of view of moment balancing. However, matrix OJ is close to the zero matrix so
the results obtained are, in reality, reasonably acceptable.
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Figure 5. Configurable parallel manipulator.

5.2. Example 2: configurable parallel manipulator
Parallel manipulators with configurable platforms are mechanisms where the typical rigid moving plat-
form is replaced with a moving platform able to modify its contour improving the dexterity of the
parallel manipulator [42–44]. Usually, the configurable platform is a closed kinematic chain with at least
one internal degree-of-freedom. In this section, the balancing method is applicable to the configurable
parallel manipulator introduced by Gallardo-Alvarado et al [45].

The 4-RRR redundant planar parallel manipulator consists of a rigid moving platform shaping a
quadrilateral connected to the fixed platform by means of four RRR-type limbs [46–49]. If the rigid
quadrilateral is replaced by a closed articulated kinematic chain, see Figure 5, then the redundant
actuation of the manipulator and the internal forces generated by it are ameliorated, yet the four degrees-
of-freedom of the mechanism are preserved thanks to the newest internal degree-of-freedom of the
configurable platform. The complexity of the mechanism is certainly interesting to test the effectiveness
of the balancing method. According to four closed loops of the mechanism, eight closure equations may
be written as follows

a cos θ2 + b cos θ3 + c cos θ10 − a cos θ4 − b cos θ5 = d (41a)

a sin θ2 + b sin θ3 + c sin θ10 − a sin θ4 − b sin θ5 = 0 (41b)

a cos θ4 + b cos θ5 + c cos θ11 − a cos θ6 − b cos θ7 = 0 (41c)

a sin θ4 + b sin θ5 + c sin θ11 − a sin θ6 − b sin θ7 = d (41d)

a cos θ6 + b cos θ7 + c cos θ12 − a cos θ8 − b cos θ9 = −d (41e)

a sin θ6 + b sin θ7 + c sin θ12 − a sin θ8 − b sin θ9 = 0 (41f)

a cos θ8 + b cos θ9 + c cos θ13 − a cos θ2 − b cos θ3 = 0 (41g)

a sin θ8 + b sin θ9 + c sin θ13 − a sin θ2 − b sin θ3 = −d (41h)

The configurable platform consists of four articulated links, and eight equations associated with the
position analysis of the mechanism are available, see Eqs. (41). It is therefore logical to choose the
variables associated with the links of the configurable platform as the variables to be suppressed. Under
this consideration, the matrices V and W are defined as

V = [cos θ2 cos θ3 . . . cos θ8 cos θ9 sin θ2 sin θ3 . . . sin θ8 sin θ9]T (42)
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and

W = [
cos θ10 cos θ11 cos θ12 cos θ13 sin θ10 sin θ11 sin θ12 sin θ13

]T (43)

Thereafter, to meet Eq. (5) it follows that

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a b −a −b 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 a b −a −b 0 0 0 0

0 0 0 a b −a −b 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a b −a −b 0 0

0 0 0 0 0 a b −a −b 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 a b −a −b

−a −a −b 0 0 0 0 a b 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −a −b 0 0 0 0 a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

while

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0 0 0 0 0 0 0

0 0 0 0 c 0 0 0

0 c 0 0 0 0 0 0

0 0 0 0 0 c 0 0

0 0 c 0 0 0 0 0

0 0 0 0 0 0 c 0

0 0 0 c 0 0 0 0

0 0 0 0 0 0 0 c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

and

C = [
d 0 0 d −d 0 0 −d

]T (46)

After a few computations, matrix W is obtained in terms of the variables vi(i = 1 ∼ 16) as follows

W = 1

c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−av1 − bv2 + d + av3 + bv4

−av3 − bv4 + av5 + bv6

−d − av5 − bv6 + av7 + bv8

−av7 − bv8 + av1 + bv2

−av9 − bv10 + av11 + bv12

−av11 − bv12 + d + av13 + bv14

−av13 − bv14 + av15 + bv16

−d − av15 − bv16 + av9 + bv10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

and thus the variables wi(i = 1 ∼ 8) can be suppressed. Once the precise number of variables has been
established, the parameters gi and hi as well as the natural matrices of each of the moving links are
determined using the reference frames of the manipulator, see Figure 6.

