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LIMIT CYCLES NEAR A NILPOTENT CENTRE AND A HOMOCLINIC LOOP
TO A NILPOTENT SINGULARITY OF HAMILTONIAN SYSTEMS

LIJUN WEI!, MAOAN HANZ, JILONG HE3 AND XIANG ZHANG*

ABSTRACT. For a planar analytic Hamiltonian system, which has a period annulus limited by
a nilpotent centre and a homoclinic loop to a nilpotent singularity, we study its analytic pertur-
bation to obtain the number of limit cycles bifurcated from the periodic orbits inside the period
annulus. By characterizing the coefficients and their properties of the high order terms in the
expansion of the first order Melnikov function near the loop, we provide a new way to find more
limit cycles. Moreover, we apply these general results to concrete systems, for instance, an
(m 4+ 1)th order generalized Liénard system, and an mth order near-Hamiltonian system with a
hyperelliptic Hamiltonian of degree 6.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The second part of the Hilbert’s 16th problem, one of the 23 problems posed by Hilbert in
1900, asks the maximum number of limit cycles that planar polynomial vector fields of a given
degree can have and the topological structures of these maximum number of limit cycles. This
problem is still open, even for quadratic differential systems, see e.g. [29, 34, 42]. In the 1970s
Arnold [1, 2] suggested a weakened version of this problem, so-called the weakened Hilbert’s
16th problem. This weakened version can be stated as follows: Let w be a real I-form with
polynomial coefficients of degree m, and let H be a real polynomial of degree n + 1 in the
plane, whose level curves {L;, : H = h} in closed connected components, called ovals of H,
form continuous families of periodic orbits of the Hamiltonian system associated to H. The
question is what is the maximum number of isolated zeros of the Abelian integrals

I(h):/Lhw.

The Abelian integrals can be viewed in essence as the first order Melnikov (or Poincaré—
Pontryagin-Melnikov) function relevant to a near-Hamiltonian system, obtained by polynomial
perturbations of a polynomial Hamiltonian system. Poincaré—Pontryagin—Melnikov theorem
shows that the number of simple isolated zeros of the Abelian integrals provides a lower bound
on the maximum number of limit cycles of the near-Hamiltonian system. In this direction, there
have appeared lots of published works, see e.g. [5, 7, 8, 15, 16, 18, 21, 28, 33, 36, 37, 50, 66]
and the references therein. But in general this problem is far to be solved.

As we know, the Abelian integrals strongly depend on the families of ovals {L;}. And the
families can be limited in different regions. Here we study a continuous family of ovals, formed
by level curves of a Hamiltonian, which are limited in a unique region bounded by a nilpotent
centre and a homoclinic loop to a nilpotent singularity.

Consider an analytic differential system of the form:

t= Hy(z,y)+eP(z,y,¢,06),

1
( ) y = _Hx(xay) + 5@0(%,?%5,(5),
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with H € C¥(R?) and Py, Qy € C“(R? x I x D), where ¢ € I = [0, p] with p > 0 small
and § € D C R? a compact subset in the real d-dimensional space. The origin is a nilpo-
tent singularity of the unperturbed Hamiltonian sytsem (1)|.—¢, if the Hamiltonian H satisfies
H,(0,0) = H,(0,0) =0 and

a(Hy’ _Hw) 8(Hy7_Hx)
I(z,y) d(,y)

As it is well known, if a singularity of system (1) is nilpotent, there exists an invertible real
linear change of variables under which system (1) is transformed to a new one, whose linear

part has the matrix
0 2h00
o 0 )

with hyy nonzero. Without loss of generality, we set the nilpotent singularity at the origin. And
system (1) has its linear part in the above normal form. Then the unperturbed Hamiltonian is of
the form H(x,y) = hgoy? + h.o.t., where h.o.t. represents the higher order terms. By [11, 67],
applying the implicit function theorem to H,(z,y) = 0 in a neighborhood of the origin yields
a unique analytic solution y = ¢(z), defined in a neighborhood of x = 0. Therefore, the
Hamiltonian H, without loss of generality, can be written in

(0,0)#£0,  det (0,0) = 0.

(2) H(Jf,y) :Ho(l")‘l‘yz?[(l’,y),

where

(3) Ho(z) =Y hja',  H(xy) =Y Hiy,  H => hya',
i>k §>0 >0

with hy (kK € N and £ > 3) and hgg nonzero constants provided that the origin is a nilpotent
singularity. For more information on nilpotent singularities, see e.g. [11, 21, 40, 67]. Here we
list the ones that we need. We remark that in the next Proposition 1 and Lemmas 1-3, we use A
as a nonzero constant, but it was given by Han [21] in its original statement taking hoy = 1/2.
We must say that this is not essentially different. In the lemmas the clockwise orientation of the
homoclinic loop or periodic orbits near the nilpotent centre implies hgy > 0.

Proposition 1. [21] Let the origin be a nilpotent singularity of the unperturbed system (1)|.—o,
and the corresponding Hamiltonian has the form (2) with (3). Then the origin is a nilpotent
centre of order m for the unperturbed system (1)|.—q if k = 2m + 2 and hyhoy > 0. The origin
is a nilpotent saddle of order m if k = 2m + 2 and hyhoo < 0. The origin is a cusp of order m

Associated to the forms (2) and (3) via Proposition 1, one has £ > 3 (i.e. m > 1). When
k = 2 (i.e. m = 0), the origin is a hyperbolic saddle if hiyhgy < 0, or else is an elementary
centre. As mentioned before, we suppose that the unperturbed system (1)|.—o has the structure
on the orbits:
(a) A continuous family of periodic orbits {L}} C {(x,y): H(z,y) = h}, which forms a
period annulus, denoted by Uj.
(b) A homoclinic loop L, to a nilpotent singularity .S, which forms the outer boundary of the
annulus U;.
(¢) A nilpotent centre C', which is the inner boundary of U;.

These assumptions together with the expression of H in (2) imply that the Hamiltonian system
(1)|2=o has the phase portrait as shown in Fig. 1.

In this paper, we study the limit cycle bifurcation for the first two cases in Fig. 1. The third
one will be handled in a separate paper, because of the length of this paper and some technical
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FIGURE 1. The phase portrait of the Hamiltonian system (1)|.—¢ consisting of a
nilpotent centre C' and a homoclinic loop to a nilpotent singularity S enclosing a peri-
od annulus. (A): The nilpotent singularity S is a cusp. (B) and (C): The nilpotent
singularity S is a nilpotent saddle.

difference. Without loss of generality, we suppose that the nilpotent saddle is S = (0,0), and
the nilpotent centre is C' = (z.,0) with z. > 0, and that the homoclinic loop L, is oriented in
clockwise in the positive sense. For hs := H(0,0) = 0 and h, := H(x.,0), one has h. < hs.

Associated to the family of periodic orbits {L}, h € (h., hs)} of the unperturbed system
(1)|z=0, the first order Melnikov function is

@ M(h,§) = 74 (Quidz — Pody) oo b€ (heihy).
h

It is well known that the number of limit cycles of system (1) could be found partially through
the first order Melnikov function if it is not zero identically. The coefficients of the expansion
of the Melnikov function in / play an essential role in determining the number of limit cycles.

The next three results exhibit the expressions of the expansions of the first order Melnikov
function near a homoclinic loop to a nilpotent singularity or near a nilpotent centre. The first
one is on the expansion near a homoclinic loop to a nilpotent saddle.

Lemma 1. [26, 65] For the analytic near-Hamiltonian system (1), whose Hamiltonian H has
an oriented clockwise homoclinic loop and is of the form (2) with (3), k > 4 even and h;, < 0,
the first order Melnikov function near and inside the loop L has the asymptotic expression

&)
1 1 k! T
M(h,6) = —grhIn|hlT} e (B 0) + [B2 Y ATy, (B O)IAIF +(h0), 0 < —h <1,
r=1
T#%

where 1(h,0), I3, (h,6),r = 0,1,--- , k — 2, are analytic functions in (h, ) for |h| small and
0 € D, and A,’s are constants for 0 <r <k —2andr # g — 1.

We remark that for concrete systems we needs to compute the coefficients in the asymptotic
expansions in % of the analytic functions ¢)(h,d) and I, (h,d)’s. Of course, these coefficients
are in general analytic functions in ¢. For more information on I, (h,d)’s and A,’s, see page 7
of [26] or page 2731 of [52].

The second one is on the expansion of the Melnikov function near a homoclinic loop to a
cusp.

Lemma 2. [27] For the analytic near-Hamiltonian system (1), whose Hamiltonian H has an
oriented clockwise homoclinic loop and is of the form (2) with (3), k > 3 odd and hy, < 0, the
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first order Melnikov function near and inside the loop L4 has the expansion
k—1
1 T
(6) M(h,6) = [h]2 Y @n(h,0)|h|% + o(h, ), 0<—-h<1,
r=1
where p(h, ), pr(h,0),r = 1,2,-+- |k — 1, are analytic functions in (h,0) for |h| small and
deD.

As remarked for Lemma 1, when applied to concrete systems we need to further compute
the coefficients of asymptotic expansions in h for ¢(h,d) and ¢,(h,d)’s. In Lemmas 1 and 2,
we have the condition 0 < —h < 1. It is due to the fact that the assumption ‘L, is oriented in
clockwise’ implies h < 0.

The third one is on the expansion of the Melnikov function near a nilpotent center.

