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Abstract In this paper we study the factorizable braid monoid (also known as the merge-and-part
braid monoid) introduced by Easdown, East and FitzGerald in 2004. We find several presentations
of this monoid, and uncover an interesting connection with the singular braid monoid. This leads to
the definition of the flexible singular braid monoid, which consists of ‘flexible-vertex-isotopy’ classes of
singular braids. We conclude by defining and studying the pure factorizable braid monoid, the maximal
subgroups of which are (isomorphic to) quotients of the pure braid group.
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1. Introduction and notation

The factorizable braid monoid FBn (also known as the merge-and-part braid monoid
and denoted B̃) was introduced in [8] as a ‘braid analogue’ of Fn, the monoid of uniform
block bijections on an n-set [10,11]. By this we mean that FBn is a natural pre-image
of Fn in the same way that the braid group is a pre-image of the symmetric group. In [8]
it was shown that FBn belongs to a class of factorizable inverse monoids that embed
in the coset monoid of their group of units (see [8, 16] or the proof of Lemma 7.4 for
a description of the coset monoid). In this article we study FBn and another (singular)
braid analogue of Fn, by means of presentations. In § 2 we outline a method, described
in [9], for constructing factorizable inverse monoids and finding their presentations. Then
in § 3 we review the definition, and geometric interpretation, of FBn from [8]. In § 4 we
find a presentation of FBn from which we deduce, in § 5, the presentation of Fn discovered
by FitzGerald [10]. In § 6 we provide a second presentation of FBn which reflects more of
the symmetry possessed by FBn. This second presentation also highlights an interesting
connection with the singular braid monoid [3,4]. This leads to the definition of the flexible
singular braid monoid FSBn. In § 7 we find a presentation of FSBn and show that, despite
many similarities, the monoids FBn and FSBn are not isomorphic. In doing so, we will
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610 J. East

show that one of the more ‘peculiar’ relations in our presentation of FBn is not redundant.
In § 8 we define the pure factorizable braid monoid FPn. We study FPn by analysing
presentations of its maximal subgroups. Each of these subgroups is (isomorphic to) a
quotient of the pure braid group Pn, and we prove that these quotients are semidirect
products of free groups and free abelian groups, generalizing a well-known result of
Artin [2]. This leads to an algorithm for deciding whether two braids are merge-and-part
equivalent.

Without causing confusion, we will generally denote the identity of any monoid by 1.
Let M be a monoid. An equivalence relation ∼ on M is a congruence if ab ∼ cd whenever
a, b, c, d ∈ M with a ∼ c and b ∼ d. The quotient M/∼ of all ∼-classes is itself a monoid
under the inherited operation. If L is another monoid and φ : M → L a homomorphism,
then the kernel of φ is the congruence

ker(φ) = {(a, b) ∈ M × M | aφ = bφ}.

The Fundamental Homomorphism Theorem (for monoids) states that M/ ker(φ) is iso-
morphic to the image of φ. If G is a group, then a congruence ∼ on G is completely
determined by the ∼-class N of the identity 1 ∈ G. In this case, N is a normal subgroup
of G and the quotients G/∼ and G/N are precisely the same object. When referring to a
group homomorphism φ, we will sometimes use the definition of ker(φ) as a congruence,
and sometimes as a normal subgroup.

We now establish the notation we will be using for monoid presentations. Let X be a
set, and denote by X∗ the free monoid on X. If W ⊆ X∗, then W ∗ denotes the submonoid
of X∗ generated by W . For R ⊆ X∗ × X∗, let R� denote the smallest congruence on X∗

containing R. We say that a monoid M has monoid presentation 〈X|R〉 if M ∼= X∗/R� or,
equivalently, if there is an epimorphism f : X∗ → M with ker f = R�. In this case we say
that M has presentation 〈X|R〉 via f . An element (w1, w2) ∈ R is called a relation, and
is often written as w1 = w2. If (w1, w2) ∈ R� then we write w1 ∼R w2. Even though R

need not be symmetric, we will often use a phrase such as ‘suppose that (w1, w2) ∈ R’
to mean ‘suppose that either (w1, w2) ∈ R or (w2, w1) ∈ R’.