For brevity in what follows only the results for link 11 are provided. The parameters result to be as
g11 = d(c − ȳ11)/c and h11 = x̄11d/c. Meanwhile, the natural matrices X11 and Y11 were determined as
follows
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X11 = [
0 0 a(1 − x̄11/c) b(1 − x̄11/c) ax̄11/c bx̄11/c 0 0

0 0 aȳ11/c bȳ11/c − aȳ11/c − bȳ11/c 0 0
]

(48)

and

Y11 = [
0 0 − aȳ11/c − bȳ11/c aȳ11/c bȳ11/c 0 0

0 0 a(1 − x̄11/c) b(1 − x̄11/c) ax̄11/c bx̄11/c 0 0
]

(49)

To complete the natural matrices of link 11, the skew-symmetric matrix Z11 results to be a 16 × 16
matrix composed of the parameters a, b, and c as

Z11 = 1

c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 a2 ab − a2 − ab 0 0

0 0 0 0 0 0 0 0 0 0 ab b2 − ab − b2 0 0

0 0 0 0 0 0 0 0 0 0 − a2 − ab a2 ab 0 0

0 0 0 0 0 0 0 0 0 0 − ab − b2 ab b2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − a2 − ab a2 ab 0 0 0 0 0 0 0 0 0 0

0 0 − ab − b2 ab b2 0 0 0 0 0 0 0 0 0 0

0 0 a2 ab − a2 − ab 0 0 0 0 0 0 0 0 0 0

0 0 ab b2 − ab − b2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

Once the natural matrices have been determined, the configurable parallel manipulator may be
balanced.

5.2.1. Shaking force balancing of the configurable parallel manipulator
As can be expected, the complexity of the kinematic analysis of the configurable parallel manipulator
translates into a dynamic balancing that requires a systematic procedure given the large number of vari-
ables involved in this process. By applying Eq. (11) or Eq. (12), one obtains sixteen force balancing
equations as follows

cm2ȳ2 − m10aȳ10 + m13aȳ13 = 0 (51a)

cm3ȳ3 − m10bȳ10 + m13bȳ13 = 0 (51b)

cm4ȳ4 + m10aȳ10 − m11aȳ11 = 0 (51c)

cm5ȳ5 + m10bȳ10 − m11bȳ11 = 0 (51d)

cm6ȳ6 + m11aȳ11 − m12aȳ12 = 0 (51e)
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Figure 6. Configurable parallel manipulator. Reference frames.

cm7ȳ7 + m11bȳ11 − m12bȳ12 = 0 (51f)

cm8ȳ8 + m12aȳ12 − m13aȳ13 = 0 (51g)

cm9ȳ9 + m12bȳ12 − m13bȳ13 = 0 (51h)

cm2x̄2 + cm3a − m10ax̄10 + cm10a + m13ax̄13 = 0 (51i)

cm3x̄3 − m10bx̄10 + cm10b + m13bx̄13 = 0 (51j)

cm4x̄4 + cm5a + m10ax̄10 − m11ax̄11 + cm11a = 0 (51k)

cm5x̄5 + m10bx̄10 − m11bx̄11 + cm11b = 0 (51l)

cm6x̄6 + cm7b + m11ax̄11 − m12ax̄12 + cm12a = 0 (51m)

cm7x̄7 + m11bx̄11 − m12bx̄12 + cm12b = 0 (51n)

cm8x̄8 + cm9a + m12ax̄12 − m13ax̄13 + cm13a = 0 (51o)

cm9x̄9 + m12bx̄12 − m13bx̄13 + cm13b = 0 (51p)

As with the five-bar mechanism, the force balancing expressions (51) can be separated into two
subgroups:
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i) Eqs. (51a)-(51h) include ȳ coordinates and exclude x̄ coordinates
ii) Eqs. (51i)-(51p) include x̄ coordinates and exclude ȳ coordinates

With these resources at hand, the force balancing problem of the complex linkage may be formulated
as follows. Given the mass of the links as well as the parameters of the configurable parallel manipulator,
it is necessary to determine the variables x̄i, ȳi(i = 2 ∼ 13), or natural coordinates, that allow that Eqs.
(51) must be fulfilled. It is therefore clear that in order to obtain an accurate and less intuitive force
balancing of the configurable parallel manipulator, it is necessary to resort to the moment balancing
of the linkage, one of the motives of the next subsection. In other words, at this point in the balancing
process there are more variables than available equations.