Lemma 3. [23] For the analytic differential system (1) with the Hamiltonian H being of the
form (2) with (3), k > 4 even and hy, > 0, the first order Melnikov function near a nilpotent
centre at the origin, with oriented clockwise periodic orbits nearby, has the expression

M(h,8) = k= N(ht, ), 0<h<1,
where N(u,d) € C¥ is of the form
(7) N(h#,8) =Y CR(o)hF,

r>0
with
1 "
® o) = Y @, G5 = [ -
itEj=r 0

and r;;’s depending on § are given in (26).

It is evident that the concrete coefficients in the expansion of the first order Melnikov function
play a central role in studying limit cycles bifurcating from periodic orbits near a homoclinic
loop or a centre. For the first order Melnikov function (5) in Lemma 1, Han et al. [26] in 2012
came up with an algorithm to compute the coefficients of the first two terms. in the expression
(5) by virtue of Maple programme, and presented the expressions of the coefficients of h° and h'
in the asymptotic expansion of ¢)(h, ) in (5) with & = 4. Yang et al. [63] in 2019 indicated the
form of the (k + 1)th coefficient in the expansion of the Melnikov function (5) for even k& > 4,
and consequently the explicit expressions of the first £ + 1 coefficients can be theoretically
obtained via the algorithm in [26] by using Maple programme. Wei and Zhang [52] in 2020
further displayed the definite expressions of the first £ + 1 coefficients in the expansion of the
Melnikov function (5) for even k£ > 4. For the first order Melnikov function (6) in Lemma 2, the
authors in [3, 27] exhibited the coefficients of the terms with degree less than 2 in the asymptotic
expansion of the function (6) for £ = 3,5. Xiong [56] in 2015 obtained the properties of the
coefficients of the first two terms in the expansion of ¢(h, d) in the Melnikov function (6) for
odd k£ > 7, and pointed out that the coefficients of the other terms with degree less than 2, in
the function (6), can be calculated using the deductive process in [27]. Wei and Zhang [52] in
2020 represented @,.(h, 6) in (6) as A, 117, _,(h, ) to simplify the calculations (see Lemmas 4
and 8), and depicted the expressions of the first £ + 1 coefficients in the asymptotic expansion
of the Melnikov function (6) for odd k& > 3.

All the results listed above are on the coefficients of the terms having lower degrees in the
expansion of the first order Melnikov functions. Wei and Zhang [52], and Yang et al. [64]
characterized all coefficients in the asymptotic expansion of the Melnikov function (5) or (6)
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under some conditions, one of which is that the Hamiltonian system (1)|.—¢ has an elementary
centre inside the loop. When the Hamiltonian system (1)|.—o has a homoclinic loop enclosing
a period annulus with its inner boundary a nilpotent centre, the results in [52] and [64] do not
hold. One of our main goals in this paper is to tackle this problem. That is, when system (1)|.—o
has a homoclinic loop to a nilpotent singularity, which surrounds a nilpotent centre, we develop
the existed techniques to obtain the expressions of the coefficients of the terms with higher
degrees in the expansion of the first order Melnikov function near the homoclinic loop via the
nilpotent centre. To achieve this goal, we need to combine the coefficients of the terms in the
expansion of the first order Melnikov function near the nilpotent centre.

Han et al. [23] in 2008 provided an algorithm to compute the coefficients in the asymptotic
expansion (7) of the first order Melnikov function near the centre and described the expres-
sions of the first four coefficients with k& = 4. However, for even £ > 6 there are no explicit
expressions for the coefficients appearing in the function (7).

Our first result is on the first /2 coefficients in the expansion of the first order Melnikov
function near a nilpotent centre.

Theorem 1. For the asymptotic expansion of the first order Melnikov function given in Lemma
3, the first k /2 coefficients C°, r € {0,1,...,k/2 — 1}, have the general formula

co_ g (21 3\§~du 0 (0P 0Q
"k k72 — I' oxt \ Ox dy
where B(-, ) stands for the Beta function, and d,;’s, | = 0,1,--- ,2r, are given in Lemma 4
below.

Y

(C9)

On the appearance of the Beta function, see Proposition 2 and the remark under the proof of
this proposition below. We must say that the expressions on the coefficients in Theorem 1 are
the key point in the proofs of our main results in this paper.

Next we further investigate the coefficients of the terms with higher degrees in the asymptotic
expansions of the first order Melnikov functions near a homoclinic loop to a nilpotent singularity
and near a nilpotent centre presented in Lemmas 1-3. For the analytic near-Hamiltonian system
(1), to convert the coefficients of the higher degree terms in the first order Melnikov function
into the coefficients of the lower degree terms for new near-Hamiltonian systems, replacing
the perturbations Py(x,y,¢,d) and Qo(x,y, €, d) by new ones, saying the analytic perturbations
Pi(x,y,0) and Q;(z,y,9), i € N, one gets a new near-Hamiltonian system for each i € N

(9) ZI}: Hy(l’,y)—i-é_Pl(.T,y,(S),
il) = _Hm<x7 y) + €Qi($, Y, 5)
Under these notations, we expand the analytic function [7,’s, ¥, ¢ and ¢,’s in Lemmas 1 and 2

in Taylor series in h, we get the next asymptotic expressions of the first order Melnikov function
near and inside the homoclinic loop L; either as

klj-l-%l—l
i i L P17 i ;
M'(h,6) =Bj+|h|2Y > Bilhlt + ZBk1j+%h7“ In |A|
720 r=k1j+1 7>0
(j+1)k1—1
1 . r
(10) +a2Y 0 > Biglhln, 0<-h<1,

720 gyl
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for L to a nilpotent saddle .S of order [ 1] with even k;, or as

M (h, 8) =Bj+[h|F Y Z Bl|h|k1+ZB (b

720 r=k1j+1 7>0
(J+1)k1—1
1 r
(11) +R2> YT BiLWE, 0<-h <1,
520 gy g it

for L, to a nilpotent cusp S of order [®.-1] with odd k. Recall that [-] denotes the integer part
function. In (10) and (11) the coefficients B;’s are functions of the parameters ¢, which need to
be computed. The first k; + 1 coefficients in the last two expressions had been got in [52], and
they will be presented in Section 3 for our application.

As mentioned before, the nilpotent centre C' is located on the z-axis, and the near-Hamiltonian
system (1) has its unperturbed one having the Hamiltonian of the form (2) with (3). By Lemma
3 it follows that the first order Melnikov function near the nilpotent centre C, of order ko /2 — 1
with even ks, can have the asymptotic expansion

. 2tk . 2r
(12) Mi(h,6) = (h—he) 22 Y Ci(h—ho)k,  0<h—h <1

r>0

The coefficients C?’s forr = 0,1, - | 2 —1 can be gained from Lemma 3 through a translation.
It can be seen from the expressions of the coefficients C?’s in Theorem 1 that when the subscript
r increases by 1, the number of the terms in the summation in C? increases by 2. To obtain our
main results, we come up with the next new symbols

i1 (241 3\~ dey 0% (0P 0Q;
nis %B< k; ’5);(20!3;5% or |y

(C.9) .

Set
k k
A {5 BZ<5) 07 T:172a"'7|:_1:|7|:_1:|+27"'7k17

Ci(6) = Ci(6) = C1,(5) =0, j=1,2,-- ’?2_1}7

A
s=0

Our second result is to characterize the coefficients of the terms with higher degrees in the
asymptotic expansion of the first order Melnikov function (4) near a homoclinic loop to a nilpo-
tent singularity for the near-Hamiltonian system (1). It combines the asymptotic expansion of
the first order Melnikov function at the nilpotent centre.

Theorem 2. For the analytic near-Hamiltonian system (1), whose unperturbed Hamiltonian is
of the form (2) with (3), and has a nilpotent centre of order '“—22 — 1 and an oriented clockwise

homoclinic loop to a nilpotent singularity of order [’“; 1

hold.

(i) The first order Melnikov function is of the form (10) or (11) with i = 0 near the loop, or
of the form (12) with 1 = 0 near the centre.

], assume that the following conditions

https://doi.org/10.4153/S0008414X25101703 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101703

LIMIT CYCLES NEAR A NILPOTENT CENTRE AND A HOMOCLINIC LOOP 7

(44) There exist analytic functions P;(x,y,d) and Q;(x,y,0) fori = 1,2,--- |1, such that for
)€ Zz_l, the following equalities inductively hold

OH (z,y) OH(z,y) OPi1 | 0Qi
1 %Y p ga\LY) o _
(13) 5y Li(@y.0) + Qi(z,y,9) ar T oy (z,y,9),
over the period annulus U := |J Ly, where Py(z,y,0) and Qo(z,y,d) are just
he<h<hs

Py(z,y,0,9) and Qy(x,y,0,0) in system (1), respectively.
Then the coefficients in the first order Melnikov function, given in (10)—(12), of system (1) satisfy
the following formulas for § € Z%l, in which B;. s are given in (33) below.

