
LIMIT CYCLES NEAR A NILPOTENT CENTRE AND A HOMOCLINIC LOOP
TO A NILPOTENT SINGULARITY OF HAMILTONIAN SYSTEMS

LIJUN WEI1, MAOAN HAN2, JILONG HE3 AND XIANG ZHANG4

ABSTRACT. For a planar analytic Hamiltonian system, which has a period annulus limited by
a nilpotent centre and a homoclinic loop to a nilpotent singularity, we study its analytic pertur-
bation to obtain the number of limit cycles bifurcated from the periodic orbits inside the period
annulus. By characterizing the coefficients and their properties of the high order terms in the
expansion of the first order Melnikov function near the loop, we provide a new way to find more
limit cycles. Moreover, we apply these general results to concrete systems, for instance, an
(m+ 1)th order generalized Liénard system, and an mth order near-Hamiltonian system with a
hyperelliptic Hamiltonian of degree 6.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The second part of the Hilbert’s 16th problem, one of the 23 problems posed by Hilbert in
1900, asks the maximum number of limit cycles that planar polynomial vector fields of a given
degree can have and the topological structures of these maximum number of limit cycles. This
problem is still open, even for quadratic differential systems, see e.g. [29, 34, 42]. In the 1970s
Arnold [1, 2] suggested a weakened version of this problem, so-called the weakened Hilbert’s
16th problem. This weakened version can be stated as follows: Let ω be a real 1-form with
polynomial coefficients of degree m, and let H be a real polynomial of degree n + 1 in the
plane, whose level curves {Lh : H = h} in closed connected components, called ovals of H ,
form continuous families of periodic orbits of the Hamiltonian system associated to H . The
question is what is the maximum number of isolated zeros of the Abelian integrals

I(h) =

∫
Lh

ω.

The Abelian integrals can be viewed in essence as the first order Melnikov (or Poincaré–
Pontryagin-Melnikov) function relevant to a near-Hamiltonian system, obtained by polynomial
perturbations of a polynomial Hamiltonian system. Poincaré–Pontryagin–Melnikov theorem
shows that the number of simple isolated zeros of the Abelian integrals provides a lower bound
on the maximum number of limit cycles of the near-Hamiltonian system. In this direction, there
have appeared lots of published works, see e.g. [5, 7, 8, 15, 16, 18, 21, 28, 33, 36, 37, 50, 66]
and the references therein. But in general this problem is far to be solved.

As we know, the Abelian integrals strongly depend on the families of ovals {Lh}. And the
families can be limited in different regions. Here we study a continuous family of ovals, formed
by level curves of a Hamiltonian, which are limited in a unique region bounded by a nilpotent
centre and a homoclinic loop to a nilpotent singularity.

Consider an analytic differential system of the form:

(1)

{
ẋ = Hy(x, y) + εP0(x, y, ε, δ),

ẏ = −Hx(x, y) + εQ0(x, y, ε, δ),
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with H ∈ Cω(R2) and P0, Q0 ∈ Cω(R2 × I × D), where ε ∈ I = [0, ρ] with ρ > 0 small
and δ ∈ D ⊂ Rd a compact subset in the real d-dimensional space. The origin is a nilpo-
tent singularity of the unperturbed Hamiltonian sytsem (1)|ε=0, if the Hamiltonian H satisfies
Hx(0, 0) = Hy(0, 0) = 0 and

∂(Hy,−Hx)

∂(x, y)
(0, 0) 6= 0, det

∂(Hy,−Hx)

∂(x, y)
(0, 0) = 0.

As it is well known, if a singularity of system (1) is nilpotent, there exists an invertible real
linear change of variables under which system (1) is transformed to a new one, whose linear
part has the matrix (

0 2h00

0 0

)
,

with h00 nonzero. Without loss of generality, we set the nilpotent singularity at the origin. And
system (1) has its linear part in the above normal form. Then the unperturbed Hamiltonian is of
the form H(x, y) = h00y

2 + h.o.t., where h.o.t. represents the higher order terms. By [11, 67],
applying the implicit function theorem to Hy(x, y) = 0 in a neighborhood of the origin yields
a unique analytic solution y = φ(x), defined in a neighborhood of x = 0. Therefore, the
Hamiltonian H , without loss of generality, can be written in

H(x, y) = H0(x) + y2H̃(x, y),(2)

where

H0(x) =
∑
j≥k

hjx
j, H̃(x, y) =

∑
j≥0

H∗j y
j, H∗j =

∑
i≥0

hijx
i,(3)

with hk (k ∈ N and k ≥ 3) and h00 nonzero constants provided that the origin is a nilpotent
singularity. For more information on nilpotent singularities, see e.g. [11, 21, 40, 67]. Here we
list the ones that we need. We remark that in the next Proposition 1 and Lemmas 1-3, we use h00

as a nonzero constant, but it was given by Han [21] in its original statement taking h00 = 1/2.
We must say that this is not essentially different. In the lemmas the clockwise orientation of the
homoclinic loop or periodic orbits near the nilpotent centre implies h00 > 0.

Proposition 1. [21] Let the origin be a nilpotent singularity of the unperturbed system (1)|ε=0,
and the corresponding Hamiltonian has the form (2) with (3). Then the origin is a nilpotent
centre of order m for the unperturbed system (1)|ε=0 if k = 2m+ 2 and hkh00 > 0. The origin
is a nilpotent saddle of order m if k = 2m+ 2 and hkh00 < 0. The origin is a cusp of order m
if k = 2m+ 1 and hkh00 6= 0.

Associated to the forms (2) and (3) via Proposition 1, one has k ≥ 3 (i.e. m ≥ 1). When
k = 2 (i.e. m = 0), the origin is a hyperbolic saddle if hkh00 < 0, or else is an elementary
centre. As mentioned before, we suppose that the unperturbed system (1)|ε=0 has the structure
on the orbits:
(a) A continuous family of periodic orbits {L1

h} ⊂ {(x, y) : H(x, y) = h}, which forms a
period annulus, denoted by U1.

(b) A homoclinic loop Ls to a nilpotent singularity S, which forms the outer boundary of the
annulus U1.

(c) A nilpotent centre C, which is the inner boundary of U1.
These assumptions together with the expression of H in (2) imply that the Hamiltonian system
(1)|ε=0 has the phase portrait as shown in Fig. 1.

In this paper, we study the limit cycle bifurcation for the first two cases in Fig. 1. The third
one will be handled in a separate paper, because of the length of this paper and some technical
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FIGURE 1. The phase portrait of the Hamiltonian system (1)|ε=0 consisting of a
nilpotent centre C and a homoclinic loop to a nilpotent singularity S enclosing a peri-
od annulus. (A): The nilpotent singularity S is a cusp. (B) and (C): The nilpotent
singularity S is a nilpotent saddle.

difference. Without loss of generality, we suppose that the nilpotent saddle is S = (0, 0), and
the nilpotent centre is C = (xc, 0) with xc > 0, and that the homoclinic loop Ls is oriented in
clockwise in the positive sense. For hs := H(0, 0) = 0 and hc := H(xc, 0), one has hc < hs.

Associated to the family of periodic orbits {L1
h, h ∈ (hc, hs)} of the unperturbed system

(1)|ε=0, the first order Melnikov function is

M(h, δ) =

∮
L1
h

(Q0dx− P0dy) |ε=0, h ∈ (hc, hs).(4)

It is well known that the number of limit cycles of system (1) could be found partially through
the first order Melnikov function if it is not zero identically. The coefficients of the expansion
of the Melnikov function in h play an essential role in determining the number of limit cycles.

The next three results exhibit the expressions of the expansions of the first order Melnikov
function near a homoclinic loop to a nilpotent singularity or near a nilpotent centre. The first
one is on the expansion near a homoclinic loop to a nilpotent saddle.

Lemma 1. [26, 65] For the analytic near-Hamiltonian system (1), whose Hamiltonian H has
an oriented clockwise homoclinic loop and is of the form (2) with (3), k ≥ 4 even and hk < 0,
the first order Melnikov function near and inside the loop Ls has the asymptotic expression

M(h, δ) = − 1

2k
h ln |h|I∗

1, k
2
−1

(h, δ) + |h|
1
2

k−1∑
r=1

r 6= k
2

Ar−1I
∗
1,r−1(h, δ)|h|

r
k + ψ(h, δ), 0 < −h� 1,

(5)

where ψ(h, δ), I∗1r(h, δ), r = 0, 1, · · · , k − 2, are analytic functions in (h, δ) for |h| small and
δ ∈ D, and Ar’s are constants for 0 ≤ r ≤ k − 2 and r 6= k

2
− 1.

We remark that for concrete systems we needs to compute the coefficients in the asymptotic
expansions in h of the analytic functions ψ(h, δ) and I∗1r(h, δ)’s. Of course, these coefficients
are in general analytic functions in δ. For more information on I∗1r(h, δ)’s and Ar’s, see page 7
of [26] or page 2731 of [52].

The second one is on the expansion of the Melnikov function near a homoclinic loop to a
cusp.

Lemma 2. [27] For the analytic near-Hamiltonian system (1), whose Hamiltonian H has an
oriented clockwise homoclinic loop and is of the form (2) with (3), k ≥ 3 odd and hk < 0, the
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first order Melnikov function near and inside the loop Ls has the expansion

M(h, δ) = |h|
1
2

k−1∑
r=1

ϕr(h, δ)|h|
r
k + ϕ(h, δ), 0 < −h� 1,(6)

where ϕ(h, δ), ϕr(h, δ), r = 1, 2, · · · , k − 1, are analytic functions in (h, δ) for |h| small and
δ ∈ D.

As remarked for Lemma 1, when applied to concrete systems we need to further compute
the coefficients of asymptotic expansions in h for ϕ(h, δ) and ϕr(h, δ)’s. In Lemmas 1 and 2,
we have the condition 0 < −h � 1. It is due to the fact that the assumption ‘Ls is oriented in
clockwise’ implies h < 0.

The third one is on the expansion of the Melnikov function near a nilpotent center.

Lemma 3. [23] For the analytic differential system (1) with the Hamiltonian H being of the
form (2) with (3), k ≥ 4 even and hk > 0, the first order Melnikov function near a nilpotent
centre at the origin, with oriented clockwise periodic orbits nearby, has the expression

M(h, δ) = h
2+k
2k N(h

2
k , δ), 0 < h� 1,

where N(u, δ) ∈ Cω is of the form

N(h
2
k , δ) =

∑
r≥0

C0
r (δ)h

2r
k ,(7)

with

C0
r (δ) =

∑
i+ k

2
j=r

rij(δ)βij, βij =

∫ 1

0

u2i(1− uk)
2j+1

2 du(8)

and rij’s depending on δ are given in (26).