5.2.2. Shaking moment balancing of the configurable parallel manipulator
Following a logical order, the linear moment balancing is the first to be approached. By applying Eq.
(23) one obtains fourteen moment balancing equations as follows

m10ȳ10c − m13ȳ2
13 − m13x̄2

13 + m13x̄13c = 0 (52a)

m4ȳ4c
2 + m11aȳ2

11 − m11aȳ11c + m11ax̄2
11 − m11ax̄11c = 0 (52b)

m5ȳ5c
2 + m11bȳ2

11 − m11bȳ11c + m11bx̄2
11 − m11bx̄11c = 0 (52c)

m6ȳ6c
2 − m6x̄6c2 − m7ac2 − m11aȳ2

11 + m11aȳ11c − m11ax̄2
11 + m12acx̄12 − m12ac2 = 0 (52d)

m7ȳ7c2 − m7x̄7c2 − m11bȳ2
11 + m11bȳ11c − m11bx̄2

11 + m12bcx̄12 − m12bc2 = 0 (52e)

−m8x̄8c2 − m9ac2 + m12aȳ12c − m12acx̄12 − m13ȳ2
13a − m13ax̄2

13 + 2m13ax̄13c − m13ac2 = 0 (52f)

−m9x̄9c2 + m12bȳ12c − m12bcx̄12 − m13ȳ
2
13b − m13bx̄2

13 + 2m13bx̄13c − m13bc2 = 0 (52g)

−m10x̄2
10 + m10x̄10c − m10ȳ

2
10 + m13ȳ13c = 0 (52h)

m4x̄4c
2 + m5ac2 + m10x̄2

10a + m10ȳ2
10a − m11aȳ11c − m11ax̄11c + m11ac2 = 0 (52i)

m5x̄5c2 + m10x̄2
10b + m10ȳ2

10b − m11bȳ11c − m11bx̄11c + m11bc2 = 0 (52j)

m6x̄6c2 + m6ȳ6c2 + m7bc2 + m11ax̄11c + m12ax̄2
12 − 2m12acx̄12 + m12ac2 + m12aȳ2

12 − m12aȳ12c = 0
(52k)

m7x̄7c2 + m7ȳ7c2 + m11bx̄11c + m12bx̄2
12 − 2m12bcx̄12 + m12bc2 + m12bȳ2

12 − m12bȳ12c = 0 (52l)

m8ȳ8c
2 − m12ax̄2

12 + m12acx̄12 − m12aȳ2
12 + m12aȳ12c = 0 (52m)

m9ȳ9c
2 − m12bx̄2

12 + m12bcx̄12 − m12bȳ2
12 + m12bȳ12c = 0 (52n)

Owing to the excessive number of variables involved in Eqs. (23), with the experience acquired from
balancing the five-bar mechanism, a practical choice is to assume that the configurable parallel manip-
ulator belongs to the inline mechanism class, that is ȳi = 0(i = 2 ∼ 13). Therefore, with this condition
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Figure 7. Configurable parallel manipulator with spur gears as additional links.

and solving Eqs. (51) and (52) it follows that b = a. Furthermore, the natural coordinates of the centres
of mass of the moving links result in:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C2 = (−a(m3 + m13)/m2, 0), C3 = (−am13/m3, 0), C4 = (−a(m5 + m10)/m4, 0)

C5 = (−am10/m5, 0), C6 = (−a(m7 + m11)/m6, 0), C7 = (−am11/m7, 0)

C8 = (−a(m9 + m12)/m8, 0), C9 = (−m12a/m9, 0), C10 = (c, 0)

C11 = (c, 0), C12 = (c, 0), C13 = (c, 0)

(53)

If the inertial properties of the links such as the moment of inertia J are neglected then the balancing
conditions so far obtained for the configurable parallel manipulator are sufficient to cancel out the fluc-
tuating forces, and fluctuating moments credited to linear momentums, on the fixed platform. However,
the moment balancing cannot be considered complete unless Eq. (24) is satisfied. Certainly, the iner-
tia moments must be incorporated to cancel the fluctuating moments attributed to angular momentum
effects. In that concern, like the five-bar mechanism, to satisfy Eq. (24) it is necessary the inclusion
of additional links to the configurable parallel manipulator. Consequently, spur gears are added to the
original mechanism as shown in Figure 7. At this point, it is worth mentioning that the abuse in the
inclusion of additional links that naturally do not contribute to improve the performance of the mech-
anism from the point of view of concepts such as manipulability or mechanical interference problems,
among others, with the objective of obtaining a perfect dynamic balance must be taken into account in
order not to compromise the topology and assembly of the links.