(a) Forr=1,2,--- , [B4],
(—=1)"(2ky)*

(25 + 1)ky + 2r)

BO

_ i
kii+r — BT"

j=1
(b) Forr = [%],

0 _ 1 %

= Br.
kii+r (’L 1)' T
k

(¢) Forr ="t + 1 (in the case that k; is odd, this statement is void)

N G L € D R R
Blyir = (i + 1)!BT+ (i +1)! (Z n> B

n=2

(—1)"(2ky)’ i
Bgli-i-r = : B .

r

(27 + k1 +2r — 2)
j=1
(6) FOFjZO,L--- 7]%2_1,
(2k,)’ i
s = o
T1((25 + 1)ks + 4j + 2)
s=1

We remark that the properties in the above theorem have been partly acquired by Tian and
Han [48] and Wei et al. [51] for &y = ko = 2, in which the centre is an elementary one and
the singularity that the homoclinic loop approaches is a hyperbolic saddle, see Page 2. And the
properties have been presented by Wei and Zhang [52] for ky = 2, k; > 3, in which the centre

ir; Theorem 2 is an elementary one and the loop is homoclinic to a nilpotent singularity of order
(M1,

2Fhe result in Theorem 2 characterizes parts of the coefficients in the asymptotic expansion of
the first order Melnikov function (4) near a homoclinic loop under some condition by utilizing
the properties of the nilpotent centre and also parts of the coefficients in the expansion near
the nilpotent centre. In other words, we could say that the result of the theorem indicates the
properties on the coefficients in the expansion near a nilpotent centre via a homocinic loop.
Following this idea, we can think only about the properties of the coefficients in the Melnikov

function near a nilpotent centre without regard to a homoclinic loop.
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The next result presents the properties near a nilpotent centre. Its proof can be obtained in a
similar way as that in the proof of Theorem 2 given in section 3. The details are omitted.
Set

= ﬂAs with A" = {5: Ci(8) = C3(6) = Cjy(6) =0, = 1,2, - -, ——1}.
s=0

Theorem 3. For the analytic near-Hamiltonian system (1) with its unperturbed one being of the

form (2) with (3) and having a nilpotent centre of order k—; — 1 with oriented clockwise periodic

orbits nearby, assume that the following conditions hold.

(7) The first order Melnikov function has the expansion of the form (7) near the centre.
(i) There exist analytlc functions P;(x,y,0) and Q;(z,y,d) for i = 1,2,-- 1, such that
for o € N the equations (13) hold over the period annulus V U Ly, with
hc§h§h5+7'
<7< L
Then the coefficients CJQ ] > ko/2, in the expansion (12) of the first order Melnikov function
satisfy the following relations.

O — (21{:2)1 Cz
2+r —~i—1 7 T
A TT((@2s + ks + 47 + 2)

s=1

forr=0,1,--- %2 — 1, where C'’s are the coefficients in the expansion (12).

We remark that the conclusion in Theorem 3 is not different from that in (e) of Theorem
2. The differences are in the following aspects: Theorem 3 focuses on the coefficients in the
asymptotic expansmn of the first order Melnikov function near a nilpotent centre, so the restric-

tiond € A" there is only for the coefficients of the terms with lower degrees in the expansion
just near the nilpotent centre. Whereas Theorem 2 handles the coefficients in the expansion
of the Melnikov funcuon near the homoclinic loop or near the nilpotent centre, in which the

restriction § € A is on both coefficients of the terms with lower degrees in the expansions
near the loop and near the center. It leads to interdependent relationships among the coefficients
in the expansions near the loop and near the center.

The last two theorems display the relative expressions of parts of the coefficients in the as-
ymptotic expansion of the first order Melnikov function under the prescribed conditions, which
is crucial in finding more limit cycles of the system. The next result explains the realizability
of the conditions in Theorem 2, especially the conditions (13) for ¢ > 1, for a certain kind of
analytic near-Hamiltonian systems. We remark that the condition § € A"~ " under which the e-
quation (13) holds is different from that in Tian and Han [48], where the realization is explained
under the condition H(z,y) = [; q(z)dz + [} p(y)dy. Here we do not have this limitation for
the Hamiltonian.

Theorem 4. Assume that the Hamiltonian H(x,y) satisfies the condition (i) of Theorem 2, and
91 (3 ) /y does not vanish in U defined in Theorem 2. For any analytic I-form w = Pdy —
Qdx, ifits exterior derivative dw = f(z,y)dx A dy satisfies f(x,0) = 25171 (z — z.)* ()
with j1(x) analytic in U, then there exists an analytic 1-form n = Ady — Bdx such that

dw =dH A .

This result is an extension of Theorem 6 in [52] from an elementary centre to a nilpotent
centre. The proof is also similar to that in [52], and will be omitted. Analogously, the conditions
in Theorem 3 are also realizable for some near-Hamiltonian systems.
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Finally we apply our main results in Theorems 2-3 and the theories on limit cycle bifurcation
to find more limit cycles via the number of simple isolated zeros of the Abelian integral (the first
order Melnikov function), related to the two classes of near—Hamiltonian systems. Givental [17]
found some nonoscillation-type properties of Abelian integrals in the hyperelliptic Hamiltonian
H(x,y) = y* + Upy1(z) with a real polynomial U, ;(x) in z of degree n + 1. Here our
perturbed Hamiltonian systems are also defined by hyperelliptic Hamiltonians.

Hereafter we use the notion mod(a, b) to denote the remainder of a divided by b.

Consider a generalized polynomial Liénard differential system of the form

where ¢ > 0 is sufficiently small, g, and f,, are real polynomials of degrees n and m, re-
spectively. Denote by Z(n, m) the maximum number of isolated zeros of the Abelian integral
associated to the generalized Liénard system (14). On determination of Z(n, m), there are rich
results forn = 1,2, 3,4, see e.g. [6,9, 10, 12, 16, 22, 30, 38, 41, 46, 49, 50, 53, 54, 57] and the
references therein.

For n = 5, Xu and Li [59] in 2012 got Z(5,m) > m + 1 for m = 2,4 and Z(5,m) > 10
for m = 6,8, where the unperturbed Hamiltonian system includes two elementary centres
and a double homoclinic loop surrounded by a heteroclinic to two hyperbolic saddles. Xu
and Li [60] in 2013 gained Z(5,m) > m + mod(m/2,2) for m = 4,6, 10, when the period
annulus is bounded by a compound loop consisting of a heteroclinic loop and two homoclinic
loops. Han and Romanovski [24] in 2013 achieved Z(5,m) > 2[™+] + [“] using a different
approach for m > 5. Sun et al. [45, 47] presented Z(5,4) > 3 in the case that the period
annulus is limited by an elementary centre and a heteroclinic loop to a hyperbolic saddle and a
nilpotent saddle, respectively. Xiong [55] in 2014 showed Z(5,m) > 2m + 1 for m = 2, 3,4,
and Z(5,m) > m + 5 for 5 < m < 8 in the case that the period annulus is limited by
two elementary centres and a compound loop consisting of a cuspidal loop and a heteroclinic
loop with a cusp and a hyperbolic saddle. In the same year, Xiong and Han [58] further got
Z(5,m) > 2[4+ [2]+2 form > 5. Liand Yang [35] in 2019 provided also the lower bounds
of Z(5,m) in the case that the unperturbed Hamiltonian system is the same as that of [55] for
10 < m < 20. Yang et al. [64] in 2021 achieved that for 22 < m < 46 even, Z(5,m) > %m if

4lmand Z(5,m) > 3m — 5 + [%] if 4  m, under the conditions that the corresponding
Liénard system (14) is centrally symmetric and has two centres and a double homoclinic loop
with a nilpotent saddle, and that for 22 < m < 46 odd, Z(5,m) > Z(5,m — 1). Yang and Han
[62] in 2024 gave further in the case of an elementary centre and a cuspidal loop passing a cusp
of order 2 that for 15 < m < 25 a lower bound is 8[%'] + x(m) with x(m) = 2mod(m, 6) + 1 if
mod(m,6) < 3 and x(m) = 8 if mod(m, 6) > 4. For n > 6, there are also some works on the
lower bound of the number of isolated zeros, see e.g. [4, 24, 25, 44, 56, 58] and the references
therein.

Next we apply our results on the expressions of the first order Melnikov functions to study

the Liénard system (14) with g5 = 2%(2 — 1)3 for obtaining a better low bound on Z (5, m).

Theorem 5. There exists a generalized Liénard system of the form (14) withn = 5 and g5 =
2?(z — 1), which has at least 7 - ["=1] 4+ 2r — [%] - (2mod(r, 3) — 1) — 1 limit cycles with
r =mod(m — 1,6) and 4 < m < 300.

Recall that mod(a, b) denotes the remainder of a divided by b. This theorem provides a larger
lower bound on Z(5,m) than those in [24] with Z(5,m) > 2[™] 4 [2-1].
For the Hamiltonian system having a nilpotent centre, Llibre and Zhang [39] in 2001 con-

sidered the degree m polynomial perturbation of the Hamiltonian centre with the Hamiltonian
H(z,y) = 5-2®" + 5y, and gained the number s if n = I; @ if s < kand n # [; and
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k@2s—k+3) _ 1ifs > kand n = 1, of isolated zeros of the Abelian integrals, where s = [mT_l]
and k = max{n/ ged(n,!),1/ ged(n, )} with the greatest common divisor ged(n, [). Jiang et al.
[32] in 2009 studied the same problem in a centrally symmetric case withn = 2,1 =1, m = 5,
and got 10 isolated zeros by blowing up a nilpotent centre of order 1 to a double homoclinic
loop. Su et al. [43] in 2012 showed that a generalized Liénard system of degree m can have
1, 3, 5 limit cycles near a nilpotent centre of order 1 for m = 3,4,5. In the same year, Yang
and Han [61] figured out that a generalized Liénard system of degree m with the Hamiltonian
H(z,y) = y*+12° — 32" + 2% — L2? can have m— 1 — [2] limit cycles for 2 < m < 13, which
include m — 2 — [%] limit cycles near a nilpotent centre of order 1. Gasull et al. [14] in 2015
focused on an ”T’l order nilpotent center with the perturbations, linear term plus homogeneous
polynomials of odd degree n, whose Abelian integrals can have ”T“ isolated zeros around the
centre with their proof using the generalized Lyapunov polar coordinate change of variables.
As far as we know, the limit cycle bifurcation near a nilpotent centre was rarely studied.

