SOME QUANTITATIVE RESULTS RELATED TO ROTH'S THEOREM: CORRIGENDA

E. BOMBIERI AND A. J. VAN DER POORTEN

(Received 2 February 1989)

Theorem 1 of the paper [1] is stated in an unnecessarily weak form. What is actually proved is much stronger.

THEOREM 1. Let $\alpha_1, \ldots, \alpha_n$ be elements of a number field K of degree r over the field k with each α_i of exact degree r over k. Suppose $n \ge c_0 \log r$ (where c_0 is a sufficiently large constant) and set $\eta: 0 < \eta \le 1/2n!$. Let $\beta_i \in k$ be approximations to α_i , $i = 1, \ldots, n$, such that we have the gap condition

$$\frac{1}{\eta}\log(4h(\alpha_{i+1})) + \log(4h(\beta_{i+1})) \geq \frac{4rn}{\eta}\left(\frac{1}{\eta}\log(4h(\alpha_i)) + \log(4h(\beta_i))\right).$$

Then

$$|\alpha_i - \beta_i|_v \ge ((4h(\alpha_i))^{1/\eta} 4h(\beta_i))^{-2-3\sqrt{\log r}/\sqrt{n}}$$

for at least one i, $1 \le i \le n$.

The following misprints should be corrected: page 236, line 3

for: $\tau = 1$ read: $\tau = n$

page 237, definition of T(t)

for: $t \le x_1 \le 1$ read: t; $0 \le x_i \le 1$

page 238, middle

for: U(zv(z)) read: U(v(z))

page 238, Lemma 5

for: \sin read: \sim

^{© 1990} Australian Mathematical Society 0263-6115/90 \$A2.00 + 0.00

page 239, proof of Lemma 6

for:
$$> n/2 - nz$$
 read: $> n/2 + nz$.

References

[1] E. Bombieri and A. J. van der Poorten, 'Some quantitative results related to Roth's Theorem', J. Austral. Math. Soc. (Ser. A) 45 (1988), 233-248.

Institute for Advanced Study Princeton, New Jersey 08540 U.S.A. Macquarie University NSW 2109 Australia