It is evident that the concrete coefficients in the expansion of the first order Melnikov function
play a central role in studying limit cycles bifurcating from periodic orbits near a homoclinic
loop or a centre. For the first order Melnikov function (5) in Lemma 1, Han et al. [26] in 2012
came up with an algorithm to compute the coefficients of the first two terms. in the expression
(5) by virtue of Maple programme, and presented the expressions of the coefficients of h0 and h1

in the asymptotic expansion of ψ(h, δ) in (5) with k = 4. Yang et al. [63] in 2019 indicated the
form of the (k + 1)th coefficient in the expansion of the Melnikov function (5) for even k ≥ 4,
and consequently the explicit expressions of the first k + 1 coefficients can be theoretically
obtained via the algorithm in [26] by using Maple programme. Wei and Zhang [52] in 2020
further displayed the definite expressions of the first k + 1 coefficients in the expansion of the
Melnikov function (5) for even k ≥ 4. For the first order Melnikov function (6) in Lemma 2, the
authors in [3, 27] exhibited the coefficients of the terms with degree less than 2 in the asymptotic
expansion of the function (6) for k = 3, 5. Xiong [56] in 2015 obtained the properties of the
coefficients of the first two terms in the expansion of ϕ(h, δ) in the Melnikov function (6) for
odd k ≥ 7, and pointed out that the coefficients of the other terms with degree less than 2, in
the function (6), can be calculated using the deductive process in [27]. Wei and Zhang [52] in
2020 represented ϕr(h, δ) in (6) as Ar−1I

∗
1,r−1(h, δ) to simplify the calculations (see Lemmas 4

and 8), and depicted the expressions of the first k + 1 coefficients in the asymptotic expansion
of the Melnikov function (6) for odd k ≥ 3.

All the results listed above are on the coefficients of the terms having lower degrees in the
expansion of the first order Melnikov functions. Wei and Zhang [52], and Yang et al. [64]
characterized all coefficients in the asymptotic expansion of the Melnikov function (5) or (6)
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under some conditions, one of which is that the Hamiltonian system (1)|ε=0 has an elementary
centre inside the loop. When the Hamiltonian system (1)|ε=0 has a homoclinic loop enclosing
a period annulus with its inner boundary a nilpotent centre, the results in [52] and [64] do not
hold. One of our main goals in this paper is to tackle this problem. That is, when system (1)|ε=0

has a homoclinic loop to a nilpotent singularity, which surrounds a nilpotent centre, we develop
the existed techniques to obtain the expressions of the coefficients of the terms with higher
degrees in the expansion of the first order Melnikov function near the homoclinic loop via the
nilpotent centre. To achieve this goal, we need to combine the coefficients of the terms in the
expansion of the first order Melnikov function near the nilpotent centre.

Han et al. [23] in 2008 provided an algorithm to compute the coefficients in the asymptotic
expansion (7) of the first order Melnikov function near the centre and described the expres-
sions of the first four coefficients with k = 4. However, for even k ≥ 6 there are no explicit
expressions for the coefficients appearing in the function (7).

Our first result is on the first k/2 coefficients in the expansion of the first order Melnikov
function near a nilpotent centre.

Theorem 1. For the asymptotic expansion of the first order Melnikov function given in Lemma
3, the first k/2 coefficients C0

r , r ∈ {0, 1, . . . , k/2− 1}, have the general formula

C0
r =

1

k
B

(
2r + 1

k
,
3

2

) 2r∑
l=0

drl
l!

∂l

∂xl

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
(C,δ)

,

where B(·, ·) stands for the Beta function, and drl’s, l = 0, 1, · · · , 2r, are given in Lemma 4
below.

On the appearance of the Beta function, see Proposition 2 and the remark under the proof of
this proposition below. We must say that the expressions on the coefficients in Theorem 1 are
the key point in the proofs of our main results in this paper.

Next we further investigate the coefficients of the terms with higher degrees in the asymptotic
expansions of the first order Melnikov functions near a homoclinic loop to a nilpotent singularity
and near a nilpotent centre presented in Lemmas 1–3. For the analytic near-Hamiltonian system
(1), to convert the coefficients of the higher degree terms in the first order Melnikov function
into the coefficients of the lower degree terms for new near-Hamiltonian systems, replacing
the perturbations P0(x, y, ε, δ) and Q0(x, y, ε, δ) by new ones, saying the analytic perturbations
Pi(x, y, δ) and Qi(x, y, δ), i ∈ N, one gets a new near-Hamiltonian system for each i ∈ N

(9)

{
ẋ = Hy(x, y) + εPi(x, y, δ),

ẏ = −Hx(x, y) + εQi(x, y, δ).

Under these notations, we expand the analytic function I∗1r’s, ψ, ϕ and ϕr’s in Lemmas 1 and 2
in Taylor series in h, we get the next asymptotic expressions of the first order Melnikov function
near and inside the homoclinic loop Ls either as

M i(h, δ) =Bi
0 + |h|

1
2

∑
j≥0

k1j+
k1
2
−1∑

r=k1j+1

Bi
r|h|

r
k1 +

∑
j≥0

Bi

k1j+
k1
2

hj+1 ln |h|

+ |h|
1
2

∑
j≥0

(j+1)k1−1∑
r=k1j+

k1
2

Bi
r+1|h|

r
k1 , 0 < −h� 1,(10)
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for Ls to a nilpotent saddle S of order [k1−1
2

] with even k1, or as

M i(h, δ) =Bi
0 + |h|

1
2

∑
j≥0

k1j+
k1−1

2∑
r=k1j+1

Bi
r|h|

r
k1 +

∑
j≥0

Bi

k1j+
k1+1

2

hj+1

+ |h|
1
2

∑
j≥0

(j+1)k1−1∑
r=k1j+

k1+1
2

Bi
r+1|h|

r
k1 , 0 < −h� 1,(11)

for Ls to a nilpotent cusp S of order [k1−1
2

] with odd k1. Recall that [·] denotes the integer part
function. In (10) and (11) the coefficients Bi

j’s are functions of the parameters δ, which need to
be computed. The first k1 + 1 coefficients in the last two expressions had been got in [52], and
they will be presented in Section 3 for our application.

As mentioned before, the nilpotent centreC is located on the x-axis, and the near-Hamiltonian
system (1) has its unperturbed one having the Hamiltonian of the form (2) with (3). By Lemma
3 it follows that the first order Melnikov function near the nilpotent centre C, of order k2/2− 1
with even k2, can have the asymptotic expansion

M i(h, δ) = (h− hc)
2+k2
2k2

∑
r≥0

Ci
r(h− hc)

2r
k2 , 0 ≤ h− hc � 1.(12)

The coefficientsCi
r’s for r = 0, 1, · · · , k2

2
−1 can be gained from Lemma 3 through a translation.

It can be seen from the expressions of the coefficientsC0
r ’s in Theorem 1 that when the subscript

r increases by 1, the number of the terms in the summation in C0
r increases by 2. To obtain our

main results, we come up with the next new symbols

Ci
r1 :=

1

k
B

(
2r + 1

k
,
3

2

) r∑
l=0

dr,2l
(2l)!

∂2l

∂x2l

(
∂Pi
∂x

+
∂Qi

∂y

)∣∣∣∣
(C,δ)

.

Set

∆i :=

{
δ : Bi

r(δ) = 0, r = 1, 2, · · · ,
[
k1

2

]
,

[
k1

2

]
+ 2, · · · , k1,

Ci
0(δ) = Ci

j(δ) = Ci
j1(δ) = 0, j = 1, 2, · · · , k2

2
− 1

}
,

∆
i

:=
i⋂

s=0

∆s.

Our second result is to characterize the coefficients of the terms with higher degrees in the
asymptotic expansion of the first order Melnikov function (4) near a homoclinic loop to a nilpo-
tent singularity for the near-Hamiltonian system (1). It combines the asymptotic expansion of
the first order Melnikov function at the nilpotent centre.

Theorem 2. For the analytic near-Hamiltonian system (1), whose unperturbed Hamiltonian is
of the form (2) with (3), and has a nilpotent centre of order k2

2
− 1 and an oriented clockwise

homoclinic loop to a nilpotent singularity of order
[
k1−1

2

]
, assume that the following conditions

hold.

(i) The first order Melnikov function is of the form (10) or (11) with i = 0 near the loop, or
of the form (12) with i = 0 near the centre.
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(ii) There exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i = 1, 2, · · · , l, such that for
δ ∈ ∆

i−1
, the following equalities inductively hold

∂H(x, y)

∂x
Pi(x, y, δ) +

∂H(x, y)

∂y
Qi(x, y, δ) =

(
∂Pi−1

∂x
+
∂Qi−1

∂y

)
(x, y, δ),(13)

over the period annulus U :=
⋃

hc≤h≤hs
Lh, where P0(x, y, δ) and Q0(x, y, δ) are just

P0(x, y, 0, δ) and Q0(x, y, 0, δ) in system (1), respectively.
Then the coefficients in the first order Melnikov function, given in (10)–(12), of system (1) satisfy
the following formulas for δ ∈ ∆

i−1
, in which Bi

j’s are given in (33) below.

(a) For r = 1, 2, · · · , [k1−1
2

],

B0
k1i+r

=
(−1)i(2k1)i

i∏
j=1

((2j + 1)k1 + 2r)

Bi
r.

(b) For r = [k1+1
2

],

B0
k1i+r

=
1

(i+ 1)!
Bi
r.

(c) For r = k1
2

+ 1 (in the case that k1 is odd, this statement is void)

B0
k1i+r

=
(−1)i

(i+ 1)!
Bi
r +

(−1)i

(i+ 1)!

(
i+1∑
n=2

1

n

)
Bi
r−1.

(d) For r = [k1
2

] + 2, · · · , k1,

B0
k1i+r

=
(−1)i(2k1)i

i∏
j=1

((2j + 1)k1 + 2r − 2)

Bi
r.

(e) For j = 0, 1, · · · , k2
2
− 1,

C0
k2
2
i+j

=
(2k2)i

i∏
s=1

((2s+ 1)k2 + 4j + 2)

Ci
j.

We remark that the properties in the above theorem have been partly acquired by Tian and
Han [48] and Wei et al. [51] for k1 = k2 = 2, in which the centre is an elementary one and
the singularity that the homoclinic loop approaches is a hyperbolic saddle, see Page 2. And the
properties have been presented by Wei and Zhang [52] for k2 = 2, k1 ≥ 3, in which the centre
in Theorem 2 is an elementary one and the loop is homoclinic to a nilpotent singularity of order
[k1−1

2
].

The result in Theorem 2 characterizes parts of the coefficients in the asymptotic expansion of
the first order Melnikov function (4) near a homoclinic loop under some condition by utilizing
the properties of the nilpotent centre and also parts of the coefficients in the expansion near
the nilpotent centre. In other words, we could say that the result of the theorem indicates the
properties on the coefficients in the expansion near a nilpotent centre via a homocinic loop.
Following this idea, we can think only about the properties of the coefficients in the Melnikov
function near a nilpotent centre without regard to a homoclinic loop.
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The next result presents the properties near a nilpotent centre. Its proof can be obtained in a
similar way as that in the proof of Theorem 2 given in section 3. The details are omitted.

Set

Λ
i

:=
i⋂

s=0

Λs with Λi :=

{
δ : Ci

0(δ) = Ci
j(δ) = Ci

j1(δ) = 0, j = 1, 2, · · · , k2

2
− 1

}
.

Theorem 3. For the analytic near-Hamiltonian system (1) with its unperturbed one being of the
form (2) with (3) and having a nilpotent centre of order k2

2
− 1 with oriented clockwise periodic

orbits nearby, assume that the following conditions hold.
(i) The first order Melnikov function has the expansion of the form (7) near the centre.

(ii) There exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i = 1, 2, · · · , l, such that
for δ ∈ Λ

i−1
the equations (13) hold over the period annulus V :=

⋃
hc≤h≤hc+τ

Lh with

0 < τ � 1.
Then the coefficients C0

j , j ≥ k2/2, in the expansion (12) of the first order Melnikov function
satisfy the following relations.

C0
k2
2
i+r

∣∣∣
δ∈Λ

i−1
=

(2k2)i

i∏
s=1

((2s+ 1)k2 + 4r + 2)

Ci
r,

for r = 0, 1, · · · , k2
2
− 1, where Ci

r’s are the coefficients in the expansion (12).