As a second application, we consider a near-Hamiltonian system (1) with the unperturbed
Hamiltonian

1, 15 14

1
(15) H(x,y):§y2+1x — T = 5T

and the perturbed polynomials Py(x,y) and Qo(x,y) being of degree m. The unperturbed sys-
tem has exactly three singularities: a nilpotent centre at the origin together with two hyperbolic
saddles on its two sides.

Theorem 6. There exists a near-Hamiltonian system (1) with the Hamiltonian (15), which has
at least 2 - "] 4 2. [%

nilpotent centre for 3 < m < 22.

] +mod(2- [%§] — 1, 3) — 3 small-amplitude limit cycles near the

We remark that there is no a published paper which studied this near-Hamiltonian system.
The related work is the book [13], in which a generic 3-parameter unfolding was investigated
for planar vector fields with a nilpotent singularity.

The paper is organized as follows. In Section 2, we study the first order Melnikov function
near a nilpotent centre and a homoclinic loop to a nilpotent singularity, and obtain the exact
expressions and the properties of the coefficients in the corresponding asymptotic expansions.
The proofs of Theorems 1-3 are also presented in this section. Section 3 studies the relation be-
tween the limit cycle bifurcation and the independence of the coefficients obtained in Theorems
1-3. The proofs of Theorems 5 and 6 are given in Section 4.

2. THE FIRST ORDER MELNIKOV FUNCTIONS NEAR A CENTRE AND A HOMOCLINIC LOOP

Han et al. [23, 31, 61] presented the asymptotic expansions of the first order Melnikov
functions near a nilpotent centre, and established an algorithm to compute the coefficients of
the Melnikov functions by Maple programme. In this section, we further study the coefficients
and optimize their algorithm to simplify the calculations.

Yang and Han [61] in 2012 provided an algorithm to compute the coefficients in the expansion
of the first order Melnikov function near a nilpotent centre of order g — 1 with the help of
the Maple programme. There, they need to require a fixed integer & in the process of Maple
programme, and it is hard to figure out the explicit expressions of the coefficients with higher
degrees due to computer performance limitations. In the present paper, for any k£ > 4 even the
expressions and properties of the first coefficients in the first order Melnikov function near a
nilpotent centre are provided and they will play key roles in understanding the coefficients of
the terms with higher degrees in the Melnikov function established near a nilpotent centre or
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near a homoclinic loop to a nilpotent singularity. This will provide a nice tool to handle the
limit cycles bifurcating from the periodic orbits near the nilpotent centre or near the homoclinic
loop.

For simplicity to notations, we take x. = 0 in the first subsection below, and suppose that the
Hamiltonian of the unperturbed system (1)|.—¢ is of the form (2) with (3) and kg > 0. To study
the asymptotic expression of the first order Melnikov functions, without loss of generality, we
set the perturbation functions being of the form

(16) PO(xayao 5 Z al]x y ) QO X y70 6 Z bz]x y )

i+75>0 i+752>0

where a;; and b;; are analytic functions in the parameters § € D C R

2.1. The coefficients of the terms with lower degrees. By the classical results [19, 42] on
Melnikov functions for computing limit cycles bifurcating from period annulus, we get from
Green’s formula together with some manipulations that the first order Melnikov function (4)
can be rewritten as

a7 M(h, ) = 74 a(a.y, 0)da,
H(z,y)=h

where

q(x,y,0) :/Oy (%(az,v,&é)%— (%O(x v,0 5))d

)
:Q0($,y7075)_Q0($a070>5)+/ _xo($av7076)dv
0

= gi(x)y’

Jj=1
with
(18) gi(z) =) bya',
i>0
whose coefficients satisfy
(19) Eij = b;; + Hj_—.lai-&-l,j—b

Following [23], we know that the Hamiltonian (2) contains the component H (x,y) = hoo +

O(|z, y|). Then H(x,y) = his equivalent to w = |y|(H (z,y))2, where w = \/h — Ho(z). Ap-
plying the implicit function theorem to it, one gets two locally analytic solutions of H (x,y) = h,

saying y1 (, w) and yo(z, w), which satisfy y1 (2, w) = (hoo) 2w(1 4+ O(|z,w|)) = y2(z, —w)
near (z,w) = (0,0), and y; (z,w) can be expanded in w as follows

(20) yi(z,w) = Zai(l')wi,

i>1
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where
1
ar(x) = ,
E3
VvV HY
1 i
o * * j+2 .
ai1(x) = _QW H; E Ay, ay, + E Hi by |, for i>1,
1 t1+to=i+2, j=1
t1,t20>2
with b = > A Gy, -y and Y agay, = 0if i = 1.
ti+tote+t =i t1+ta=1i+2,
t1,t22>2

Under these notations, the integral M (h,¢) in (17) can be written in

a(h)
M(h,8) = / (). 0) =, (r,9),0) da

a(h) ) )
_ / S 45(@) (o] — v)da,
bh) - j>1

where a(h) and b(h) are two solutions of the equation Hy(x) = h in a neighborhood of = = 0.
The symmetry of y; and y, with respect to the y-axis further simplifies the Melnikov function

to
a(h) 2ii1
21) M(h,d) = > G (@) (h — Ho(x)) > da,
b(h) >0

where

2
(22) qj(f) =2 Z C]z’+1bz2}i1-

=0

We note that the detalis about the derivations of (20) and (21), together with the expressions of
ay, asz, ag in (20) and g, ¢, in (22), can be found on page 191 or on page 193 of book [21].
Introducing a new variable

(23) u = sgn(z) - |Ho()|* := ®(x),

the Melnikov function can be expressed as

1
hE ‘
M(h,0) = Z/ B () (h =) du
j>0 /—h%
h% 2j+1
24) = > [ @+t o)
>0 0
where
. q;(x)
25 (u) = -2
( ) q] (u) q),(‘r) x:@*l(u)’
can be expanded as a power series in u in a neighborhood of v = 0, and then
(26) Gi(u) + G(—u) = ryu®,

i>0
with the constants 7;;’s, i, 7 > 0, depending on the coefficients of the perturbations /4 and @)
of the analytic near-Hamiltonian system (1). As in [61], substituting (26) into (24) yields the
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asymptotic expression in h as in Lemma 3, of the first order Melnikov function (4) near the
nilpotent centre.
The next result characterizes the coefficients appearing in Lemma 3.

Proposition 2. The constants 3;;’s given in Lemma 3 have the next expressions

PR INCES I
A REAESY

Proof. The expression (3;; in (8) can be deformed as

1
2j+1

Bij :/(uk){?(l—uk) 2 du.

0

Then one has
1

1 i ,
Bii =7 /t2k+1_1(1 — )t
0
The proof completes via the definition of the Beta function. U

We remark that 5y, 510, 820, B30, o1, S11 can be obtained from page 198 of [21] when k = 4.
Although the expressions are different from those of Proposition 2, they coincide by some cal-
culations. From Lemma 3, one needs to calculate the coefficients CB of the first order Melnikov
function, which is the key element in the expressions of 7;;s.

Lemma 4. For the formula (8) given in Lemma 3, there exist constants d;’s, | = 0,1,--- 21,
depending on the coefficients of the unperturbed Hamiltonian one of system (1), such that for
all nonnegative integers i’s,

2i 2%

d; & (0P, O

rio = Y di (14 Darero +bu) = Y T= (a_; N a%o)
=0 !

=0

(C9) ‘

2i+1 1 2i43

Inparticular, di’gi = 4‘hk‘7 k (ho[)) 2, di’gifl = —%((4Z+2)hk+1+khkh10)‘hk’7 k (hoo)ié.