2. Factorizable inverse monoids

Throughout this article, a monoid of commuting idempotents is referred to as a semilat-
tice. The reason for this terminology is that if M is a monoid of commuting idempotents,
then we may define a partial order on M by

e � f if and only if ef = f

with respect to which each pair of elements e, f ∈ M have a least upper bound, namely
the product ef .

An inverse monoid M is said to be factorizable if M = EG where E = E(M) is
the semilattice of idempotents of M , and G = G(M) is the group of units of M . (For
more details regarding factorizable inverse monoids, see [6].) In this section we review a
method, outlined in [9], for constructing factorizable inverse monoids, and finding their
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presentations. Suppose that G is a group, and that E is a semilattice. Suppose also
that for each g ∈ G we have an automorphism ϕg : E → E : e �→ eg such that the map
ϕ : G → Aut(E) : g �→ ϕg is an anti-homomorphism. Then we may form the semidirect
product

E � G = E �ϕ G = {(e, g) | e ∈ E, g ∈ G}
with multiplication defined by

(e1, g1)(e2, g2) = (e1e
g1
2 , g1g2).

Suppose now that, for each e ∈ E, we are given a subgroup Ge of G such that G1 = {1}
and

gGeg
−1 = Geg , ∀e ∈ E, g ∈ G, (Ge1)

Ge ∨ Gf = Gef , ∀e, f ∈ E, (Ge2)

eg = e, ∀e ∈ E, g ∈ Ge. (Ge3)

Here, for subgroups H and H ′ of G we have used the notation H ∨ H ′ = 〈H ∪ H ′〉. We
may then define a congruence ∼ on E � G by

(e1, g1) ∼ (e2, g2) if and only if e1 = e2 and g1g
−1
2 ∈ Ge1 .

Thus, we may form the quotient (E�G)/∼. Denote the ∼-class of (e, g) ∈ E�G by [e, g],
and let [E, 1] = {[e, 1] | e ∈ E} and [1, G] = {[1, g] | g ∈ G}.

Theorem 2.1 (Easdown et al . [9]). The monoid (E�G)/∼ is a factorizable inverse
monoid with semilattice of idempotents [E, 1] ∼= E and group of units [1, G] ∼= G.

Suppose that E and G have monoid presentations 〈XE |RE〉 via λ, and 〈XG|RG〉 via µ,
respectively. We may assume that XE and XG are disjoint and that λ and µ are injective
when restricted to XE and XG, respectively. For each e ∈ E, g ∈ G, choose ê ∈ X∗

E ,
ĝ ∈ X∗

G such that êλ = e and ĝµ = g. Let

R� = {(yx, x̂λyµy) | x ∈ XE , y ∈ XG}.

Suppose that for each x ∈ XE we have a subset Sx ⊆ G such that Gxλ is generated, as
a submonoid, by Sx. Put

R∼ = {(xĝ, x) | x ∈ XE , g ∈ Sx}.

Theorem 2.2 (Easdown et al . [9]). The factorizable inverse monoid (E � G)/∼
has monoid presentation

〈XG ∪ XE |RG ∪ RE ∪ R� ∪ R∼〉

via ν : (XG ∪ XE)∗ → (E � G)/∼ defined by

xν =

{
[xλ, 1] if x ∈ XE ,

[1, xµ] if x ∈ XG.
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1 i n 1 i n
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Figure 1. The braids ςi (left) and ς−1
i (right) in B.

3. The factorizable braid monoid

We now review the construction of FBn described in [8]. Fix n, a positive integer, and
denote by n the set {1, . . . , n}. The braid group B = Bn is the group of homotopy classes
of geometric braids on n strings. For details regarding braids refer to [4]. Without causing
confusion, we will generally identify a braid with its homotopy class, although in § 7 it
will be convenient to draw a clear distinction. For i ∈ {1, . . . , n − 1} we denote by ςi
(respectively, ς−1

i ) the (homotopy class of the) braid in which the ith string crosses over
(respectively, under) the (i + 1)th, all other strings passing vertically downwards (see
Figure 1).