We remark that the conclusion in Theorem 3 is not different from that in (e) of Theorem
2. The differences are in the following aspects: Theorem 3 focuses on the coefficients in the
asymptotic expansion of the first order Melnikov function near a nilpotent centre, so the restric-
tion δ ∈ Λ

i−1
there is only for the coefficients of the terms with lower degrees in the expansion

just near the nilpotent centre. Whereas Theorem 2 handles the coefficients in the expansion
of the Melnikov function near the homoclinic loop or near the nilpotent centre, in which the
restriction δ ∈ ∆

i−1
is on both coefficients of the terms with lower degrees in the expansions

near the loop and near the center. It leads to interdependent relationships among the coefficients
in the expansions near the loop and near the center.

The last two theorems display the relative expressions of parts of the coefficients in the as-
ymptotic expansion of the first order Melnikov function under the prescribed conditions, which
is crucial in finding more limit cycles of the system. The next result explains the realizability
of the conditions in Theorem 2, especially the conditions (13) for i ≥ 1, for a certain kind of
analytic near-Hamiltonian systems. We remark that the condition δ ∈ ∆

i−1
under which the e-

quation (13) holds is different from that in Tian and Han [48], where the realization is explained
under the condition H(x, y) =

∫ x
0
q(x)dx+

∫ y
0
p(y)dy. Here we do not have this limitation for

the Hamiltonian.

Theorem 4. Assume that the Hamiltonian H(x, y) satisfies the condition (i) of Theorem 2, and
∂H
∂y

(x, y)/y does not vanish in U defined in Theorem 2. For any analytic 1-form ω = Pdy −
Qdx, if its exterior derivative dω = f(x, y)dx ∧ dy satisfies f(x, 0) = xk1−1(x− xc)k2−1µ(x)
with µ(x) analytic in U , then there exists an analytic 1-form η = Ady −Bdx such that

dω = dH ∧ η.
This result is an extension of Theorem 6 in [52] from an elementary centre to a nilpotent

centre. The proof is also similar to that in [52], and will be omitted. Analogously, the conditions
in Theorem 3 are also realizable for some near-Hamiltonian systems.
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Finally we apply our main results in Theorems 2–3 and the theories on limit cycle bifurcation
to find more limit cycles via the number of simple isolated zeros of the Abelian integral (the first
order Melnikov function), related to the two classes of near–Hamiltonian systems. Givental [17]
found some nonoscillation-type properties of Abelian integrals in the hyperelliptic Hamiltonian
H(x, y) = y2 + Un+1(x) with a real polynomial Un+1(x) in x of degree n + 1. Here our
perturbed Hamiltonian systems are also defined by hyperelliptic Hamiltonians.

Hereafter we use the notion mod(a, b) to denote the remainder of a divided by b.
Consider a generalized polynomial Liénard differential system of the form

ẋ = y, ẏ = −gn(x) + εyfm(x),(14)

where ε > 0 is sufficiently small, gn and fm are real polynomials of degrees n and m, re-
spectively. Denote by Z(n,m) the maximum number of isolated zeros of the Abelian integral
associated to the generalized Liénard system (14). On determination of Z(n,m), there are rich
results for n = 1, 2, 3, 4, see e.g. [6, 9, 10, 12, 16, 22, 30, 38, 41, 46, 49, 50, 53, 54, 57] and the
references therein.

For n = 5, Xu and Li [59] in 2012 got Z(5,m) ≥ m + 1 for m = 2, 4 and Z(5,m) ≥ 10
for m = 6, 8, where the unperturbed Hamiltonian system includes two elementary centres
and a double homoclinic loop surrounded by a heteroclinic to two hyperbolic saddles. Xu
and Li [60] in 2013 gained Z(5,m) ≥ m + mod(m/2, 2) for m = 4, 6, 10, when the period
annulus is bounded by a compound loop consisting of a heteroclinic loop and two homoclinic
loops. Han and Romanovski [24] in 2013 achieved Z(5,m) ≥ 2[m−1

3
] + [m−1

2
] using a different

approach for m ≥ 5. Sun et al. [45, 47] presented Z(5, 4) ≥ 3 in the case that the period
annulus is limited by an elementary centre and a heteroclinic loop to a hyperbolic saddle and a
nilpotent saddle, respectively. Xiong [55] in 2014 showed Z(5,m) ≥ 2m + 1 for m = 2, 3, 4,
and Z(5,m) ≥ m + 5 for 5 ≤ m ≤ 8 in the case that the period annulus is limited by
two elementary centres and a compound loop consisting of a cuspidal loop and a heteroclinic
loop with a cusp and a hyperbolic saddle. In the same year, Xiong and Han [58] further got
Z(5,m) ≥ 2[m−1

3
]+[m

2
]+2 form ≥ 5. Li and Yang [35] in 2019 provided also the lower bounds

of Z(5,m) in the case that the unperturbed Hamiltonian system is the same as that of [55] for
10 ≤ m ≤ 20. Yang et al. [64] in 2021 achieved that for 22 ≤ m ≤ 46 even, Z(5,m) ≥ 5

4
m if

4|m and Z(5,m) ≥ 5
4
m− 1

2
+ [mod(m/2,4)

2
] if 4 - m, under the conditions that the corresponding

Liénard system (14) is centrally symmetric and has two centres and a double homoclinic loop
with a nilpotent saddle, and that for 22 ≤ m ≤ 46 odd, Z(5,m) ≥ Z(5,m− 1). Yang and Han
[62] in 2024 gave further in the case of an elementary centre and a cuspidal loop passing a cusp
of order 2 that for 15 ≤ m ≤ 25 a lower bound is 8[m

6
] +χ(m) with χ(m) = 2mod(m, 6) + 1 if

mod(m, 6) ≤ 3 and χ(m) = 8 if mod(m, 6) ≥ 4. For n ≥ 6, there are also some works on the
lower bound of the number of isolated zeros, see e.g. [4, 24, 25, 44, 56, 58] and the references
therein.

Next we apply our results on the expressions of the first order Melnikov functions to study
the Liénard system (14) with g5 = x2(x− 1)3 for obtaining a better low bound on Z(5,m).

Theorem 5. There exists a generalized Liénard system of the form (14) with n = 5 and g5 =
x2(x − 1)3, which has at least 7 · [m−1

6
] + 2r −

[
r
4

]
· (2mod(r, 3) − 1) − 1 limit cycles with

r = mod(m− 1, 6) and 4 ≤ m ≤ 300.

Recall that mod(a, b) denotes the remainder of a divided by b. This theorem provides a larger
lower bound on Z(5,m) than those in [24] with Z(5,m) ≥ 2[m−1

3
] + [m−1

2
].

For the Hamiltonian system having a nilpotent centre, Llibre and Zhang [39] in 2001 con-
sidered the degree m polynomial perturbation of the Hamiltonian centre with the Hamiltonian
H(x, y) = 1

2n
x2n + 1

2l
y2l, and gained the number s if n = l; s(s+3)

2
if s < k and n 6= l; and

https://doi.org/10.4153/S0008414X25101703 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101703


10 L. WEI, M. HAN, J. HE AND X. ZHANG

k(2s−k+3)
2

− 1 if s ≥ k and n 6= l, of isolated zeros of the Abelian integrals, where s = [m−1
2

]
and k = max{n/ gcd(n, l), l/ gcd(n, l)}with the greatest common divisor gcd(n, l). Jiang et al.
[32] in 2009 studied the same problem in a centrally symmetric case with n = 2, l = 1,m = 5,
and got 10 isolated zeros by blowing up a nilpotent centre of order 1 to a double homoclinic
loop. Su et al. [43] in 2012 showed that a generalized Liénard system of degree m can have
1, 3, 5 limit cycles near a nilpotent centre of order 1 for m = 3, 4, 5. In the same year, Yang
and Han [61] figured out that a generalized Liénard system of degree m with the Hamiltonian
H(x, y) = 1

2
y2 + 1

5
x5− 3

4
x4 +x3− 1

2
x2 can havem−1− [m

5
] limit cycles for 2 ≤ m ≤ 13, which

include m − 2 − [m
5

] limit cycles near a nilpotent centre of order 1. Gasull et al. [14] in 2015
focused on an n−1

2
order nilpotent center with the perturbations, linear term plus homogeneous

polynomials of odd degree n, whose Abelian integrals can have n+1
2

isolated zeros around the
centre with their proof using the generalized Lyapunov polar coordinate change of variables.
As far as we know, the limit cycle bifurcation near a nilpotent centre was rarely studied.

As a second application, we consider a near-Hamiltonian system (1) with the unperturbed
Hamiltonian

H(x, y) =
1

2
y2 +

1

4
x4 − 1

5
x5 − 1

6
x6,(15)

and the perturbed polynomials P0(x, y) and Q0(x, y) being of degree m. The unperturbed sys-
tem has exactly three singularities: a nilpotent centre at the origin together with two hyperbolic
saddles on its two sides.

Theorem 6. There exists a near-Hamiltonian system (1) with the Hamiltonian (15), which has
at least 2 · [m+1

2
] + 2 ·

[
2·[m

2
]−1

3

]
+ mod(2 · [m

2
]− 1, 3)− 3 small-amplitude limit cycles near the

nilpotent centre for 3 ≤ m ≤ 22.

We remark that there is no a published paper which studied this near-Hamiltonian system.
The related work is the book [13], in which a generic 3-parameter unfolding was investigated
for planar vector fields with a nilpotent singularity.

The paper is organized as follows. In Section 2, we study the first order Melnikov function
near a nilpotent centre and a homoclinic loop to a nilpotent singularity, and obtain the exact
expressions and the properties of the coefficients in the corresponding asymptotic expansions.
The proofs of Theorems 1–3 are also presented in this section. Section 3 studies the relation be-
tween the limit cycle bifurcation and the independence of the coefficients obtained in Theorems
1–3. The proofs of Theorems 5 and 6 are given in Section 4.

2. THE FIRST ORDER MELNIKOV FUNCTIONS NEAR A CENTRE AND A HOMOCLINIC LOOP

Han et al. [23, 31, 61] presented the asymptotic expansions of the first order Melnikov
functions near a nilpotent centre, and established an algorithm to compute the coefficients of
the Melnikov functions by Maple programme. In this section, we further study the coefficients
and optimize their algorithm to simplify the calculations.

Yang and Han [61] in 2012 provided an algorithm to compute the coefficients in the expansion
of the first order Melnikov function near a nilpotent centre of order k

2
− 1 with the help of

the Maple programme. There, they need to require a fixed integer k in the process of Maple
programme, and it is hard to figure out the explicit expressions of the coefficients with higher
degrees due to computer performance limitations. In the present paper, for any k ≥ 4 even the
expressions and properties of the first coefficients in the first order Melnikov function near a
nilpotent centre are provided and they will play key roles in understanding the coefficients of
the terms with higher degrees in the Melnikov function established near a nilpotent centre or
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near a homoclinic loop to a nilpotent singularity. This will provide a nice tool to handle the
limit cycles bifurcating from the periodic orbits near the nilpotent centre or near the homoclinic
loop.

For simplicity to notations, we take xc = 0 in the first subsection below, and suppose that the
Hamiltonian of the unperturbed system (1)|ε=0 is of the form (2) with (3) and h00 > 0. To study
the asymptotic expression of the first order Melnikov functions, without loss of generality, we
set the perturbation functions being of the form

P0(x, y, 0, δ) =
∑
i+j≥0

aijx
iyj, Q0(x, y, 0, δ) =

∑
i+j≥0

bijx
iyj,(16)

where aij and bij are analytic functions in the parameters δ ∈ D ⊂ Rd.