Proof. In order to get the expression of r;5, we have to know the expansions of the level curves
defining the ovals. According to the expression of Hy(x) in (3) and the definition of ®(x) in
(23), one has

(27) w=0(x) = |hy|* Zuixi,
i>1
whose coefficients p;’s, 7 > 2 depend on 44,7 = 1,--- ,¢ — 1, and have the expressions
1, =1,

28 ;= i—1 vm m—1 ) )
G > oy [LGk=1) X X X hjg, 022
m=1 " 20 Jitegm=i—1

Then it follows from (27) that

-1
1 _1 . i -1 i

>0
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where n;,7 > 1, are functions in s, - - - , j4;41, and have the expressions
1, 1 =0,
n; = i m . . .
ST S (D) XX Gt 1) X g X X g, 021,

with the positive integers 7;’s.
Let z = @~ !(u) in (25) have the power series in a neighborhood of u = 0

(30) r=0"(u) =Y mu'
i>1
By the expression u = ®(z) in (27), equating the next equality
— 1 i : — —
w= 0@ W) = [F S e Y Ey ke x T,
>l m=1  jitetjm=i
yields
|hk‘_%/ﬁil = ’hk|_%> =1,

K3
_ZMm Z ﬁjlx...xﬁjm’ 222’
m=2 Jitetim=1

(31 My =

with p,,’s given in (28). Now a; (), as the first coefficient of y; (x, w) in (20), via the expression
of H in (3), has the asymptotic expansion

) = ) |14 30 2 (Z’%O‘“>

i>1 7>1

(32) = (hoo)™2 Y _ a'm,

>0

where m;’s have the expressions

1 1 =0,

m; = —1(- -1+ .
Z e DY b xeexhye, i1
R

Substituting (18), (22), (29) and (32) into (25), we get

Go(®(x)) = 2|7 (hoo) 2 (Z@wi) (Z nﬂf’) (Z miari>

>0 >0 1>0

D M~

—2’hk|_E hoo Z.ﬁlﬁtl,

>0
where t; = > biginimi,, i1,42,43 > 0 with b;1, n; and m; appearing respectively in
11+i2+i3=t

(19), (29) and (21). In particular, t, = by;. Substituting (30) into the above expression gives

%@=%WM@£@+ZMZ% > %mem)

i>1 m>1 14t jm=i
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Combining this expression with (26) yields

Too = 4|hk|_%(h00)_%t0 = doobon,

rio = 4|hg|” % (hoo) ™ Z Zbll Z Niy My ) Z fojy X X

m>1 [=0 i1+io=m—I1 Jit+im=21

2i
:Zdilglla 1 >1,

>0

21
dio = 4|hk’_%(h00)_% Z < Z nilmi2> Z ﬁj1 X X ﬂjmv

m=1 \i1+is=m Jittim=21
2i
_1 _1 _ _ .
dit = 4|hi| 7% (hoo) 2 E Ty My E Py X oo Xy =1, 20,
m=l \i1+i2=m—I J1t+Fim=21

for i > 1, where 7z;’s are given in (31) through (28). Note that d;’s, | = 0,1, - -, 27, depend
only on the coefficients of the Hamiltonian H (z,y) given in (2). The precise expressions of
d; 2i—1 and d; »; are presented in Lemma 4.

This proves the lemma using the notations in (16) and (19). ]

Proof of Thorem 1. The proof follows from the formula (8) and Lemma 4. U

2.2. The coefficients of the terms with higher degree. For the analytic near-Hamiltonian
system (1), the authors in [52] showed that the first k; coefficients in the asymptotic expansion
of the first order Melnikov function (10) or (11) satisfy the following expressions.

(33) By = ]{ Qidz — Pidy|.=o,
L,

r—1 7
; d—1y 08 (OP,  0Q; ki —1
Bi— A, L9 (4 5 -1,
P 8$l(8$+8y (5,9), rEL Ty
Bi __dezl’lil 8PZ-+6Q¢ (S,6)
T 2k Il ozt \ 9z = Oy T
=0
r—2 3
d. oy & (0P, 0Q; [k
B —AT,Q - l' %<ax —+ ay (S,(S), r = 5 +27 7]{517
and
oP, 90 37 & sap a0,
B 1)kt : i - -7 P (8, 6)a | a
e =) f; <8x ay) 2 71041 <8x+8y><s’ )z
e
7B,
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where the concrete expressions of the coefficients A;’s and ciz-j can be obtained from Lemmas
89 in [52]. Set

Q= {5:3;(5):0,r=1,2,--- , [51] [21} +2, ki, CHO)=0,5=0,1,- ,32—1}
and ' = mi:o Q°, where C?’s are given in (12). We mention the difference of Q2 with A in
Theorem 2.

Lemma 5. Let the basic conditions on the system and the homoclinic loop and the assumption
(1) in Theorem 2 hold. Assume that there exist analytic functions P;(z,y,d) and Q(,y, ) for

i =1,2,---,1, such that for § € Q " the equalities (13) hold over U. Then for § € Q7 the
conclusions (a)—(e) of Theorem 2 hold.

Proof. Here we just prove this lemma in the case that the unperturbed system (1)|.—o has a

nilpotent centre and a homoclinic loop to a nilpotent cusp. The proof as the homoclinic loop to

a nilpotent saddle can be handled in a similar way as that in the proof for the nilpotent cusp.
We first prove the result for [ = 1. Differentiating M°(h, §) in the expansions (11) and (12)

with respect to h, together with the condition § € ﬁo one has for 0 < —h < 1,

kij+=5— 1

OMO(h,
—8(h ) k1+1 |h|2 Z Z ( ) Bk1+r|h| 1

7>0 r=k1j+1

(34) + Z j+2)B k (1) Bt (h — hs>j+1

j>0
(J+1)k1—1 , 3
SIS () Bl
G20y iy FLEL 1
2

andfor0 < h—h. < 1,

OMO(h, ) Sy 2 + 3ky + 4r

(35) i == he) b Oyl he)s

r>0

Set C! := %@HTC’O b7 2 0. Recall that the derivative of the first order Melnikov function

M (h, ¢) defined by (4) i 1n h has the following expression, see [20].

M
OM(h,0) (h’a)—f %—F% dt.
oh ox oy
Substituting the equation (13) with ¢ = 1 into the above derivative, a simple computation shows
MPO(h,§
Ll

which has the same integral form as the first order Melnikov function (4). Then it can be viewed
as the first order Melnikov function M (h, ) of a new near-Hamiltonian system (9) with i = 1,
and it has the expansion (11) near the homoclinic loop and the expansion (12) near the nilpotent
centre. It follows from the equation (36) that the expression (34) and the expansion (11) with
1 = 1 are the same near the loop L, and that the expression (35) is consistent with the expansion
(12) with ¢« = 1 near the centre.

Comparing the coefficients in the expression (34) and in the expansion (11) with ¢ = 1, as

well as the coefficients in the expression (35) and in (12) with ¢ = 1, one has for ¢ € Q’
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(a) whenr =1,2,--  [E-],

r 3 .
Biyjar = — <k_1 Tyt J) By, 41y
(b) whenr = [%]
Bli1j+r‘ = <j + 2> B/(f)l(j+1)+7“’
(c) whenr =[E]+2,--- ki,
r—1 3 .
Blilj—&—r == ( r + 2 +J> Bg1(j+1)+7“’

(d)

1 2r+1 3\
for all nonnegative integers j. Obviously, the conclusion (e) in Theorem 2 holds, which can be
obtained from (d) above. Taking j = 0 for (a)—(c) above, one gets the proof of (a)—(b) and (d)
in Theorem 2 for [ = 1. o

For [ > 1, according to the foregoing proof and the conditions of Lemma 5, for § € {2~ the
conclusions (a)—(d) hold with the superscripts 7 and ¢ — 1 instead of the superscripts 1 and 0,
respectively.

. . —i—1
By induction, one can further prove that for § € Q'

(a) whenr =1,2,--  [EA],
0 (—1)"(2ky)’ i
Bkl(i+j)+r = i+j Bk1j+7‘7
IT (k1 +2(kis+7r))
s=j+1

1
0 _ g
Bk1(i+j)+r T i+l Bk1j+r’

IT s

s=7+2

(=1)"(2ky)"

821 (i+)+r = "ty B’ilj+T’
H (k‘l + 2(]6’18 +r— 1))
s=j+1
(d)
CO — (2k2>z C«z
L i ' J’
[T((2s + 1)ky + 45 + 2)
s=1

with nonnegative integers j.

Statement (d) above implies the conclusion (e) in Theorem 2. Taking j = 0 in the above
conclusions (a)—(c), it follows the conclusions (a)—(b) and (d) in Theorem 2. The proof is
completed. U

Proof of Theorem 2. Tt follows from Lemma 5, together with the fact Al cQ  fori =
1,2, 1. 0
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Next we turn to think about the coefficients of the terms with higher degrees in the expansion
of the first order Melnikov function near the homoclinic loop to the nilpotent cusp, called a
cuspidal loop. Han et al. [27] first depicted the expansions of the first order Melnikov function
near this kind of loop, and the first coefficients in the expansions for £ = 3. In [3, 52, 56] the
authors further studied the coefficients with lower degrees of the expansions for £k > 5. The
results are summarized as follows.

Lemma 6. For the analytic near-Hamiltonian system (9), assume that the unperturbed Hamil-
tonian has an oriented clockwise homoclinic loop to a nilpotent cusp at the origin, and satisfies
(2) with hy, < 0, then the first order Melnikov function near and inside the cuspidal loop is given
in (11), and it near and outside the loop (see Fig. 1(A)) can be written in the form

kj+ 55t
SES VD SNTIEES SN
720 r=kj+1 j>0
(j+1Dk—1
7) w300 Bk 0<h<,
720 — k]+k+l
where
i i . AL k
b[):Bo, br:AT 1B T:l)...’|:§:|’
%) 4
bisjen = By T, B; b= Az p S L P
[5)+1 [§]+1+Zl I r=a B =g TRk

I=1
with the constants T}, A% > 0 for0 <r <% —land A7 <0, for  —1<r<k-1.

Yang and Han [62] in 2024 provided further the relation between the coefficients of the terms
with the same order in the asymptotic expansions of the first order Melnikov functions inside or
outside the cuspidal loop. Moreover, the constants 7;*’s are zeros in Lemma 6.

This lemma implies the information

{5:Bi(5):0,1§r§k,r;&[§1+1}:{5:b3;(5)—01<r<kr7&mﬂ}

In the light of the idea in Theorem 2 and its proof, together with this last lemma, we can
characterize the coefficients of the expansions (11) and (37) of the first order Melnikov functions
near the cuspidal loop, as shown in the next results. Their proofs will be omitted.