Let S = Sym(n) be the symmetric group on n. For β ∈ B we denote by β̄ ∈ S the
permutation associated to β so that β �→ β̄ is the natural epimorphism B → S under
which ς±1

i is mapped to the simple transposition si, which interchanges i and i + 1. The
kernel of this epimorphism is the pure braid group P = Pn = {β ∈ B | β̄ = 1}.

Let E = Eqn denote the set of all equivalence relations on n. Here we regard an
element of E as a subset of n × n satisfying reflexivity, symmetry and transitivity. The
join, E1 ∨ E2, of two equivalence relations E1, E2 ∈ E, is defined as the smallest equivalence
relation on n containing E1 ∪ E2, and E forms a semilattice under ∨.

For E ∈ E and β ∈ B we define

Eβ = {(i, j) | (i, j)β̄ ∈ E} = {(i, j)β̄−1 | (i, j) ∈ E},

where, for i, j ∈ n and π ∈ S, we have written (i, j)π for (iπ, jπ). It is easy to check that,
for each β ∈ B, the map ϕβ : E �→ Eβ is an automorphism of E, and that ϕ : β �→ ϕβ is
an anti-homomorphism B → Aut(E). Thus, we may form the semidirect product E � B

as above. For E ∈ E we let BE denote the subgroup of B generated by the set

{β−1ςiβ | (i, i + 1)β̄ ∈ E}.

Since this set is empty if E = 1 is the identity of E, we have B1 = {1}. In [8] it was
shown that these subgroups satisfy

βBEβ−1 = BEβ ∀E ∈ E, β ∈ B, (BE1)

BE ∨ BE0 = BE∨E0 ∀E , E0 ∈ E, (BE2)

Eβ = E ∀E ∈ E, β ∈ BE . (BE3)

As a result we may form the quotient (E � B)/∼, which we call the factorizable braid
monoid and denote by FBn.
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P Qand

Figure 2. The strings s (left) and t (right).

P = Q

Figure 3. The strings merging.

(1) (2) (3) (4) (5) (6) (7)

Figure 4. Possible configurations before and after merge-and-part.

Theorem 3.1 (Easdown et al . [8]). The factorizable braid monoid FBn is a fac-
torizable inverse monoid with semilattice of idempotents [E, 1] ∼= E and group of units
[1, B] ∼= B.

The following geometric interpretation of FBn was considered in [8]. Let s and t be
two strings descending from fixed points on an upper plane to connect to fixed points
on a lower plane (see Figure 2). We say that a homotopy causes s and t to merge and
part if, during the course of the homotopy, s and t come together just once at say P

and Q (see Figure 3), and then part, reconstituting as two strings made up of respective
upper and lower strands. See Figure 4 for a catalogue of the possible configurations in the
neighbourhood a moment before and after merge-and-part. Note that (1), (2), and (3)
can be interchanged using normal homotopy.

Let E ∈ E. We say that the ith and jth strings of a braid are E-related if and only if
(i, j) ∈ E . If β, γ ∈ B, then we say that β and γ are E-equivalent if there is a homotopy
from (a representative of) β to (a representative of) γ during which E-unrelated strings
never touch, and E-related strings are allowed to merge and part (one at a time, a finite
number of times).

Theorem 3.2 (Easdown et al . [8]). Let E , E0 ∈ E and β, β0 ∈ B. Then (E , β) ∼
(E0, β0) if and only if E = E0 and β and β0 are E-equivalent.

For E ∈ E, we denote by [β]E the E-equivalence class of β ∈ B. We now define the
merge-and-part braid monoid

B̃ = B̃n = {[β]E | E ∈ E, β ∈ B}
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with multiplication

[β1]E1 [β2]E2 = [β1β2]E1∨Eβ1
2

.

It is easy to check that this multiplication is well defined and associative, and that [1]1
is an identity for B̃. Let [1]E = {[1]E | E ∈ E} and [B]1 = {[β]1 | β ∈ B}. The map
E � B → B̃ : (E , β) �→ [β]E is clearly an epimorphism whose kernel, by Theorem 3.2,
is ∼. We have shown the following.