2.1. The coefficients of the terms with lower degrees. By the classical results [19, 42] on
Melnikov functions for computing limit cycles bifurcating from period annulus, we get from
Green’s formula together with some manipulations that the first order Melnikov function (4)
can be rewritten as

M(h, δ) =

∮
H(x,y)=h

q(x, y, δ)dx,(17)

where

q(x, y, δ) =

∫ y

0

(
∂P0

∂x
(x, v, 0, δ) +

∂Q0

∂y
(x, v, 0, δ)

)
dv

= Q0(x, y, 0, δ)−Q0(x, 0, 0, δ) +

∫ y

0

∂P0

∂x
(x, v, 0, δ)dv

=
∑
j≥1

qj(x)yj

with

qj(x) =
∑
i≥0

bijx
i,(18)

whose coefficients satisfy

bij = bij +
i+ 1

j
ai+1,j−1.(19)

Following [23], we know that the Hamiltonian (2) contains the component H̃(x, y) = h00 +

O(|x, y|). ThenH(x, y) = h is equivalent to ω = |y|(H̃(x, y))
1
2 , where ω =

√
h−H0(x). Ap-

plying the implicit function theorem to it, one gets two locally analytic solutions ofH(x, y) = h,
saying y1(x, ω) and y2(x, ω), which satisfy y1(x, ω) = (h00)−

1
2ω(1 + O(|x, ω|)) = y2(x,−ω)

near (x, ω) = (0, 0), and y1(x, ω) can be expanded in ω as follows

y1(x, ω) =
∑
i≥1

ai(x)ωi,(20)
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where

a1(x) =
1√
H∗1

,

ai+1(x) = − 1

2
√
H∗1

H∗1 ∑
t1+t2=i+2,
t1,t2≥2

at1at2 +
i∑

j=1

H∗j+1b
j+2
i+2

 , for i ≥ 1,

with bji =
∑

t1+t2+···+tj=i

at1at2 · · · atj , and
∑

t1+t2=i+2,
t1,t2≥2

at1at2 = 0 if i = 1.

Under these notations, the integral M(h, δ) in (17) can be written in

M(h, δ) =

∫ a(h)

b(h)

(q(x, y1(x, ω), δ)− q(x, y2(x, ω), δ)) dx

=

∫ a(h)

b(h)

∑
j≥1

qj(x)(yj1 − y
j
2)dx,

where a(h) and b(h) are two solutions of the equation H0(x) = h in a neighborhood of x = 0.
The symmetry of y1 and y2 with respect to the y-axis further simplifies the Melnikov function
to

M(h, δ) =

∫ a(h)

b(h)

∑
j≥0

qj(x)(h−H0(x))
2j+1

2 dx,(21)

where

qj(x) = 2

2j∑
i=0

qi+1b
i+1
2j+1.(22)

We note that the detalis about the derivations of (20) and (21), together with the expressions of
a1, a2, a3 in (20) and q0, q1 in (22), can be found on page 191 or on page 193 of book [21].

Introducing a new variable

u = sgn(x) · |H0(x)|
1
k := Φ(x),(23)

the Melnikov function can be expressed as

M(h, δ) =
∑
j≥0

∫ h
1
k

−h
1
k

q̃j(u)(h− uk)
2j+1

2 du

=
∑
j≥0

∫ h
1
k

0

(q̃j(u) + q̃j(−u))(h− uk)
2j+1

2 du,(24)

where

q̃j(u) =
qj(x)

Φ′(x)

∣∣∣
x=Φ−1(u)

,(25)

can be expanded as a power series in u in a neighborhood of u = 0, and then

q̃j(u) + q̃j(−u) =
∑
i≥0

riju
2i,(26)

with the constants rij’s, i, j ≥ 0, depending on the coefficients of the perturbations P0 and Q0

of the analytic near-Hamiltonian system (1). As in [61], substituting (26) into (24) yields the
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asymptotic expression in h as in Lemma 3, of the first order Melnikov function (4) near the
nilpotent centre.

The next result characterizes the coefficients appearing in Lemma 3.

Proposition 2. The constants βij’s given in Lemma 3 have the next expressions

βij =
1

k
B

(
2i+ 1

k
, j +

3

2

)
.

Proof. The expression βij in (8) can be deformed as

βij =

1∫
0

(uk)
2i
k (1− uk)

2j+1
2 du.

Then one has

βij =
1

k

1∫
0

t
2i+1
k
−1(1− t)j+

1
2 dt.

The proof completes via the definition of the Beta function. �

We remark that β00, β10, β20, β30, β01, β11 can be obtained from page 198 of [21] when k = 4.
Although the expressions are different from those of Proposition 2, they coincide by some cal-
culations. From Lemma 3, one needs to calculate the coefficients C0

r of the first order Melnikov
function, which is the key element in the expressions of rij’s.

Lemma 4. For the formula (8) given in Lemma 3, there exist constants dil’s, l = 0, 1, · · · , 2i,
depending on the coefficients of the unperturbed Hamiltonian one of system (1), such that for
all nonnegative integers i’s,

ri0 =
2i∑
l=0

dil ((l + 1)al+1,0 + bl1) =
2i∑
l=0

dil
l!

∂l

∂xl

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
(C,δ)

.

In particular, di,2i = 4|hk|−
2i+1
k (h00)−

1
2 , di,2i−1 = − 2

k
((4i+2)hk+1 +khkh10)|hk|−

2i+3
k (h00)−

1
2 .

Proof. In order to get the expression of ri0, we have to know the expansions of the level curves
defining the ovals. According to the expression of H0(x) in (3) and the definition of Φ(x) in
(23), one has

u = Φ(x) = |hk|
1
k

∑
i≥1

µix
i,(27)

whose coefficients µi’s, i ≥ 2 depend on hj+k, j = 1, · · · , i− 1, and have the expressions

µi =


1, i = 1,
i−1∑
m=1

(−1)m

m!(khk)m

m−1∏
j=0

(jk − 1)
∑

j1+···+jm=i−1

hj1+k × · · · × hjm+k, i ≥ 2.
(28)

Then it follows from (27) that

1

Φ′(x)
= |hk|−

1
k

(
1 +

∑
i≥1

(i+ 1)µi+1x
i

)−1

= |hk|−
1
k

∑
i≥0

nix
i,(29)
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where ni, i ≥ 1, are functions in µ2, · · · , µi+1, and have the expressions

ni =


1, i = 0,
i∑

m=1

(−1)m
∑

j1+···+jm=i

(j1 + 1)× · · · × (jm + 1)× µj1+1 × · · · × µjm+1, i ≥ 1,

with the positive integers jl’s.
Let x = Φ−1(u) in (25) have the power series in a neighborhood of u = 0

x = Φ−1(u) =:
∑
i≥1

µiu
i.(30)

By the expression u = Φ(x) in (27), equating the next equality

u = Φ(Φ−1(u)) = |hk|
1
k

∑
i≥1

ui
i∑

m=1

µm
∑

j1+···+jm=i

µj1 × · · · × µjm

yields

µi =


|hk|−

1
kµ−1

1 = |hk|−
1
k , i = 1,

−
i∑

m=2

µm
∑

j1+···+jm=i

µj1 × · · · × µjm , i ≥ 2,
(31)

with µm’s given in (28). Now a1(x), as the first coefficient of y1(x, ω) in (20), via the expression
of H∗0 in (3), has the asymptotic expansion

a1(x) = (h00)−
1
2

1 +
∑
i≥1

−1
2
(−1

2
− 1) · · · (−1

2
− i+ 1)

i!(h00)i

(∑
j≥1

hj0x
j

)i


= (h00)−
1
2

∑
i≥0

ximi,(32)

where mi’s have the expressions

mi =


1, i = 0,
i∑
l=1

− 1
2

(− 1
2
−1)···(− 1

2
−l+1)

l!

∑
j1+···+jl=i

hj1,0 × · · · × hjl,0, i ≥ 1.

Substituting (18), (22), (29) and (32) into (25), we get

q̃0(Φ(x)) = 2|hk|−
1
k (h00)−

1
2

(∑
i≥0

bi1x
i

)(∑
i≥0

nix
i

)(∑
i≥0

mix
i

)
= 2|hk|−

1
k (h00)−

1
2

∑
i≥0

xiti,

where ti =
∑

i1+i2+i3=i

bi31ni1mi2 , i1, i2, i3 ≥ 0 with bj1, nj and mj appearing respectively in

(19), (29) and (21). In particular, t0 = b01. Substituting (30) into the above expression gives

q̃0(u) = 2|hk|−
1
k (h00)−

1
2

(
t0 +

∑
i≥1

ui
i∑

m≥1

tm
∑

j1+···+jm=i

µj1 × · · · × µjm

)
.
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Combining this expression with (26) yields

r00 = 4|hk|−
1
k (h00)−

1
2 t0 = d00b01,

ri0 = 4|hk|−
1
k (h00)−

1
2

2i∑
m≥1

m∑
l=0

bl1(
∑

i1+i2=m−l

ni1mi2)
∑

j1+···+jm=2i

µj1 × · · · × µjm

=
2i∑
l≥0

dilbl1, i ≥ 1,

where

d00 = 4|hk|−
1
k (h00)−

1
2 ,

di0 = 4|hk|−
1
k (h00)−

1
2

2i∑
m=1

( ∑
i1+i2=m

ni1mi2

) ∑
j1+···+jm=2i

µj1 × · · · × µjm ,

dil = 4|hk|−
1
k (h00)−

1
2

2i∑
m=l

( ∑
i1+i2=m−l

ni1mi2

) ∑
j1+···+jm=2i

µj1 × · · · × µjm , l = 1, · · · , 2i,

for i ≥ 1, where µj’s are given in (31) through (28). Note that dil’s, l = 0, 1, · · · , 2i, depend
only on the coefficients of the Hamiltonian H(x, y) given in (2). The precise expressions of
di,2i−1 and di,2i are presented in Lemma 4.

This proves the lemma using the notations in (16) and (19). �

Proof of Thorem 1. The proof follows from the formula (8) and Lemma 4. �

2.2. The coefficients of the terms with higher degree. For the analytic near-Hamiltonian
system (1), the authors in [52] showed that the first k1 coefficients in the asymptotic expansion
of the first order Melnikov function (10) or (11) satisfy the following expressions.

Bi
0 =

∮
Ls

Qidx− Pidy|ε=0,(33)

Bi
r = Ar−1

r−1∑
l=0

d̃r−1,l

l!

∂l

∂xl

(
∂Pi
∂x

+
∂Qi

∂y

)
(S, δ), r = 1, · · · ,

[
k1 − 1

2

]
,

Bi
k1
2

= − 1

2k1

k1
2
−1∑

l=0

d̃ k1
2
−1,l

l!

∂l

∂xl

(
∂Pi
∂x

+
∂Qi

∂y

)
(S, δ),

Bi
r = Ar−2

r−2∑
l=0

d̃r−2,l

l!

∂l

∂xl

(
∂Pi
∂x

+
∂Qi

∂y

)
(S, δ), r =

[
k1

2

]
+ 2, · · · , k1,

and

Bi

[
k1
2

]+1
=(−1)k1−1

∮
Ls

(∂Pi
∂x

+
∂Qi

∂y

)∣∣∣∣
ε=0

−
[ k12 ]−1∑
l=0

1

l!