Theorem 7. For the analytic near-Hamiltonian system (1), the following assumptions hold.

(1) The unperturbed Hamiltonian one of system (1) has a nilpotent centre of order [’“2—2} —1
and an oriented clockwise homoclinic loop to a nilpotent cusp of order [kl 1].
(17) The first order Melnikov function is of the form (11) with i = 0 near the loop, and is of
the form (12) with © = 0 near the centre.
(1i1) There exist analytic functions P;(z,y,d) and Q;(x,y,0) fori = 1,2,--- |1, such that for

5N the equations (13) hold over Us := U Ly with a positive number T < 1.
hcghghs"l‘T

Then the statements (a), (b), (d) and (e) in Theorem 2 hold, and the coefficients of the expan-
sions have the next relations.
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(a) Forr =1,2,-..  f-d

2 )
(2k1)’ i
b21i+r —im1 i br'
(25 + D)k + 2r)
j=1
(b) Forr =",
bO _ 1 7
S v N G DT
(¢) Forr =833 ..k,
(2k1) i
bgli—l-'r xi-1 = b'r'

(27 + 1)ky +2r — 2)

3
j=1

3. LIMIT CYCLE BIFURCATIONS NEAR A HOMOCLINIC LOOP AND A CENTRE

This section considers the limit cycle bifurcations of the families of periodic orbits near a
centre and a homoclinic loop with a nilpotent singularity. If the singularity is a nilpotent saddle,
the Hamiltonian system (1)|.—o could have a family of periodic orbits either inside or outside
the homoclinic loop. If the singularity is a nilpotent cusp, there could have two families of
periodic orbits locating at both sides of the cuspidal loop, see Fig.1(A). In this last case we
study limit cycle bifurcations in both sides of the cuspidal loop and near the centre for the near-
Hamiltonian system (1), utilizing the properties of the coefficients of the first order Melnikov
functions estabilished in Theorems 2 and 3 and Lemma 7. On the limit cycle bifurcation in
a single side of a homoclinic loop and near a nilpotent centre will be directly demonstrated
without a proof, since they can be obtained in a similar way as that in the case of the cuspidal

1OOSpe:tBo ;= BJ. For0 < j < % —1,1<r<kjandr # [’“2—1] + 1, set
7, i=0, BY, i =0,
B9 Cuyyy= {CJ,QQQHJ, S, >0, Bruier = {Bélmu“v i > 0.
Forr = [&] 4+ 1, set
(40)
Co [ o(gor ey &1 o pon Q)
Biyivr i= my/{ (ax + dy ) - 2 e <8:c + o ) (S,0)x Odt.

Denote _

F = (C{l, S ,C?%LLJ R = (FF.... F) F,—0

A= (BkliJrla Biyivo, -+ ’Bkli-',-[%l]’ Bk1i+[k71]+27 o Bryivky s C%zi, e 70%2(1-“)_1) ;

O;:=0 <|Bk1i+1, Byito, - - 7Blm'+[%l} ’) ;
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and

0F — O(|Ag, A1, A1, Fial), 7>0,
o j=0.

Theorem 8. Let the assumptions (i)—(ii) in Theorem 7 hold. If there exist nonnegative integers
n(<m), i € [1,ki],rs € 0,22 —1] and 5y € R, such that for B; and C; defined in (39)—(40),

Bk1n+rl(50)0%2n+r2(50) # 0, F,_1(d) =0,
k
BZ((SO):C]<6O):O7 7’:07 y T ]’C17’L+T1—1 j_o,l,“‘7?2n+7"2—1,

a (BU7 Blu e 7Bk1n+7’1*17 007 e 701%2”_;'_,,.2_17 Fn*l)
(01, ,0s)

Then system (1) can have (2k; + ’Z—Q — 1)n + 2ry + ro — 1 limit cycles near either the centre or
the cuspidal loop for some (e,9) near (0,0¢), being comprised of (2k; — 1)n + 2ry — 1 limit
cycles near the cuspidal loop and %n + 19 limit cycles near the centre.

Rank

(60) = (k1 + ko — 1)n + 1y + 7.

Proof. Without loss of generality, we assume that (—1)M"*"™ By 0. (6) > 0 for ry < 233
and (—1)2”“2 C%z ntry (00) > 0. For unifying the notations, we denote by Bl :=DBiforl =1
and B, := bZ for [ = 2. It follows from the expansion (11) and Lemma 6 that the asymptotic

gt
expansions of the first order Melnikov function near the cuspidal loop can be uniformly written

in

2
MP(h,8) =BG+ ]2y > BURT + Y B W
520 r=kij+1 >0 ?
(]+1 k1—1

(41) +EY" N By nlE

R — +k12+1

for 0 < (—=1)'h < 1 with [ € {1,2}, and that the asymptotic expansion near the centre is given
in (12) with ¢ = 0.

To study the number of isolated zeros of the first order Melnikov function, treating B;, C;
and F,, { with:=0,1,--- ;/kyjn+r, — 1,5 =0,1,---, ’“Q—Qn + r9 — 1 as free parameters, and
write BY’s and C?’s in terms of B;’s and C;’s. Then By, = B{, = By, C) = Cj, and

Bijira = Bijer|w + O (JA% AL ATLFOF - FT)
- Bk1j+r,l‘zﬂ'—1 + O],
Chy iy = Ch + O,

k ko . .
Zj+t Bt | At

Together with the properties in Theorem 7 and the relations (38), one further has
0 Bk1j+7‘ + Oja [ = 17
Bk1j+r,l - 1 jA:—lB Oj [ =2
(_ ) A, Pkij+r + , =

forl1 <r <[k

)

l\')l,_‘

Byjira = Brjir + 05+ 07
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forr = [2] + 1,

0
Bk1]+’l“l

Bk1j-‘r’r‘+0ja l= ]-7
(~1) =By + 07, 1=2

for [&] +2 < r < ky, and

0
C, .
2

J
j+t Ck2y+t +0

for0<t <% -1
Therefore, the expansions (41) of the first order Melnikov function can be respectively written

in
n—1
0 +3 j+1 j
M =5t ST (B 0 S (177, s 0,40
J=0 r=kij+1 j=0
n—1 (J+1)ki—1 ) kin+ri—1
AT (B O) AT S (B 407
J=0 1 ]+k1+1 r=kin+1

+3 n+zt+3 ntzh+31
k k k
SRITE 4 By, (BT o ([R[TTRTE
near and inside the loop L,

. k-1
n— 1k1]+ 5

A* ' o n—1
M§(h,6)=Bo+»_ Y. ( 1)7+1 A’”—l BT+OJ) pEtE 4 (Bk b
§=0 r=kij+1 r=1 =0
n—1 (G+1)ki—1 A* L
+0; +O] pitt +Z ((_1>j+1 T_—l‘BTH —|—Oj> CpE T2
A'r—l
] OT‘fk’ +k:12+1
A:fl 3

kin+tri—1
4 E ( n+1

r=kin+1

Br n hﬁ+
e

gl gl
+ bk1n+r1 hn+k1 2 +o0 <hn+k1 +2>

near and outside the loop, and

k2 n+ro—1

MO8 =h—h) 5 |S S (GO h—h)E+ S (Co+ 0" (h— o)

_Fka _ka
r=73J =73

O (=) T o (I )

n

near the nilpotent centre for 0 < h — h. < 1, where By} ., = Bjnir, (60) + O, b) 1, =
A
(1)t py v (6) + O, and C = Chy, . (80) + O with O = O(|Bo, By, -+ -,
“+7r2 2 2

Akl n+ry—2
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Biiniri-1,Co, Cyy -+, C ka2 Take the free parameters B;’s and C;’s such that

ntro—1’ Fo 1|)

<(- 1)kUBku (=) By i < L (1) mgt st <

., k143 ;
(—1)ko* k1j+% G By jatags <o < (=DM ™M By ik,
< ( 1)k1n+lBk1n+1 <L - ( )kln+rl_lBk1n+r1—1 < (_1)k1n+T1Bk1”+T1 (50)’
( 1)7" ICT 1 <<( ) C <<( 1) 22n+7'20k2n+r ((50)

satisfying max {|Bk1(j+1)], |C'%2j+%271|} < min {‘Bkl(j+1)+1’, ‘C%(ﬁl)’} with0 < j <n—
land1 <r < %n + r9 — 1. Then the first order Melnikov function M (h, d) can have kin +
simple zeros in a right neighborhood of h = 0 and (k; — 1)n + r; — 1 simple zeros in a left
neighborhood of h = 0, and 5 n + 1o simple zeros near i = h.. Hence the near-Hamiltonian
system (1) can have (2k; + %2 3 )n—+ 21 + 19 — 1 limit cycles near either the cuspidal loop or
the nilpotent centre, obtained by applying the implicit function theorem to the Poincaré map.

The proofs of the other cases are similar as those given above, and so are omitted. We finish
the proof of the theorem. U

We remark that in practice, it is quite troublesome to find J, that meets the conditions in
Theorem 8. If the perturbations F, and () in system (1) are linear in the parameter ¢, the
Jacobian matrix in the theorem is independent of the parameter 6. Then we can simplify the
conditions in Theorem 8 even further.