Theorem 3.3. The monoids FBn and B̃n are isomorphic via [E , β] �→ [β]E . Thus, B̃n

is a factorizable inverse monoid with semilattice of idempotents [1]E ∼= E and group of
units [B]1 ∼= B.

4. A presentation of FBn

In this section we will give a presentation of FBn. We first gather the information required
to apply Theorem 2.2. Let XB = {σ±1

1 , . . . , σ±1
n−1}.

Theorem 4.1 (Artin [1]). The braid group B has monoid presentation 〈XB |RB〉
via

φB : X∗
B → B : σ±1

i �→ ς±1
i ,

where RB is the set of relations

σ±1
i σ∓1

i = 1 for all i, (F)

σiσj = σjσi if |i − j| > 1, (B1)

σiσjσi = σjσiσj if |i − j| = 1. (B2)

We choose a set of words {β̂ | β ∈ B} ⊆ X∗
B such that β̂φB = β for all β ∈ B, and

for convenience we will denote the congruence ∼RB
by ∼B . If w = σε1

i1
· · ·σεk

ik
∈ X∗

B , we
will denote by w−1 the word σ−εk

ik
· · ·σ−ε1

i1
∈ X∗

B so that ww−1 ∼B w−1w ∼B 1. We also
define a homomorphism X∗

B → S : w �→ w̄ = wφB .
For 1 � i < j � n let Eij ∈ E denote the equivalence {(r, s) | r = s or {r, s} = {i, j}}

and put XE = {εij | 1 � i < j � n}.

Theorem 4.2 (FitzGerald [10]). The semilattice E has monoid presentation
〈XE |RE〉 via

φE : X∗
E → E : εij �→ Eij ,

where RE is the set of relations

ε2
ij = εij for all i, j, (Eq1)

εijεkl = εklεij for all i, j, k, l, (Eq2)

εijεjk = εjkεik = εikεij if i < j < k. (Eq3)
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1 i nj
···

···

··· ···

Figure 5. The braid ςij ∈ B.

We choose a set of words {Ê | E ∈ E} ⊆ X∗
E such that ÊφE = E for all E ∈ E. Suppose

that 1 � i < j � n and 1 � r � n − 1. It is immediate from the definitions that

Eς±1
r

ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ei−1,j if r = i − 1,

Ei+1,j if r = i < j − 1,

Ei,j−1 if r = j − 1 > i,

Ei,j+1 if r = j,

Eij otherwise.

For 1 � i < j � n we use the notation Eji = Eij and εji = εij . We see then that Eς±1
r

ij =
Eisr,jsr

. Thus, we may take R� to be the set of relations

σ±1
r εij = εisr,jsr

σ±1
r for each 1 � i < j � n and 1 � r � n − 1. (�)

Before moving on, we find a different expression for the generators of the subgroups BE .
For 1 � i < j � n, let

σij = (σ−1
j−1 · · ·σ−1

i+1)σi(σi+1 · · ·σj−1) ∈ X∗
B

and put ςij = σijφB ∈ B (see Figure 5). We assume that ς̂ij = σij . Recall that P = Pn

denotes the pure braid group.

Lemma 4.3. If E ∈ E, then BE is generated by the set {β−1ςijβ | β ∈ P, (i, j) ∈ E}.

Proof. Let U = {β−1ςiβ | (i, i + 1)β̄ ∈ E} so that (by definition) BE = 〈U〉, and let V

be the set in the statement of the lemma. It is clear that V ⊆ U . To show the reverse
inclusion, suppose that u = γ−1ςiγ ∈ U , where (i, i + 1)γ̄ = (j, k) ∈ E . Replacing γ by ςiγ

(if necessary) we may assume that j < k. Put

α =

⎧⎪⎨⎪⎩
ςj−1 · · · ςiςj · · · ςi+1 if i < j,

ςj+1 · · · ςiςj · · · ςi−1 if j < i,

1 if i = j.