∂l

∂xl

(
∂Pi
∂x

+
∂Qi

∂y

)
(S, δ)xl

 dt

+

[ k12 ]∑
l=1

T̃lB
i
l ,

https://doi.org/10.4153/S0008414X25101703 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101703


16 L. WEI, M. HAN, J. HE AND X. ZHANG

where the concrete expressions of the coefficients Ai’s and d̃ij can be obtained from Lemmas
8–9 in [52]. Set

Ωi :=

{
δ : Bi

r(δ) = 0, r = 1, 2, · · · ,
[
k1

2

]
,

[
k1

2

]
+ 2, · · · , k1, C

i
j(δ) = 0, j = 0, 1, · · · , k2

2
− 1

}
and Ω

i
:=
⋂i
s=0 Ωs, where Ci

j’s are given in (12). We mention the difference of Ωi with ∆i in
Theorem 2.

Lemma 5. Let the basic conditions on the system and the homoclinic loop and the assumption
(i) in Theorem 2 hold. Assume that there exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for
i = 1, 2, · · · , l, such that for δ ∈ Ω

i−1
the equalities (13) hold over U . Then for δ ∈ Ω

i−1
the

conclusions (a)–(e) of Theorem 2 hold.

Proof. Here we just prove this lemma in the case that the unperturbed system (1)|ε=0 has a
nilpotent centre and a homoclinic loop to a nilpotent cusp. The proof as the homoclinic loop to
a nilpotent saddle can be handled in a similar way as that in the proof for the nilpotent cusp.

We first prove the result for l = 1. Differentiating M0(h, δ) in the expansions (11) and (12)
with respect to h, together with the condition δ ∈ Ω

0
, one has for 0 < −h� 1,

∂M0(h, δ)

∂h
=B0

k1+1
2

− |h|
1
2

∑
j≥0

k1j+
k1−1

2∑
r=k1j+1

(
r

k1

+
3

2

)
B0
k1+r|h|

r
k1

+
∑
j≥0

(j + 2)B0

k1(j+1)+
k1+1

2

(h− hs)j+1(34)

− |h|
1
2

∑
j≥0

(j+1)k1−1∑
r=k1j+

k1+1
2

(
r

k1

+
3

2

)
B0
k1+r+1|h|

r
k1 ,

and for 0 ≤ h− hc � 1,

∂M0(h, δ)

∂h
=(h− hc)

2+k2
2k2

∑
r≥0

2 + 3k2 + 4r

2k2

C0

r+
k2
2

(h− hc)
2r
k2 .(35)

Set C1
r := 2+3k2+4r

2k2
C0

r+
k2
2

, r ≥ 0. Recall that the derivative of the first order Melnikov function

M(h, δ) defined by (4) in h has the following expression, see [20].

∂M(h, δ)

∂h
=

∮
L1
h

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

dt.

Substituting the equation (13) with i = 1 into the above derivative, a simple computation shows

∂M0(h, δ)

∂h
=

∮
L1
h

Q1dx− P1dy =: M1(h, δ),(36)

which has the same integral form as the first order Melnikov function (4). Then it can be viewed
as the first order Melnikov function M1(h, δ) of a new near-Hamiltonian system (9) with i = 1,
and it has the expansion (11) near the homoclinic loop and the expansion (12) near the nilpotent
centre. It follows from the equation (36) that the expression (34) and the expansion (11) with
i = 1 are the same near the loop Ls, and that the expression (35) is consistent with the expansion
(12) with i = 1 near the centre.

Comparing the coefficients in the expression (34) and in the expansion (11) with i = 1, as
well as the coefficients in the expression (35) and in (12) with i = 1, one has for δ ∈ Ω

0
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(a) when r = 1, 2, · · · , [k1−1
2

],

B1
k1j+r

= −
(
r

k1

+
3

2
+ j

)
B0
k1(j+1)+r,

(b) when r = [k1+1
2

],

B1
k1j+r

= (j + 2)B0
k1(j+1)+r,

(c) when r = [k1
2

] + 2, · · · , k1,

B1
k1j+r

= −
(
r − 1

k1

+
3

2
+ j

)
B0
k1(j+1)+r,

(d)

C1
j = −

(
2r + 1

k2

+
3

2

)
C0

k2
2

+j
,

for all nonnegative integers j. Obviously, the conclusion (e) in Theorem 2 holds, which can be
obtained from (d) above. Taking j = 0 for (a)–(c) above, one gets the proof of (a)–(b) and (d)
in Theorem 2 for l = 1.

For l > 1, according to the foregoing proof and the conditions of Lemma 5, for δ ∈ Ω
i−1

the
conclusions (a)–(d) hold with the superscripts i and i − 1 instead of the superscripts 1 and 0,
respectively.

By induction, one can further prove that for δ ∈ Ω
i−1

(a) when r = 1, 2, · · · , [k1−1
2

],

B0
k1(i+j)+r =

(−1)i(2k1)i

i+j∏
s=j+1

(k1 + 2(k1s+ r))

Bi
k1j+r

,

(b) when r = [k1+1
2

],

B0
k1(i+j)+r =

1
i+j+1∏
s=j+2

s

Bi
k1j+r

,

(c) when r = [k1
2

] + 2, · · · , k1,

B0
k1(i+j)+r =

(−1)i(2k1)i

i+j∏
s=j+1

(k1 + 2(k1s+ r − 1))

Bi
k1j+r

,

(d)

C0
k2
2
i+j

=
(2k2)i

i∏
s=1

((2s+ 1)k2 + 4j + 2)

Ci
j,

with nonnegative integers j.
Statement (d) above implies the conclusion (e) in Theorem 2. Taking j = 0 in the above

conclusions (a)–(c), it follows the conclusions (a)–(b) and (d) in Theorem 2. The proof is
completed. �

Proof of Theorem 2. It follows from Lemma 5, together with the fact ∆
i−1 ⊆ Ω

i−1
for i =

1, 2, · · · , l. �
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Next we turn to think about the coefficients of the terms with higher degrees in the expansion
of the first order Melnikov function near the homoclinic loop to the nilpotent cusp, called a
cuspidal loop. Han et al. [27] first depicted the expansions of the first order Melnikov function
near this kind of loop, and the first coefficients in the expansions for k = 3. In [3, 52, 56] the
authors further studied the coefficients with lower degrees of the expansions for k ≥ 5. The
results are summarized as follows.

Lemma 6. For the analytic near-Hamiltonian system (9), assume that the unperturbed Hamil-
tonian has an oriented clockwise homoclinic loop to a nilpotent cusp at the origin, and satisfies
(2) with hk < 0, then the first order Melnikov function near and inside the cuspidal loop is given
in (11), and it near and outside the loop (see Fig. 1(A)) can be written in the form

M i(h, δ) =bi0 +
∑
j≥0

kj+ k−1
2∑

r=kj+1

birh
r
k

+ 1
2 +

∑
j≥0

bi
kj+ k+1

2

hj+1

+
∑
j≥0

(j+1)k−1∑
r=kj+ k+1

2

bir+1h
r
k

+ 1
2 . 0 < h� 1,(37)

where

bi0 = Bi
0, bir =

A∗r−1

Ar−1

Bi
r, r = 1, · · · ,

[
k

2

]
,

bi
[ k
2

]+1
= Bi

[ k
2

]+1
+

[ k2 ]∑
l=1

T ∗l B
i
l , bir =

A∗r−2

Ar−2

Bi
r, r =

[
k

2

]
+ 2, · · · , k,

(38)

with the constants T ∗l , A∗r > 0 for 0 ≤ r < k
2
− 1 and A∗r < 0, for k

2
− 1 < r < k − 1.

Yang and Han [62] in 2024 provided further the relation between the coefficients of the terms
with the same order in the asymptotic expansions of the first order Melnikov functions inside or
outside the cuspidal loop. Moreover, the constants T ∗l ’s are zeros in Lemma 6.

This lemma implies the information{
δ : Bi

r(δ) = 0, 1 ≤ r ≤ k, r 6=
[
k

2

]
+ 1

}
=

{
δ : bir(δ) = 0, 1 ≤ r ≤ k, r 6=

[
k

2

]
+ 1

}
.

In the light of the idea in Theorem 2 and its proof, together with this last lemma, we can
characterize the coefficients of the expansions (11) and (37) of the first order Melnikov functions
near the cuspidal loop, as shown in the next results. Their proofs will be omitted.

Theorem 7. For the analytic near-Hamiltonian system (1), the following assumptions hold.

(i) The unperturbed Hamiltonian one of system (1) has a nilpotent centre of order
[
k2
2

]
− 1

and an oriented clockwise homoclinic loop to a nilpotent cusp of order
[
k1−1

2

]
.

(ii) The first order Melnikov function is of the form (11) with i = 0 near the loop, and is of
the form (12) with i = 0 near the centre.

(iii) There exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i = 1, 2, · · · , l, such that for
δ ∈ ∆

i−1
the equations (13) hold over U2 :=

⋃
hc≤h≤hs+τ

Lh with a positive number τ � 1.

Then the statements (a), (b), (d) and (e) in Theorem 2 hold, and the coefficients of the expan-
sions have the next relations.

https://doi.org/10.4153/S0008414X25101703 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101703


LIMIT CYCLES NEAR A NILPOTENT CENTRE AND A HOMOCLINIC LOOP 19

(a) For r = 1, 2, · · · , k1−1
2

,

b0
k1i+r

∣∣∣
∆

i−1
=

(2k1)i

i∏
j=1

((2j + 1)k1 + 2r)

bir.

(b) For r = k1+1
2

,

b0
k1i+r

∣∣∣
∆

i−1
=

1

(i+ 1)!
bir.

(c) For r = k1+3
2
, · · · , k1,

b0
k1i+r

∣∣∣
∆

i−1
=

(2k1)i

i∏
j=1

((2j + 1)k1 + 2r − 2)

bir.

3. LIMIT CYCLE BIFURCATIONS NEAR A HOMOCLINIC LOOP AND A CENTRE

This section considers the limit cycle bifurcations of the families of periodic orbits near a
centre and a homoclinic loop with a nilpotent singularity. If the singularity is a nilpotent saddle,
the Hamiltonian system (1)|ε=0 could have a family of periodic orbits either inside or outside
the homoclinic loop. If the singularity is a nilpotent cusp, there could have two families of
periodic orbits locating at both sides of the cuspidal loop, see Fig.1(A). In this last case we
study limit cycle bifurcations in both sides of the cuspidal loop and near the centre for the near-
Hamiltonian system (1), utilizing the properties of the coefficients of the first order Melnikov
functions estabilished in Theorems 2 and 3 and Lemma 7. On the limit cycle bifurcation in
a single side of a homoclinic loop and near a nilpotent centre will be directly demonstrated
without a proof, since they can be obtained in a similar way as that in the case of the cuspidal
loop.

Set B0 := B0
0 . For 0 ≤ j ≤ k2

2
− 1, 1 ≤ r ≤ k1 and r 6= [k1

2
] + 1, set

C k2
2
i+j

:=

{
C0
j , i = 0,

C0
k2
2
i+j

∣∣
∆

i−1 , i > 0,
Bk1i+r :=

{
B0
r , i = 0,

B0
k1i+r
|
∆

i−1 , i > 0.
(39)

For r = [k1
2

] + 1, set

Bk1i+r :=
(−1)k1−1

(i+ 1)!

∮
Ls

(∂Pi
∂x

+
∂Qi

∂y

)
−

[
k1
2

]−1∑
l=0

1

l!

∂l

∂xl

(
∂Pi
∂x

+
∂Qi

∂y

)
(S, δ)xl

∣∣∣∣∣∣
ε=0

dt.