Corollary 1. Let the assumptions (i) and (it) in Theorem 7 hold. Suppose that there exist
nonnegative integers n(< m), r1 € [1, k1] and ry € [0,%2 — 1], such that the Jacobian matrix

0 <B0; B17 o 7Bk1n+r1—17 COa e 701%2n+7,2,17 Fn—la b>
8(617 T aés)

with b € {Bkli, C’@nm} is of full rank. Then system (1) can have (2k; + % — 1)n+2r +
2

ro — 1 limit cycles near either the nilpotent centre or the cuspidal loop for suitable choices of
the values of (g, 0).

Based on the ideas of the proof to Theorem 8, one can establish similar results on limit cycle
bifurcations near and inside a homoclinic loop to a nilpotent singularity and near a nilpotent
centre. We present them here without a proof, because of the similarity and cumbersome.

Theorem 9. Let the assumptions (i) and (ii) in Theorem 2 hold. Suppose that there exist
nonnegative integers n(< m), r1 € [1, k], ro € [0, kQ—Q — 1] and 8 € R?, such that the B;’s and
C;’s defined in (39)—(40) satisfy the following conditions:

Bk1n+7“1 (60)0%2714#2 (50) 7& Oa anl(g(]) — 07

k
BZ((SU):CJ((SQ):O, ZIO, y kln—i—rl—l j_O,l, ?2714‘7’2—1,
a(B[hBla”' 7Bk‘1n+7’1—17007 CkQ

a(517 e 755)

Then system (1) can have (k;+ %z)n—l—rl ~+7ry limit cycles near either the centre or the homoclinic
loop for suitable choices of the values of (¢, 0) near (0, dy).

n+ro— I’F” 1>
Rank (50) = (k)l + k?g — 1)n —+1ry + 7ro.
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Corollary 2. Let the assumptions (i) and (ii) in Theorem 2 hold. If there exist nonnegative
integers n(< m), r1 € [1, k] and r5 € [0,%2 — 1], such that the Jacobian matrix

0 (B07 Bl> T 7Bk1n+r1—17 CO? T 7Ck72n+r2,17 Fn—la b)
a(517 T 7(55)

with b € {Bklan, CQn+T2} is of full rank. Then system (1) can have (k; + ];—Z)n + 711+ 172
2

limit cycles near either the centre or the homoclinic loop for suitable choices of the values of
(€,0) near (0, dp).

For0 <j <% —1, set

ce, i =0,
(42) 0%224-]' = 022 51 7> 0.
PRar)
Theorem 10. Let the assumptions (i) and (ii) in Theorem 3 hold. Suppose that there exist
nonnegative integers n(< m), r(< 2 — 1) and &, € R®, such that the C;’s defined in (40)
satisfy
O%szrr((SO) # 0, F,_1(d) = 0,
k
awwzo,l=0J,~,§n+r—L
0 (COJ T Ck—Qn—i—r—l’ Fn71>
Rank 30r. = A (00) = (k2 — L)n + 1.

Then system (1) can have g—zn + r limit cycles near the centre for suitable choices of the values
of (€,9) near (0, ).

Corollary 3. Let the assumptions (i) and (ii) in Theorem 3 hold. If there exist nonnegative
integers n(< m) and r(< %2 — 1), such that the Jacobian matrix

0 <007 e 701%271,—&-7"—1’ Fn—17 C’%QH_Hn)
6((517 e 768)
is of full rank, then system (1) can have k—;n + 7 limit cycles near the centre for some (€, ).
Denoted by C?, := C’%QHT —Ci, F = ( b e Chsmr s %1’Si’%—1>, F;, .= <F0,
12
F!,. .. ,f‘l) fori > 0and F_; = .

We remark if there exists a maximal linearly independent group (C' ki Cﬁ,sw) with s;, €

{0, 1,2}, where C, = &, then Theorems 8-10 and Corollaries 1-3 still hold with the symbol F
instead of the symbol F.

4. APPLICATIONS

This section is a proof to Theorems 5 and 6, which are the applications of our results obtained
in the previous sections to two concrete systems.
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4.1. Proof of Theorem 5. Consider the generalized Liénard system of the form:

(43) i=y, y=-2(z—1)+eyfm(z)

m

with a polynomial f,,(z) = Y b;z’. Obviously, the Hamiltonian of the unperturbed system

=0
(43)|c0 is H(z,y) = 3y — s2% 4 32* — 32° 4 125, and its associated system has a
centre of order 1 at the point (1,0) and a cuspidal loop L, which is contained in

coefficients of the first order Melnikov function (11) with ¢ = 0 and (33) satisfy

B = ;bﬂi, Co =28 (M) ;b
2ia 33 \=(, 1. 41
(44) B1 =223 Aobo, Ol = 2B (Z,é) ; (4 +gl+2—5) bl,

_E ' T 0 -z E
Bs = 2233 A;(3by + 2by),

where the constants Ay, A; are given in Lemma 2, and

Zo
, ’ 1 3 3 1
I = jis yr'de = 2\/§/xz+1\/§x — leQ + 5x3 — 6x4dx, 1=0,1,---
0

w0 i1
Ji:fxidt:\/ﬁ/ < dex, 1=1,2,---
1 3 3 1

nilpotent
the level
set H(z,y) = 0 and is homoclinic to the cusp of order 1 at the origin. By Theorem 1, the

. (2841010 )% 3 6 . . .
with xg = o Sasr10vI0)] + 2. Write the expressions (44) in the compact form
(45) (B07Bl7B2aB370070170?1)T = R()(b()abl?'” 7bm)T7

with Ry a7 x (m + 1) matrix of the form

I L I I
2335 A, 0 0 0
0 Jy J I
Ro=| 22334, 23354, 0 0
MB(LE) 2D 2B 2B(L, 3)
B34 9BEE) B 2BEYE o BEY (It i
2B(},3) 5 2B(1.3)-5 2B(1.3)-% - 2B(§.3) (mm—1)+3

The condition A’ = A? in Theorem 2 yields 22| f,(z) and (z — 1)3| £ (). It follows from

Py=0 and Qp=yfn(z)
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that equation (13) with ¢ = 1 holds by ordering
(@) |50

P ===
YT (- 1)

which implies the expression

m—>5
P1 = E b}l‘],
=0

where
m—j
[ —3)(l -4
bjl.: %blﬂ for 7=0,1,2,--- ,m—5.
1=5
Set
Pifl = Z b;ﬁle and Qifl = 0,
§=0

withn; 1 =m +1—6(i — 1) for i > 2. Manipulating as the above paragraph, it follows from
the condition A" and the equality (13) that

Pi=> ba' and Q;=0,

j=0
where

. "i* (1l—4)(-5)

am Una L

1=6
for.jzovlaza"' 7niandni:ni71 _6:m+1—6l
Moreover, one has the next relations on the coefficients

D i S . m—1
(46) (b7, b5, - -~ ’bin76z'+1)T = HA;(Z)&, beiy1, - ,bm)T, 1=1,2,---, [T]
j=1
with A;'- being the upper triangular matrices of order m — 6¢ + 1
1-(65+1) 3-(6j+2) -+ (m—6(—j)+1)- (m—Gi—&'-2)2(m—6i-|'-1)
i : : . .
! 0 (m—6(i—j)+1)

for1 <j<i¢—1,and

1 36 -+ 3(m—6i+2)(m—06i+1)
013 s i1 — 60
0oo0o0 - 1

https://doi.org/10.4153/S0008414X25101703 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101703

26 L. WEIL, M. HAN, J. HE AND X. ZHANG

On the other hand, we get from (12) and (33) that for 1 < i < [2=1],

‘ . 1 3\ "
Bl = 2335 Ayb., C! = 2B (4 2) ; jbt,
m—6i+1 m—6i+1
Bl pi—o = ; jJj-1b5, Ci=2B (i 2) ; j (J - %7 + g;) b,
m—6i+1
Bi = 2235 Ay (30} + 4b}), Ci, =2B G g) ]: j (] — 35+ g;) bl
Namely, for 1 <i < [2=],
(47) (Bi, Bs|pi—o, B, Co, C1, C1y) T = Vb, 0y, -+ i)
with the 6 x (m — 67 + 1) matrices
2233 4, 0 0 0
0 2.J; 3Jy Nim—6i
i 23354, 23334, 0 0
2B(3,3) 4B(53)  6B(53) 2nB (5, 3)
2B(23) BB(LI) WB(L2) - 2t In+ B (L)
2B(33) wB(E3) FBE2) - 2nnd =3n+5)B(53)
According to Theorem 2, together with the definitions of Bs;,, and C; in (39)—(40), one gets

forl1 << [mT’l},
(48)  (Bsiy1, Bsiro, Bsiys, Ca, Coir, O3 = U'(BL, Bi

with the diagonal matrices of order 6

i v i i \T
B;’:o?B&Co,Can) ’

. —6)? 1 —6)¢ 4 4i
U' = diag ,( ® Nk z( © ' ' 1
I1(67+5) [1(67+7) 1147 +3) 11(47+5)
j=1 j=1 j=1 j=
Substituting (46) and (47) into (48) gives for 1 < i < [ 61},
(49)  (Bsis1, Baipa, Baivs, Coi, Caigr, C H (Do, b1, -+ bm) "

Set m — 1 = 6n + r with r < 6 and n nonnegative integers. According to (45) and (49) one
gets by means of Python programme that all Jacobian matrices m are of full rank with
m < 300, where
e forl S r S 3, G = (B(), Bl, tet 7Bgn+r71, Clol, 0111, te ,C{Lfl, C(], Cl, e ,Cznfl, b)
with b € {Bgn_;,_r, an},
o ford <7 <6,G = (By,Bi, -, Bsny2,CY,CL, - O, Co, Cy, -+, Cay, b) with
b € {Bsny3, Cony1}-