It can easily be checked that α−1ςjα = ςi, and (j, j + 1)ᾱ = (i, i + 1). Putting γ1 = αγ,
we then have u = γ−1

1 ςjγ1, and (j, j + 1)γ̄1 = (j, k). Now put γ2 = ς−1
k−1 · · · ς−1

j+1γ1 so that
u = γ−1

2 ςjkγ2 and (j, k)γ̄2 = (j, k). Remove the jth and kth strings from γ−1
2 and put

them back in such a way that they pass straight down and always in front of all the other
strings, and call the resulting braid δ. From the construction, it is clear that δ commutes
with ςjk. But then if we put γ3 = δγ2 ∈ P , we see that u = γ−1

3 ςjkγ3, completing the
proof. �
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As a result of this lemma, we may take R∼ to be the set of relations

εij β̂
−1σij β̂ = εij for all 1 � i < j � n and β ∈ P. (∼)

The following is now a direct consequence of Theorem 2.2.

Lemma 4.4. The factorizable braid monoid FBn has monoid presentation

〈XB ∪ XE |RB ∪ RE ∪ R� ∪ R∼〉

via σ±1
i �→ [1, ς±1

i ], εij �→ [Eij , 1].

We will now work towards simplifying this presentation. As a first step, we will remove
a number of the generators. With this in mind, let e = ε12. By (�) and (F) we see that,
for any 1 � i < j � n, the relation

εij = (σ−1
i−1 · · ·σ−1

1 )(σ−1
j−1 · · ·σ−1

2 )e(σ2 · · ·σj−1)(σ1 · · ·σi−1) (∗)

is in (RB ∪ RE ∪ R� ∪ R∼)�. So we remove the generators εij , replacing their every
occurrence in the relations by the word on the right-hand side of (∗), which we denote
by eij (noting in particular that e12 = e). We denote the resulting relations by (Eq1)′–
(Eq3)′, (�)′, and (∼)′. The entire sets of relations which have been modified in this way
will be denoted by R′

E , R′
�

, and R′
∼.

Corollary 4.5. The factorizable braid monoid FBn has monoid presentation

〈XB ∪ {e}|RB ∪ R′
E ∪ R′

�
∪ R′

∼〉

via σ±1
i �→ [1, ς±1

i ], e �→ [E12, 1].

Lemma 4.6. The following relations are in (RB ∪ R′
E ∪ R′

�
∪ R′

∼)�:

e2 = e = eσ1, (E1)

eσi = σie if i �= 2, (E2)

eσ2eσ2 = σ2eσ2e, (E3)

eσ2σ3σ1σ2eσ2σ3σ1σ2 = σ2σ3σ1σ2eσ2σ3σ1σ2e, (E4)

eσ2
2 = σ2

2e. (E5)

Proof. Now (E1) is part of (Eq1)′ and (∼)′, while (E2) is part of (�)′. For the
remainder of this proof, let ≈ denote the congruence (RB ∪ R′

E ∪ R′
�

∪ R′
∼)�. To show

that (E3) holds, note that by (�)′ and (Eq2)′ we have

eσ2eσ2 = e12σ2e12σ2 ≈ σ2e13e12σ2 ≈ σ2e12e13σ2 ≈ σ2e12σ2e12 = σ2eσ2e.

Next put w = σ2σ3σ1σ2. Observe that (1, 2, 3, 4)w̄ = (3, 4, 1, 2) so that by (�)′ we have

e12w ≈ we34 and e34w ≈ we12.
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But then (E4) holds since, by (Eq2)′ and the observation, we have

ewew = e12we12w ≈ we34e12w ≈ we12e34w ≈ we12we12 = wewe.

For (E5), note that by (�)′ we have

eσ2
2 = e12σ

2
2 ≈ σ2e13σ2 ≈ σ2

2e12 = σ2
2e.

This completes the proof. �

Denote by R the set of relations (F), (B1), (B2), and (E1)–(E5). Our aim is to show
that FBn has monoid presentation 〈XB ∪ {e}|R〉. By Lemma 4.6, we may add relations
(E1)–(E5) to the presentation stated in Corollary 4.5. We will show that relations (Eq1)′–
(Eq3)′, (�)′ and (∼)′ may be eliminated.

For 1 � i < j � n let

αij = (σj−1 · · ·σi+1)σ2
i (σ−1

i+1 · · ·σ−1
j−1),

and put A = {α±1
ij | 1 � i < j � n}. The following result is well known. For proofs see,

for example, [2,4].