(40)

Denote

Fi :=
(
Ci

11, C
i
21, · · · , Ci

k2
2
−1,1

)
, Fi := (F0,F1, · · · ,Fi), F−1 := ∅,

Ai :=
(
Bi

1, B
i
2, · · · , Bi

[
k1
2

]
, Bi

[
k1
2

]+2
, · · · , Bi

k1
, Ci

0, C
i
1, · · · , Ci

k2
2
−1

)
,

Ai :=
(
Bk1i+1, Bk1i+2, · · · , Bk1i+[

k1
2

]
, B

k1i+[
k1
2

]+2
, · · · , Bk1i+k1 , C k2

2
i
, · · · , C k2

2
(i+1)−1

)
,

Oi := O
(∣∣Bk1i+1, Bk1i+2, · · · , Bk1i+[

k1
2

]

∣∣) ,
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and

Oj :=

{
O(|A0,A1, · · · ,Aj−1,Fj−1|), j > 0,

0, j = 0.

Theorem 8. Let the assumptions (i)–(ii) in Theorem 7 hold. If there exist nonnegative integers
n(≤ m), r1 ∈ [1, k1], r2 ∈ [0, k2

2
−1] and δ0 ∈ Rd, such that for Bj and Cj defined in (39)–(40),

Bk1n+r1(δ0)C k2
2
n+r2

(δ0) 6= 0, Fn−1(δ0) = 0,

Bi(δ0) = Cj(δ0) = 0, i = 0, 1, · · · , k1n+ r1 − 1, j = 0, 1, · · · , k2

2
n+ r2 − 1,

Rank
∂
(
B0, B1, · · · , Bk1n+r1−1, C0, · · · , C k2

2
n+r2−1

,Fn−1

)
∂(δ1, · · · , δs)

(δ0) = (k1 + k2 − 1)n+ r1 + r2.

Then system (1) can have (2k1 + k2
2
− 1)n+ 2r1 + r2 − 1 limit cycles near either the centre or

the cuspidal loop for some (ε, δ) near (0, δ0), being comprised of (2k1 − 1)n + 2r1 − 1 limit
cycles near the cuspidal loop and k2

2
n+ r2 limit cycles near the centre.

Proof. Without loss of generality, we assume that (−1)k1n+r1 Bk1n+r1(δ0) > 0 for r1 <
k1+3

2

and (−1)
k2
2
n+r2C k2

2
n+r2

(δ0) > 0. For unifying the notations, we denote by Bi
jl := Bi

j for l = 1

and Bi
jl := bij for l = 2. It follows from the expansion (11) and Lemma 6 that the asymptotic

expansions of the first order Melnikov function near the cuspidal loop can be uniformly written
in

M0
l (h, δ) =B0

0l + |h|
1
2

∑
j≥0

k1j+
k1−1

2∑
r=k1j+1

B0
rl|h|

r
k1 +

∑
j≥0

B0

k1j+
k1+1

2
,l
hj+1

+ |h|
1
2

∑
j≥0

(j+1)k1−1∑
r=k1j+

k1+1
2

B0
r+1,l|h|

r
k1(41)

for 0 < (−1)lh� 1 with l ∈ {1, 2}, and that the asymptotic expansion near the centre is given
in (12) with i = 0.

To study the number of isolated zeros of the first order Melnikov function, treating Bi, Cj
and Fn−1 with i = 0, 1, · · · , k1n + r1 − 1, j = 0, 1, · · · , k2

2
n + r2 − 1 as free parameters, and

write B0
il’s and C0

i ’s in terms of Bi’s and Ci’s. Then B0
01 = B0

02 = B0, C0
0 = C0, and

B0
k1j+r,l

= B0
k1j+r,l

∣∣
∆

j−1 +O
(
|A0,A1, · · · ,Aj−1,F0,F1, · · · ,Fj−1|

)
= B0

k1j+r,l

∣∣
∆

j−1 +Oj,

C0
k2
2
j+t

= C0
k2
2
j+t

∣∣∣
∆

j−1
+Oj.

Together with the properties in Theorem 7 and the relations (38), one further has

B0
k1j+r,l

=

{
Bk1j+r +Oj, l = 1,

(−1)j
A∗r−1

Ar−1
Bk1j+r +Oj, l = 2

for 1 ≤ r ≤ [k1
2

],

B0
k1j+r,l

= Bk1j+r +Oj +Oj
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for r = [k1
2

] + 1,

B0
k1j+r,l

=

{
Bk1j+r +Oj, l = 1,

(−1)j
A∗r−2

Ar−2
Bk1j+r +Oj, l = 2

for [k1
2

] + 2 ≤ r ≤ k1, and

C0
k2
2
j+t

= C k2
2
j+t

+Oj

for 0 ≤ t ≤ k2
2
− 1.

Therefore, the expansions (41) of the first order Melnikov function can be respectively written
in

M0
1 (h, δ) = B0 +

n−1∑
j=0

k1j+
k1−1

2∑
r=k1j+1

(
Br +Oj

)
|h|

r
k1

+ 1
2 +

n−1∑
j=0

(
(−1)j+1B

k1j+
k1+1

2

+Oj +Oj
)

· |h|j+1 +
n−1∑
j=0

(j+1)k1−1∑
r=k1j+

k1+1
2

(Br+1 +Oj) |h|
r
k1

+ 1
2 +

k1n+r1−1∑
r=k1n+1

(Br +On)

· |h|
r
k1

+ 1
2 +B0

k1n+r1
|h|n+

r1
k1

+ 1
2 + o

(
|h|n+

r1
k1

+ 1
2

)
near and inside the loop Ls,

M0
2 (h, δ) = B0 +

n−1∑
j=0

k1j+
k1−1

2∑
r=k1j+1

(
(−1)j+1

∣∣∣∣A∗r−1

Ar−1

∣∣∣∣Br +Oj

)
h

r
k1

+ 1
2 +

n−1∑
j=0

(
B
k1j+

k1+1
2

+Oj +Oj
)
hj+1 +

n−1∑
j=0

(j+1)k1−1∑
r=k1j+

k1+1
2

(
(−1)j+1

∣∣∣∣A∗r−1

Ar−1

∣∣∣∣Br+1 +Oj

)
· h

r
k1

+ 1
2

+

k1n+r1−1∑
r=k1n+1

(
(−1)n+1

∣∣∣∣A∗r−1

Ar−1

∣∣∣∣Br +On

)
h

r
k1

+ 1
2

+ b0
k1n+r1

h
n+

r1
k1

+ 1
2 + o

(
h
n+

r1
k1

+ 1
2

)
near and outside the loop, and

M0(h, δ) =(h− hc)
k2+2
2k2

n−1∑
j=0

k2
2

(j+1)−1∑
r=

k2
2
j

(
Cr +Oj

)
(h− hc)

2r
k2 +

k2
2
n+r2−1∑
r=

k2
2
n

(Cr +On) (h− hc)
2r
k2

+C0
k2
2
n+r2

(h− hc)1+
2n+r2

k2 + o
(
|h− hc|1+

2n+r2
k2

))
near the nilpotent centre for 0 < h − hc � 1, where B0

k1n+r1
= Bk1n+r1(δ0) + O, b0

k1n+r1
=

(−1)n
A∗k1n+r1−2

Ak1n+r1−2
Bk1n+r1(δ0) + O, and C0

k2
2
n+r2

= C k2
2
n+r2

(δ0) + O with O = O(|B0, B1, · · · ,
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Bk1n+r1−1, C0, C1, · · · , C k2
2
n+r2−1

,Fn−1|). Take the free parameters Bi’s and Ci’s such that

0 <(−1)k1jBk1j � (−1)k1j+1Bk1j+1 � · · · � (−1)k1j+
k1−1

2 B
k1j+

k1−1
2

�

(−1)k1j+
k1−1

2
+jB

k1j+
k1+1

2

� (−1)k1j+
k1+3

2 B
k1j+

k1+3
2

� · · · � (−1)k1j+k1Bk1j+k1

� (−1)k1n+1Bk1n+1 � · · · � (−1)k1n+r1−1Bk1n+r1−1 � (−1)k1n+r1Bk1n+r1(δ0),

0 <(−1)r−1Cr−1 � (−1)rCr � (−1)
k2
2
n+r2C k2

2
n+r2

(δ0)

satisfying max
{
|Bk1(j+1)|, |C k2

2
j+

k2
2
−1
|
}
� min

{
|Bk1(j+1)+1|, |C k2

2
(j+1)
|
}

with 0 ≤ j ≤ n−
1 and 1 ≤ r ≤ k2

2
n+ r2− 1. Then the first order Melnikov function M(h, δ) can have k1n+ r1

simple zeros in a right neighborhood of h = 0 and (k1 − 1)n + r1 − 1 simple zeros in a left
neighborhood of h = 0, and k2

2
n + r2 simple zeros near h = hc. Hence the near-Hamiltonian

system (1) can have (2k1 + k2
2
− 1)n+ 2r1 + r2− 1 limit cycles near either the cuspidal loop or

the nilpotent centre, obtained by applying the implicit function theorem to the Poincaré map.
The proofs of the other cases are similar as those given above, and so are omitted. We finish

the proof of the theorem. �

We remark that in practice, it is quite troublesome to find δ0 that meets the conditions in
Theorem 8. If the perturbations P0 and Q0 in system (1) are linear in the parameter δ, the
Jacobian matrix in the theorem is independent of the parameter δ. Then we can simplify the
conditions in Theorem 8 even further.

Corollary 1. Let the assumptions (i) and (ii) in Theorem 7 hold. Suppose that there exist
nonnegative integers n(≤ m), r1 ∈ [1, k1] and r2 ∈ [0, k2

2
− 1], such that the Jacobian matrix

∂
(
B0, B1, · · · , Bk1n+r1−1, C0, · · · , C k2

2
n+r2−1

,Fn−1, b
)

∂(δ1, · · · , δs)

with b ∈
{
Bk1n+r1 , C k2

2
n+r2

}
is of full rank. Then system (1) can have (2k1 + k2

2
− 1)n+ 2r1 +

r2 − 1 limit cycles near either the nilpotent centre or the cuspidal loop for suitable choices of
the values of (ε, δ).

Based on the ideas of the proof to Theorem 8, one can establish similar results on limit cycle
bifurcations near and inside a homoclinic loop to a nilpotent singularity and near a nilpotent
centre. We present them here without a proof, because of the similarity and cumbersome.

Theorem 9. Let the assumptions (i) and (ii) in Theorem 2 hold. Suppose that there exist
nonnegative integers n(≤ m), r1 ∈ [1, k1], r2 ∈ [0, k2

2
− 1] and δ0 ∈ Rs, such that the Bj’s and

Cj’s defined in (39)–(40) satisfy the following conditions:

Bk1n+r1(δ0)C k2
2
n+r2

(δ0) 6= 0, Fn−1(δ0) = 0,

Bi(δ0) = Cj(δ0) = 0, i = 0, 1, · · · , k1n+ r1 − 1, j = 0, 1, · · · , k2

2
n+ r2 − 1,

Rank
∂
(
B0, B1, · · · , Bk1n+r1−1, C0, · · · , C k2

2
n+r2−1

,Fn−1

)
∂(δ1, · · · , δs)

(δ0) = (k1 + k2 − 1)n+ r1 + r2.