With the addition of four spur gears, we dispose of restrictions attributed to the additional links as
follows

r2

∂θ2

∂q
+ r14

∂θ14

∂q
= 0, r4

∂θ4

∂q
+ r15

∂θ15

∂q
= 0 (54)

and

r6

∂θ6

∂q
+ r16

∂θ16

∂q
= 0, r8

∂θ8

∂q
+ r17

∂θ17

∂q
= 0 (55)

Hence, the natural matrices Zi(i = 14 ∼ 17) associated with the additional links maintain relationships
as follows

Z14 = − r2

r14

Z2, Z15 = − r4

r15

Z4, Z16 = − r6

r16

Z6, Z17 = − r8

r17

Z8 (56)

Furthermore, since the extra spur gears have stationary centres of mass, then the computation of their
natural matrices Xi, Yi(i = 14 ∼ 17) is unnecessary. On the other hand, one of the benefits of the method
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Table II. Parameters of the configurable parallel manipulator.

a = 80 [mm], b = c = 120 [mm], d = 283.019 [mm]
m2 = m4 = m6 = m8 = 0.297 kg
J2 = J4 = J6 = J8 = 19.434 [kg . mm2]
m3 = m5 = m7 = m9 = m10 = m11 = m12 = m13 = 0.422 kg
J3 = J5 = J7 = J9 = J10 = J11 = J12 = J13 = 27.755 [kg . mm2]
r2 = r4 = r6 = r8 = r14 = r15 = r16 = r17 = 40 [mm]

14

15

16
17

2

4

68

C2

C4

C8
C6

C9

C12

C11

C7

C5

C3

C10

C13

Figure 8. Balanced configurable parallel manipulator schematic.

is that the required moment of inertia of the extra spur gears can be determined to minimize the effect
of the fluctuating moments attributed to the angular momentum of the moving links. The application
of Eqs. (24) yields, among other relevant results, that the moments of inertia Ji(i = 14 ∼ 17) of the
additional spur gears must be given by

J14 = r14[a
2c2(m2

3 + m2
13 + m2m3 + m2m13 + 2m3m13) + m2a2(J10 + J13) + m2J2c2]/

(
m2r2c

2
)

(57a)

J15 = r15

[
a2c2

(
m2

5 + m2
10 + m4m10 + m4m10 + 2m5m10

) + m4a2(J10 + J11) + m4J4c2
]
/
(
m4r4c

2
)

(57b)

J16 = r16

[
a2c2

(
m2

7 + m2
11 + m6m7 + m6m11 + 2m7m11

) + m6a2(J11 + J12) + m6J6c2
]
/
(
m6r6c

2
)

(57c)

J17 = r17

[
a2c2

(
m2

9 + m2
12 + m8m9 + m8m12 + 2m9m12

) + m8a2(J12 + J13) + m8J8c2
]
/
(
m8r8c

2
)

(57d)

Figure 8 conceptually summarizes the shaking force and shaking moment balancing of the config-
urable parallel manipulator with additional links.

5.2.3. Numerical application for the configurable parallel manipulator
Let us consider that the configurable parallel manipulator is composed of links whose parameters are
listed in Table II. The topology of the robot is such that, where possible, links with the same parameters
were selected. Symmetry is always an appreciated feature for robot manipulators.