In the light of Theorem 8 or Corollary 1, the Liénard differential system (43) can have
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e "n+2r—1limitcycles for 1 < r < 3, obtained by taking ; = r and r, = 0 in Theorem

8;
e 7n + 6 limit cycles for 4 < r < 6, obtained by taking r; = 3 and 7, = 1 in Theorem 8.
The proof is completed. O

4.2. Proof of Theorem 6. Consider the near-Hamiltonian system of the form:
(50) t=y+eh(ry),  §=-2'(l-2—2%) +eQo(z,y).

with the perturbed polynomials Fy(z,y) and Qo (z,y) of degree m. The corresponding Hamil-
tonian function is H (z,y) = %y2 + %x‘l — %x‘r’ — %x6, whose associated system has a nilpotent
centre of order 1 at the origin.

m—1
Set GO(z,y) = 20 + 88;%’ = > ¢ a'y’. It follows from Theorem 1 and (39) that

i+5=0
13 3 3 46 3
Co=2B (17 5) €005 C,=2B (17 5) (%COO - 5010 + 2020) )
3 3 46
Cf, =2B (Z) 5) (2—5000 + 2020) ;
which give
(51) (Co, C1, CY))"T = Ro(coo, c10, c20) ",
with Ry a 3 X 3 matrix of the form
B(LY) 0 0
(52) Ro=1%B(3,3) —:B(3,3) 4B(3.3)
»B(%.3) 0 4B (1.3)

The condition A = A° of Theorem 3 implies %GO(O, 0) =l =0forl =0,1,2. It follows
from the expression of G that the equality (13) with ¢ = 1 holds by ordering

_ GO(£>?/)‘XO
C23(1 — 2 — 2?)

which implies the expressions

P

and @, = i(GO(%Z/) - G0<x70))7

o) m—2
_ 1 _ 1 i j
b = E apr’ and Q= E by’
i=0 i+j=0
i m—4
with ajy = 3 copsodis for s <m —4, ajy = Y corzodios for s > m — 3, and bj; = ¢;j41
s=0 s=0
for 0 <7+ 5 < m — 2, where we have used the expansion
i

1 > 4!
53 — = ‘dy, d; = — -
(53) 1 —x— 22 Zx Z (1 — )25 —1)!

=0 J=[54]
Set
[ee] ni—1
P L -1 _1 and Q L bl*l i,
=0 i+35=0
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with n;_y = m — 2] + 2 for [ > 2. Simple calculations show that

n_—1— 1

P, aQ
-1 L -1 -1 l 1,0 l 1 z

i+j=0 1=nj_1

where

A1 — (i‘i‘l) 1+10+b117 J=0,
(j + Db, §>1,1<i+j<m—1,

with 071 = bl for 0 <4 <my_; — Land b.;' = 0 fori > ny_;.
Recursive manipulation as above applies to the condition A and the equality (13), one gets

Zazox and Q= mea:y,

i+7=0

where a}, = Z ¢ 15 odi—s with d; given in (53) for all i’s and b, = (j+2)b; 4, for 0 < i+j <

n;. Further calculatlons via induction yield

(0027 C12, 022)T, m = o,
(54) (cto» C1os Céo)T = < ay(c30, €40,y Cm-1.0)" + (Coz, €19, Co2)", 4 <m <6,
A (€30, €40, €50, c60) T + (Co2, €12, C22) T m > 7,

and for! = 2,3, , [2[%3]*2} 4 [m;l] -1,

-1 I—1
! T
(55) (co0s Clo, Czo Z (2i — ! H Aj(es2is Cagis  Cag—iy+2,2i)
=1 7=0

+ (20 — )M (coa, c101, C2)

!
IT Aj(cs0, Caoy - -+ s Carg20) 4 <m—3,
Jj=0

+ 9=t
IT Ajai(cso, caos -+ s Cm-10)", 4l>m—2,
j=0

where Aj is the identity matrix of order 3, A; is the 3 x 4 matrix

d dy 0 0
A= |2dy 2dy 2dy 0O |,
3ds 3dy 3d; 3dy

A;’s are the (45 — 4) x 4j matrices

4d, 4ds 4d, 0
we[ o
(4 = Vg1 (45 — Ddijoe (4] — Ddjos -+ (45 — 1)do
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for 2 < 7 <, and q;’s are the (4] — 4) x (m — 3) matrices

4d, 4d3 4d, .. 0
i (m — 4)dm_4 (m — 4)dm_5 (m — 4>dm—6 e (m — 4)d0
U= m=3)dps (m—=3)dpa (m—3)dms -  (m—3)d
(4l —Ddy_y (4 —1Ddyo (A —Ddy_s - (4= 1dy_mss

for ! > 2, and a; = (a;;) is the 3 x (m — 3) matrix with aj; = id;y,_; fori+1> j, and aj; = 0
for 7 + 1 < j. We remark that for compactness to notations, we have introduced ¢;; = 0 for
1+ 7 > min (54)—(55).

By Theorem 1 and (12), one has for{ =1,2,--- | [2[7]_2} + [m“} -1,

3 2
(56) (C,C1, C1y)" = Rolcop: Clos )"
with the matrix R, given in (52). According to Theorem 3 and the definitions of C;4 ;’s in (42),

one further has for 1 <[ < [2[%3]_2] + [z -1,

(57) (0217 CQH-lu C{l)T = UZ(C(Z)J Ci? Ch)T

with the diagonal matrices of order 3

U, = diag - v . 4 , 1
[1(47+3) I1(4j+5)
j=1 j=1
Substituting (54) and (55) into (56) and (57) gives
(58) (Cy, C3,C1,)" =Uy Ro(cga,0,0)"

for m = 3, and

- -t

(59)  (Ca, Cory1,C1)" =) (20 — DU Ry H Aj(cs 0, Cai, - 704(lfi)+2,2i)T

1 =0
+ (20 — YNU Ry (coa1, c101, Coon) ™

—

7

l
UZRO H Aj(Cgo, Ca0, " " - 7C4l+2,0)T, 41 S m — 3’
7=0

+ -1
URo [T Ajai(cso, caos s Cme10)’, 4l >m —2
j=0
my -1
form>4and1<[< [2[73] 2} + [2H] — 1, where the the summation _ is null if / = 1, and
=

One can check easily from the formulas (51) and (58)—(59) that C;’s and C’{l ’s depend merely
on the parameters ¢; o; with i + 25 < m — 1. Set E,, := {¢;2; : i +2j < m — 1}. Observe
that E,, contains ["5][™F2] elements. Set 3[F] + 2[2] — 4 = 3n + r with r < 2 and n
nonnegative integers.

For m =1, 2, it follows from (51) that the Jacobian matrices (o, .Crm)

55 are of full rank.
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For m > 3, it follows from (51) and (57), together with Python programme that all Jacobian
matrices ;- are of full rank with m < 22, where G = (Co, Cy, - -, Conyr1, Oy, Cly, -+, CFTY).
These together with Theorem 10 or Corollary 3 prove that the near-Hamiltonian system (50) can
have 2n + r — 1 limit cycles.

This proves the theorem. U

We remark that Theorems 5 and 6 both have limitations on the degree m of the perturbed
polynomials. These have been used in calculations of the ranks of the Jacobian matrices, sup-
ported by two Python programs available in our GitHub repository: https://github.com/grass2stu
rdy/Rank. Theoretically, these calculations work by Python programmes for any m. But in
practice it depends on memory of computers.

5. CONCLUSIONS

A lot of papers studied the coefficients in the expansion of the first order Melnikov function
near a homoclinic loop with a nilpotent singularity in a near-Hamiltonian system. Based on the
existing results, Yang et al. [63] and Wei and Zhang [52] presented the coefficients of the terms
with degree less than 2 in the case of a nilpotent singularity of arbitrary order. Moreover, Yang
and Han [62] pushed further the relation between the coefficients of the terms with the same
order in the expansions inside or outside a cuspidal loop. The characteristics of the coefficients,
of the terms with degree greater than or equal to 2, were developed further and exhibited in
[52, 64] provided that the centre is elementary. If the centre of the unperturbed Hamiltonian
system is nilpotent, as well as the homoclinic loop approaches also to a nilpotent singularity,
the problem remains open. This paper tackles this problem.

The work in this paper presents the accurate expressions of the first g coefficients in the
asymptotic expansion of the first order Melnikov function near a nilpotent centre of order k, and
characterizes its higher order coefficients, which are given in Theorems 1 and 3, respectively.
Based on these results, our primary motivation is to depict the features of the higher order
coefficients in the first order Melnikov function near a homoclinic loop to a nilpotent singularity
of arbitrary order, in virtual of the nilpotent centre of arbitrary order inside the loop that the
unperturbed Hamiltonian system has. The related results are given in Theorem 2. On account
of these established results, we further investigate the limit cycle bifurcations near either a
nilpotent centre or a homoclinic loop to a nilpotent singularity.

At last, we apply our results to two concrete systems, an (m + 1)th order Liénard differential
system and an mth order near-Hamiltonian differential system with a hyperelliptic Hamiltonian,
for achieving more number of limit cycles, which are bifurcated from periodic orbits either near
a nilpotent centre or near a homoclinic loop to a nilpotent singularity.
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