Then system (1) can have (k1+ k2
2

)n+r1+r2 limit cycles near either the centre or the homoclinic
loop for suitable choices of the values of (ε, δ) near (0, δ0).
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Corollary 2. Let the assumptions (i) and (ii) in Theorem 2 hold. If there exist nonnegative
integers n(≤ m), r1 ∈ [1, k1] and r2 ∈ [0, k2

2
− 1], such that the Jacobian matrix

∂
(
B0, B1, · · · , Bk1n+r1−1, C0, · · · , C k2

2
n+r2−1

,Fn−1, b
)

∂(δ1, · · · , δs)

with b ∈
{
Bk1n+r1 , C k2

2
n+r2

}
is of full rank. Then system (1) can have (k1 + k2

2
)n + r1 + r2

limit cycles near either the centre or the homoclinic loop for suitable choices of the values of
(ε, δ) near (0, δ0).

For 0 ≤ j ≤ k2
2
− 1, set

C k2
2
i+j

:=

{
C0
j , i = 0,

C0
k2
2
i+j
|
Λ
i−1 , i > 0.

(42)

Theorem 10. Let the assumptions (i) and (ii) in Theorem 3 hold. Suppose that there exist
nonnegative integers n(≤ m), r(≤ k2

2
− 1) and δ0 ∈ Rs, such that the Cj’s defined in (40)

satisfy

C k2
2
n+r

(δ0) 6= 0, Fn−1(δ0) = 0,

Cl(δ0) = 0, l = 0, 1, · · · , k2

2
n+ r − 1,

Rank
∂
(
C0, · · · , C k2

2
n+r−1

,Fn−1

)
∂(δ1, · · · , δs)

(δ0) = (k2 − 1)n+ r.

Then system (1) can have k2
2
n+ r limit cycles near the centre for suitable choices of the values

of (ε, δ) near (0, δ0).

Corollary 3. Let the assumptions (i) and (ii) in Theorem 3 hold. If there exist nonnegative
integers n(≤ m) and r(≤ k2

2
− 1), such that the Jacobian matrix

∂
(
C0, · · · , C k2

2
n+r−1

,Fn−1, C k2
2
n+r

)
∂(δ1, · · · , δs)

is of full rank, then system (1) can have k2
2
n+ r limit cycles near the centre for some (ε, δ).

Denoted by Ci
r2 := C k2

2
i+r
− Ci

r1, F̃i :=

(
Ci

1,si1
, Ci

2,si2
, · · · , Ci

k2
2
−1,s

i,
k2
2 −1

)
, F̃i :=

(
F̃0,

F̃1, · · · , F̃i
)

for i ≥ 0 and F̃−1 = ∅.

We remark if there exists a maximal linearly independent group (C k2
2
i+r
, Ci

r,sir
) with sir ∈

{0, 1, 2}, where Ci
r0 = ∅, then Theorems 8-10 and Corollaries 1-3 still hold with the symbol F̃

instead of the symbol F.

4. APPLICATIONS

This section is a proof to Theorems 5 and 6, which are the applications of our results obtained
in the previous sections to two concrete systems.
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4.1. Proof of Theorem 5. Consider the generalized Liénard system of the form:

ẋ = y, ẏ = −x2(x− 1)3 + εyfm(x).(43)

with a polynomial fm(x) =
m∑
i=0

bix
i. Obviously, the Hamiltonian of the unperturbed system

(43)|ε=0 is H(x, y) = 1
2
y2 − 1

3
x3 + 3

4
x4 − 3

5
x5 + 1

6
x6, and its associated system has a nilpotent

centre of order 1 at the point (1, 0) and a cuspidal loop Ls, which is contained in the level
set H(x, y) = 0 and is homoclinic to the cusp of order 1 at the origin. By Theorem 1, the
coefficients of the first order Melnikov function (11) with i = 0 and (33) satisfy

B0 =
m∑
i=0

biIi, C0 = 2B

(
1

4
,
3

2

) m∑
i=0

bi,

B1 = 2
3
2 3

1
3A0b0, C1 = 2B

(
3

4
,
3

2

) m∑
i=0

(
i2 +

1

5
i+

41

25

)
bi,(44)

B2 =
m∑
i=1

biJi, C0
11 = 2B

(
3

4
,
3

2

) m∑
i=0

(
i(i− 1) +

41

25

)
bi,

B3 = 2
1
2 3

2
3A1(3b0 + 2b1),

where the constants A0, A1 are given in Lemma 2, and

Ii =

∮
Ls

yxidx = 2
√

2

x0∫
0

xi+1

√
1

3
x− 3

4
x2 +

3

5
x3 − 1

6
x4dx, i = 0, 1, · · · ,m,

Ji =

∮
Ls

xidt =
√

2

x0∫
0

xi−1√
1
3
x− 3

4
x2 + 3

5
x3 − 1

6
x4

dx, i = 1, 2, · · · ,m,

with x0 = (28+10
√

10)
1
3

10
− 3

5(28+10
√

10)
1
3

+ 6
5
. Write the expressions (44) in the compact form

(B0, B1, B2, B3, C0, C1, C
0
11)T = R0(b0, b1, · · · , bm)T ,(45)

with R0 a 7× (m+ 1) matrix of the form

R0 =



I0 I1 I2 · · · Im

2
3
2 3

1
3A0 0 0 · · · 0

0 J1 J2 · · · Jm

2
1
2 3

5
3A1 2

3
2 3

2
3A1 0 · · · 0

2B(1
4
, 3

2
) 2B(1

4
, 3

2
) 2B(1

4
, 3

2
) · · · 2B(1

4
, 3

2
)

2B(3
4
, 3

2
) · 41

25
2B(3

4
, 3

2
) · 71

25
2B(3

4
, 3

2
) · 151

25
· · · 2B(3

4
, 3

2
) ·
(
m2 + 1

5
m+ 41

25

)
2B(3

4
, 3

2
) · 41

25
2B(3

4
, 3

2
) · 41

25
2B(3

4
, 3

2
) · 91

25
· · · 2B(3

4
, 3

2
) ·
(
m(m− 1) + 41

25

)



.

The condition ∆
0

= ∆0 in Theorem 2 yields x2|fm(x) and (x− 1)3|fm(x). It follows from

P0 = 0 and Q0 = yfm(x)

https://doi.org/10.4153/S0008414X25101703 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101703


LIMIT CYCLES NEAR A NILPOTENT CENTRE AND A HOMOCLINIC LOOP 25

that equation (13) with i = 1 holds by ordering

P1 =
fm(x)|

∆
0

x2(x− 1)3
,

which implies the expression

P1 =
m−5∑
j=0

b1
jx

j,

where

b1
j =

m−j∑
l=5

(l − 3)(l − 4)

2
bl+j for j = 0, 1, 2, · · · ,m− 5.

Set

Pi−1 :=

ni−1∑
j=0

bi−1
j xj and Qi−1 := 0,

with ni−1 = m+ 1− 6(i− 1) for i ≥ 2. Manipulating as the above paragraph, it follows from
the condition ∆

i
and the equality (13) that

Pi =

ni∑
j=0

bijx
j and Qi = 0,

where

bij =

ni−j+6∑
l=6

(l − 4)(l − 5)

2
(l + j)bi−1

l+j

for j = 0, 1, 2, · · · , ni and ni = ni−1 − 6 = m+ 1− 6i.
Moreover, one has the next relations on the coefficients

(bi1, b
i
2, · · · , bim−6i+1)T =

i∏
j=1

Aij(b6i, b6i+1, · · · , bm)T , i = 1, 2, · · · ,
[
m− 1

6

]
(46)

with Aij being the upper triangular matrices of order m− 6i+ 1

Aij =


1 · (6j + 1) 3 · (6j + 2) · · · (m− 6(i− j) + 1) · (m−6i+2)(m−6i+1)

2

0 1 · (6j + 1) · · · (m− 6(i− j) + 1) · (m−6i+1)(m−6i)
2

...
... . . . ...

0 0 · · · (m− 6(i− j) + 1)


for 1 ≤ j ≤ i− 1, and

Aii =


1 3 6 · · · 1

2
(m− 6i+ 2)(m− 6i+ 1)

0 1 3 · · · 1
2
(m− 6i+ 1)(m− 6i)

...
...

... . . . ...
0 0 0 · · · 1

 .
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On the other hand, we get from (12) and (33) that for 1 ≤ i ≤
[
m−1

6

]
,

Bi
1 = 2

3
2 3

1
3A0b

i
1, Ci

0 = 2B

(
1

4
,
3

2

)m−6i+1∑
j=1

jbij,

Bi
2|Bi

1=0 =
m−6i+1∑
j=2

jJj−1b
i
j, Ci

1 = 2B

(
3

4
,
3

2

)m−6i+1∑
j=1

j

(
j2 − 9

5
j +

61

25

)
bij,

Bi
3 = 2

1
2 3

2
3A1(3bi1 + 4bi2), Ci

11 = 2B

(
3

4
,
3

2

)m−6i+1∑
j=1

j

(
j2 − 3j +

91

25

)
bij.

Namely, for 1 ≤ i ≤
[
m−1

6

]
,

(Bi
1, B

i
2|Bi

1=0, B
i
3, C

i
0, C

i
1, C

i
11)T = V i(bi1, b

i
2, · · · , bim−6i+1)T ,(47)

with the 6× (m− 6i+ 1) matrices

V i =



2
3
2 3

1
3A0 0 0 · · · 0

0 2J1 3J2 · · · niJm−6i

2
1
2 3

5
3A1 2

5
2 3

2
3A1 0 · · · 0

2B
(

1
4
, 3

2

)
4B
(

1
4
, 3

2

)
6B
(

1
4
, 3

2

)
· · · 2niB

(
1
4
, 3

2

)
82
25

B
(

3
4
, 3

2

)
284
25

B
(

3
4
, 3

2

)
906
25

B
(

3
4
, 3

2

)
· · · 2ni(n

2
i − 9

5
ni + 61

25
)B
(

3
4
, 3

2

)
82
25

B
(

3
4
, 3

2

)
164
25

B
(

3
4
, 3

2

)
546
25

B
(

3
4
, 3

2

)
· · · 2ni(n

2
i − 3ni + 91

25
)B
(

3
4
, 3

2

)


.

According to Theorem 2, together with the definitions of B3i+r and Ci in (39)–(40), one gets
for 1 ≤ i ≤

[
m−1

6

]
,

(B3i+1, B3i+2, B3i+3, C2i, C2i+1, C
i
11)T = U i(Bi

1, B
i
2|Bi

1=0, B
i
3, C

i
0, C

i
1, C

i
11)T ,(48)

with the diagonal matrices of order 6

U i = diag

 (−6)i

i∏
j=1

(6j + 5)

,
1

(i+ 1)!
,

(−6)i

i∏
j=1

(6j + 7)

,
4i

i∏
j=1

(4j + 3)

,
4i

i∏
j=1

(4j + 5)

, 1

 .

Substituting (46) and (47) into (48) gives for 1 ≤ i ≤
[
m−1

6

]
,

(B3i+1, B3i+2, B3i+3, C2i, C2i+1, C
i
11)T = U iV i

i∏
j=1

Aij(b6i, b6i+1, · · · , bm)T .(49)

Set m − 1 = 6n + r with r ≤ 6 and n nonnegative integers. According to (45) and (49) one
gets by means of Python programme that all Jacobian matrices ∂G

∂(b0,b1,··· ,bm)
are of full rank with

m ≤ 300, where
• for 1 ≤ r ≤ 3, G = (B0, B1, · · · , B3n+r−1, C

0
11, C

1
11, · · · , Cn−1

11 , C0, C1, · · · , C2n−1, b)
with b ∈ {B3n+r, C2n},
• for 4 ≤ r ≤ 6, G = (B0, B1, · · · , B3n+2, C

0
11, C

1
11, · · · , Cn−1

11 , C0, C1, · · · , C2n, b) with
b ∈ {B3n+3, C2n+1}.