After a few computations, the matrices OX and OY associated with the shaking force balancing result
to be the zero matrix, which ensures that the balance of forces of the configurable parallel manipulator
is complete or fully satisfied. On the other hand, to perform the moment balancing of the mechanism,
based on expression (23), the first condition of the moment balancing yields that the matrix OM is also
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the zero matrix. Meanwhile, to compute matrix OJ , the application of Eqs. (57) yield J14 = J15 = J16 =
J17 = 0.0207 [kg . m2]. Then, after a lengthy procedure, the second condition of the moment balancing,
see expression (24), leads us to a 16 × 16 matrix OJ as follows

OJ =
[

0 −M

M 0

]
(58)

where M is a symmetric matrix given by

M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.100e − 10 −0.138e − 2 0.123e − 4 0.185e − 4 −0.337e − 12 −0.506e − 12 0.123e − 4 0.185e − 4

−0.138e − 2 −0.886e − 2 0.185e − 4 0.277e − 4 0. 0. 0.185e − 4 0.277e − 4

0.123e − 4 0.185e − 4 0. −0.138e − 2 0.123e − 4 0.185e − 4 0. 0.

0.185e − 4 0.277e − 4 −0.138e − 2 −0.886e − 2 0.185e − 4 0.277e − 4 0. 0.

−0.337e − 12 0. 0.123e − 4 0.185e − 4 −0.135e − 2 −0.370e − 4 0.123e − 4 0.185e − 4

−0.506e − 12 0. 0.185e − 4 0.277e − 4 −0.138e − 2 −0.886e − 2 0.185e − 4 0.277e − 4

0.123e − 4 0.185e − 4 0. 0. 0.123e − 4 0.185e − 4 0.900e − 11 −0.138e − 2

0.185e − 4 0.277e − 4 0. 0. 0.185e − 4 0.277e − 4 −0.138e − 2 −0.886e − 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)
Finally, since not all the elements of matrix OJ vanish, then the configurable parallel manipulator is

partially balanced from the point of view of moment balancing. However, matrix OJ is close to the zero
matrix so the results obtained are, in reality, reasonably acceptable.

6. Conclusions
In this work, the concept of natural matrix is introduced with the purpose of obtaining the general
symbolic equations for the balancing of forces and moments in planar parallel manipulators. As shown
in the contribution, a natural matrix is a property of the rigid body since its constitutive elements are
invariant with respect to time and the trajectory generated by the rigid body undergoing an instantaneous
change of pose. A natural matrix makes it possible to model physical phenomena in which time, although
present, does not intervene in the behaviour of the rigid body, as in the case of the balance of mechanisms.
A mechanism is balanced when the forces and moments transmitted by the moving links to the base
link vanish, which leads to an improvement in the performance of the mechanism since, among other
problems, vibrations, noise and fatigue due to fluctuations in the forces are ameliorated. A balanced
mechanism is said to be a reactionless mechanism. In particular, the balancing of parallel manipulators
is currently of great interest given the high speeds and stability at which they must operate. For example,
the Adept robot is capable of performing 240 pick-and-place operations per minute.

In this contribution, a method for the shaking force balancing and shaking moment balancing devoted
to planar parallel manipulators is proposed. The balancing of forces is achieved by resorting to Newton’s
second law and yet it is not necessary to perform the acceleration analysis, a task that is usually rather
tedious in most parallel manipulators. The force balance equations are centred on two natural matrices
which arise from the closure equations associated with the position analysis of the linkage. In that sense,
the reduction variable plays a central role as well as the coordinate transformation. Moment balancing,
on the other hand, is based on the concept of linear and angular momentum vector but with the advantage
that it is not necessary to perform the velocity analysis. The moment balancing theory is based on skew-
symmetric natural matrices associated with the moving links of the parallel manipulator, which follows
the fashion of the force balancing. The method is easy to follow so that non-experts in the matter can
find in this contribution a parallel manipulator balancing theory easy to follow that can be implemented
in algorithms without major effort, despite the apparent laboriousness of the obtained expressions. The
effectiveness of the method is exemplified by balancing two multi-degree-of-freedom planar parallel
manipulators. The results show that inline mechanisms are the most suitable option for the balancing
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of parallel manipulators. Furthermore, the inclusion of additional links, for example spur gears, is an
advisable option in the case of the moment balancing.

Finally, a requirement of the method is that the variables of the position analysis must be expressed in
sine and cosine functions, which is only possible in mechanisms articulated by revolute joints. Therefore,
the method is not applicable to mechanisms with prismatic pairs.
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