Theorem 4.7 (Artin [2]). If w ∈ X∗
B and wφB ∈ P , then w ∼B w′ for some w′ ∈ A∗.

Lemma 4.8. If w ∈ X∗
B and wφB ∈ P , then we ∼R ew.

Proof. Suppose that 1 � i < j � n. If i � 2, then by relations (F), (E2) and (E5) we
have αije ∼R eαij . If i = 1 and j = 2, then we have α12e ∼R eα12 by (E2). If i = 1 and
j > 2, then it is easy to check that α1j ∼B σ−1

1 α2jσ1, so that α1je ∼R eα1j by (E2),
(F), and the first calculation. Now, if w ∈ X∗

B and wφB ∈ P , then by Theorem 4.7 we
have w ∼B w′ for some w′ ∈ A∗. The result now follows by induction on the number of
generators from A involved in w′. �

For 1 � i < j � n let wij = (σ2 · · ·σj−1)(σ1 · · ·σi−1) so that eij = w−1
ij ewij .

Corollary 4.9. If 1 � i < j � n and w ∈ X∗
B with wφB ∈ P , then weij ∼R eijw.

Proof. Now (wijww−1
ij )φB = (wijφB)(wφB)(wijφB)−1 ∈ P , so that, by relation (F)

and Lemma 4.8, we have

weij ∼R w−1
ij (wijww−1

ij )ewij ∼R w−1
ij e(wijww−1

ij )wij ∼R eijw,

completing the proof. �

Lemma 4.10. Suppose that 1 � i < j � n, r ∈ {1, . . . , n − 1}, and η ∈ {±1}. Then

ση
r eijσ

−η
r ∼R eisr,jsr .
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Proof. First note that if ση
r eijσ

−η
r ∼R eisr,jsr

, then we also have

σ−η
r eijσ

η
r ∼R σ−2η

r ση
r eijσ

−η
r σ2η

r ∼R σ−2η
r eisr,jsr

σ2η
r ∼R eisr,jsr

by (F) and Corollary 4.9. Thus, it suffices to prove the lemma for any choice of η.
If r = i − 1 or r = j − 1 > i, we use η = 1, while if r = i < j − 1 or r = j, we use
η = −1, and the result follows trivially. Suppose now that either r �∈ {i − 1, i, j − 1, j} or
r = i = j − 1. It is an easy exercise, using the braid relations, to show that

wijσr ∼B

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σr+2wij if r < i − 1,

σr+1wij if i < r < j − 1,

σrwij if j < r,

σ1wij if r = i = j − 1.

It now follows that σ−1
r eijσr = σ−1

r w−1
ij ewijσr ∼R eij using (F) and (E2). �

Corollary 4.11. If w ∈ X∗
B and 1 � i < j � n, then w−1eijw ∼R eiw̄,jw̄.

Proof. This follows from Lemma 4.10 and induction on the length of w. �

Lemma 4.12. If 1 � i < j � n, then e2
ij ∼R eij .

Proof. This follows immediately from (F) and (E1). �

Lemma 4.13. If 1 � i < j � n and 1 � k < l � n, then eijekl ∼R ekleij .

Proof. We first show that e12e23 ∼R e23e12 and e12e34 ∼R e34e12. For the former we
have

e12e23 = eσ−1
1 σ−1

2 eσ2σ1

∼R σ−1
1 eσ−2

2 σ2eσ2σ1 by (E2) and (F)

∼R σ−1
1 σ−2

2 eσ2eσ2σ1 by (F) and (E5)

∼R σ−1
1 σ−2

2 σ2eσ2eσ1 by (E3)

∼R σ−1
1 σ−1

2 eσ2σ1e by (F) and (E2)

= e23e12.