In the light of Theorem 8 or Corollary 1, the Liénard differential system (43) can have
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• 7n+2r−1 limit cycles for 1 ≤ r ≤ 3, obtained by taking r1 = r and r2 = 0 in Theorem
8;
• 7n+ 6 limit cycles for 4 ≤ r ≤ 6, obtained by taking r1 = 3 and r2 = 1 in Theorem 8.

The proof is completed. �

4.2. Proof of Theorem 6. Consider the near-Hamiltonian system of the form:

ẋ = y + εP0(x, y), ẏ = −x3(1− x− x2) + εQ0(x, y).(50)

with the perturbed polynomials P0(x, y) and Q0(x, y) of degree m. The corresponding Hamil-
tonian function is H(x, y) = 1

2
y2 + 1

4
x4 − 1

5
x5 − 1

6
x6, whose associated system has a nilpotent

centre of order 1 at the origin.

Set G0(x, y) := ∂P0

∂x
+ ∂Q0

∂y
=

m−1∑
i+j=0

cijx
iyj . It follows from Theorem 1 and (39) that

C0 = 2B

(
1

4
,
3

2

)
c00, C1 = 2B

(
3

4
,
3

2

)(
46

25
c00 −

3

5
c10 + 2c20

)
,

C0
11 = 2B

(
3

4
,
3

2

)(
46

25
c00 + 2c20

)
,

which give

(C0, C1, C
0
11)T = R0(c00, c10, c20)T ,(51)

with R0 a 3× 3 matrix of the form

R0 =


2B
(

1
4
, 3

2

)
0 0

92
25

B
(

3
4
, 3

2

)
−6

5
B
(

3
4
, 3

2

)
4B
(

3
4
, 3

2

)
92
25

B
(

3
4
, 3

2

)
0 4B

(
3
4
, 3

2

)
 .(52)

The condition Λ
0

= Λ0 of Theorem 3 implies ∂l

∂xl
G0(0, 0) = l!cl0 = 0 for l = 0, 1, 2. It follows

from the expression of G0 that the equality (13) with i = 1 holds by ordering

P1 =
G0(x, y)|

Λ
0

x3(1− x− x2)
and Q1 =

1

y
(G0(x, y)−G0(x, 0)),

which implies the expressions

P1 =
∞∑
i=0

a1
i0x

i and Q1 =
m−2∑
i+j=0

b1
ijx

iyj,

with a1
i0 =

i∑
s=0

cs+3,0di−s for s ≤ m − 4, a1
i0 =

m−4∑
s=0

cs+3,0di−s for s ≥ m − 3, and b1
ij = ci,j+1

for 0 ≤ i+ j ≤ m− 2, where we have used the expansion

1

1− x− x2
=
∞∑
i=0

xidi, di =
i∑

j=[ i+1
2

]

j!

(i− j)!(2j − i)!
.(53)

Set

Pl−1 :=
∞∑
i=0

al−1
i0 xi and Ql−1 :=

nl−1∑
i+j=0

bl−1
ij xiyj
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with nl−1 = m− 2l + 2 for l ≥ 2. Simple calculations show that

Gl−1(x, y) :=
∂Pl−1

∂x
+
∂Ql−1

∂y
=

nl−1−1∑
i+j=0

cl−1
ij xiyj +

∞∑
i=nl−1

cl−1
i0 xi,

where

cl−1
ij =

{
(i+ 1)al−1

i+1,0 + b̄l−1
i1 , j = 0,

(j + 1)bl−1
i,j+1, j ≥ 1, 1 ≤ i+ j ≤ nl−1 − 1,

with b̄l−1
i1 = bl−1

i1 for 0 ≤ i ≤ nl−1 − 1 and b̄l−1
i1 = 0 for i ≥ nl−1.

Recursive manipulation as above applies to the condition Λ
l

and the equality (13), one gets

Pl =
∞∑
i=0

ali0x
i and Ql =

nl∑
i+j=0

blijx
iyj,

where ali0 =
i∑

s=0

cl−1
s+3,0di−s with di given in (53) for all i’s and blij = (j+2)bl−1

i,j+2 for 0 ≤ i+j ≤

nl. Further calculations via induction yield

(c1
00, c

1
10, c

1
20)T =


(c02, c12, c22)T , m = 3,

a1(c30, c40, · · · , cm−1,0)T + (c02, c12, c22)T , 4 ≤ m ≤ 6,

A1(c30, c40, c50, c60)T + (c02, c12, c22)T , m ≥ 7,

(54)

and for l = 2, 3, · · · ,
[

2[m
2

]−2

3

]
+
[
m+1

2

]
− 1,

(cl00, c
l
10, c

l
20)T =

l−1∑
i=1

(2i− 1)!!
l−i∏
j=0

Aj(c3,2i, c4,2i, · · · , c4(l−i)+2,2i)
T(55)

+ (2i− 1)!!(c0,2l, c1,2l, c2,2l)
T

+


l∏

j=0

Aj(c30, c40, · · · , c4l+2,0)T , 4l ≤ m− 3,

l−1∏
j=0

Ajal(c30, c40, · · · , cm−1,0)T , 4l ≥ m− 2,

where A0 is the identity matrix of order 3, A1 is the 3× 4 matrix

A1 =

 d1 d0 0 0
2d2 2d1 2d0 0
3d3 3d2 3d1 3d0

 ,

Aj’s are the (4j − 4)× 4j matrices

Aj =


4d4 4d3 4d2 · · · 0
5d5 5d4 5d3 · · · 0

...
...

... . . . ...
(4j − 1)d4j−1 (4j − 1)d4j−2 (4j − 1)d4j−3 · · · (4j − 1)d0


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for 2 ≤ j ≤ l, and al’s are the (4l − 4)× (m− 3) matrices

al =



4d4 4d3 4d2 · · · 0
...

...
... . . . ...

(m− 4)dm−4 (m− 4)dm−5 (m− 4)dm−6 · · · (m− 4)d0

(m− 3)dm−3 (m− 3)dm−4 (m− 3)dm−5 · · · (m− 3)d1
...

...
... . . . ...

(4l − 1)d4l−1 (4l − 1)d4l−2 (4l − 1)d4l−3 · · · (4l − 1)d4l−m+3


for l ≥ 2, and a1 = (a1

ij) is the 3× (m− 3) matrix with a1
ij = idi+1−j for i+ 1 ≥ j, and a1

ij = 0
for i + 1 < j. We remark that for compactness to notations, we have introduced cij = 0 for
i+ j ≥ m in (54)–(55).

By Theorem 1 and (12), one has for l = 1, 2, · · · ,
[

2[m
2

]−2

3

]
+
[
m+1

2

]
− 1,

(C l
0, C

l
1, C

l
11)T = R0(cl00, c

l
10, c

l
20)T(56)

with the matrix R0 given in (52). According to Theorem 3 and the definitions of C2i+j’s in (42),

one further has for 1 ≤ l ≤
[

2[m
2

]−2

3

]
+
[
m+1

2

]
− 1,

(C2l, C2l+1, C
l
11)T = Ul(C

l
0, C

l
1, C

l
11)T(57)

with the diagonal matrices of order 3

Ul = diag

 4i

i∏
j=1

(4j + 3)

,
4i

i∏
j=1

(4j + 5)

, 1

 .

Substituting (54) and (55) into (56) and (57) gives

(C2, C3, C
1
11)T =U1R0(c02, 0, 0)T(58)

for m = 3, and

(C2l, C2l+1, C
l
11)T =

l−1∑
i=1

(2i− 1)!!UlR0

l−i∏
j=0

Aj(c3,2i, c4,2i, · · · , c4(l−i)+2,2i)
T(59)

+ (2i− 1)!!UlR0(c0,2l, c1,2l, c2,2l)
T

+


UlR0

l∏
j=0

Aj(c30, c40, · · · , c4l+2,0)T , 4l ≤ m− 3,

UlR0

l−1∏
j=0

Ajal(c30, c40, · · · , cm−1,0)T , 4l ≥ m− 2

for m ≥ 4 and 1 ≤ l ≤
[

2[m
2

]−2

3

]
+
[
m+1

2

]
− 1, where the the summation

l−1∑
i=1

is null if l = 1, and

cij = 0 if i+ j ≥ m.
One can check easily from the formulas (51) and (58)–(59) that Cl’s and C l

11’s depend merely
on the parameters ci,2j with i + 2j ≤ m − 1. Set Em := {ci,2j : i + 2j ≤ m − 1}. Observe
that Em contains [m+1

2
][m+2

2
] elements. Set 3[m+1

2
] + 2[m

2
] − 4 = 3n + r with r ≤ 2 and n

nonnegative integers.
For m = 1, 2, it follows from (51) that the Jacobian matrices ∂(C0,··· ,Cm)

∂Em
are of full rank.
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For m ≥ 3, it follows from (51) and (57), together with Python programme that all Jacobian
matrices ∂G

∂Em
are of full rank withm ≤ 22, whereG = (C0, C1, · · · , C2n+r−1, C

0
11, C

1
11, · · · , Cn−1

11 ).
These together with Theorem 10 or Corollary 3 prove that the near-Hamiltonian system (50) can
have 2n+ r − 1 limit cycles.

This proves the theorem. �
We remark that Theorems 5 and 6 both have limitations on the degree m of the perturbed

polynomials. These have been used in calculations of the ranks of the Jacobian matrices, sup-
ported by two Python programs available in our GitHub repository: https://github.com/grass2stu
rdy/Rank. Theoretically, these calculations work by Python programmes for any m. But in
practice it depends on memory of computers.

5. CONCLUSIONS

A lot of papers studied the coefficients in the expansion of the first order Melnikov function
near a homoclinic loop with a nilpotent singularity in a near-Hamiltonian system. Based on the
existing results, Yang et al. [63] and Wei and Zhang [52] presented the coefficients of the terms
with degree less than 2 in the case of a nilpotent singularity of arbitrary order. Moreover, Yang
and Han [62] pushed further the relation between the coefficients of the terms with the same
order in the expansions inside or outside a cuspidal loop. The characteristics of the coefficients,
of the terms with degree greater than or equal to 2, were developed further and exhibited in
[52, 64] provided that the centre is elementary. If the centre of the unperturbed Hamiltonian
system is nilpotent, as well as the homoclinic loop approaches also to a nilpotent singularity,
the problem remains open. This paper tackles this problem.

The work in this paper presents the accurate expressions of the first k
2

coefficients in the
asymptotic expansion of the first order Melnikov function near a nilpotent centre of order k, and
characterizes its higher order coefficients, which are given in Theorems 1 and 3, respectively.
Based on these results, our primary motivation is to depict the features of the higher order
coefficients in the first order Melnikov function near a homoclinic loop to a nilpotent singularity
of arbitrary order, in virtual of the nilpotent centre of arbitrary order inside the loop that the
unperturbed Hamiltonian system has. The related results are given in Theorem 2. On account
of these established results, we further investigate the limit cycle bifurcations near either a
nilpotent centre or a homoclinic loop to a nilpotent singularity.

At last, we apply our results to two concrete systems, an (m+ 1)th order Liénard differential
system and anmth order near-Hamiltonian differential system with a hyperelliptic Hamiltonian,
for achieving more number of limit cycles, which are bifurcated from periodic orbits either near
a nilpotent centre or near a homoclinic loop to a nilpotent singularity.
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