For the latter, note that w−2
34 φB ∈ P so that

e12e34 = ew−1
34 ew34

∼R ew−2
34 w34ew34 by (F)

∼R w−2
34 ew34ew34 by Lemma 4.8

∼R w−2
34 w34ew34e by (E4)

∼R w−1
34 ew34e by (F)

= e34e12.
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Returning to the general case, suppose first that one of k, l (say k) is equal to one of i, j

(say j). Choose w ∈ X∗
B such that (1, 2, 3)w̄ = (i, j, l). By Corollary 4.11, (F) and the

first calculation, we then have

eijejl = e1w̄,2w̄e2w̄,3w̄ ∼R w−1e12ww−1e23w ∼R w−1e12e23w ∼R w−1e23e12w ∼R ejleij .

Finally, if i, j, k and l are all distinct, then we choose w ∈ X∗
B such that (1, 2, 3, 4)w̄ =

(i, j, k, l). We use the same trick, and the second calculation, to show that eijekl ∼R ekleij .
�

Lemma 4.14. If 1 � i < j < k � n, then eijejk ∼R ejkeik ∼R eikeij .

Proof. As in the proof of the previous lemma, we need only show that the lemma
holds when (i, j, k) = (1, 2, 3). Now

e12e23 = eσ−1
1 σ−1

2 eσ2σ1

∼R eσ−2
2 σ2eσ2σ1 by (E1) and (F)

∼R σ−2
2 eσ2eσ2σ1 by (E5) and (F)

∼R σ−2
2 σ2eσ2eσ1 by (E3)

∼R σ−1
2 eσ2e by (F) and (E1)

= e13e12.

Next observe that

e23σ2 = σ−1
1 σ−1

2 eσ2σ1σ2

∼R σ−1
1 σ−1

2 eσ1σ2σ1 by (B2)

∼R σ−1
1 σ−1

2 eσ2σ1 by (E1)

= e23.

But then

e23e13 = e23σ
−1
2 e12σ2

∼R e23e12σ2 by the observation and (F)

∼R e12e23σ2 by Lemma 4.13

∼R e12e23 by the observation again

and we are done. �

Lemma 4.15. If 1 � i < j � n and β ∈ P , then eij β̂
−1σij β̂ ∼R eij .
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Proof. Now, it may easily be checked that σij ∼B w−1
ij σ1wij for each 1 � i < j � n.

So if β ∈ P and 1 � i < j � n, we then have

eij β̂
−1σij β̂ ∼R β̂−1eijσij β̂ by Corollary 4.9

∼R β̂−1w−1
ij ewijw

−1
ij σ1wij β̂

∼R β̂−1w−1
ij eσ1wij β̂ by (F)

∼R β̂−1w−1
ij ewij β̂ by (E1)

= β̂−1eij β̂

∼R eij by Corollary 4.9 and (F)

and the lemma is proved. �

Lemmas 4.10 and 4.12–4.15 show that relations R′
E ∪ R′

�
∪ R′

∼ are all implied by R.
Thus, we have the following.

Theorem 4.16. The factorizable braid monoid FBn has monoid presentation〈
XB ∪ {e}|R

〉
via σ±1

i �→ [1, ς±1
i ], e �→ [E12, 1].

5. The monoid of uniform block bijections

For E ∈ E we denote by n/E the quotient of n by E , which is the set of E-classes of n. A
block bijection on n is a bijection θ : n/E → n/E ′ where E , E ′ ∈ E. The set of all block
bijections on n forms an inverse monoid, denoted I∗

n, called the dual symmetric inverse
monoid (see [11] for details).

A block bijection θ : n/E → n/E ′ is called uniform if |A| = |Aθ| for every E-class
A ∈ n/E . The set of all uniform block bijections, denoted Fn, is the largest factorizable
inverse submonoid of I∗

n (see [10,11]). We identify n/1 with n, where here 1 represents
the identity of E, and in the same way we may regard a permutation π : n → n as a
block bijection π : n/1 → n/1. For E ∈ E denote by idE : n/E → n/E the identity map
on n/E . We have E(Fn) = {idE | E ∈ E} ∼= E since idE idE′ = idE∨E′ for each E , E ′ ∈ E,
and G(Fn) = S. Thus, every element θ ∈ Fn has a factorization

θ = idE π

for some E ∈ E and some π ∈ S. In this factorization, E is uniquely determined, but π

need not be. In fact, we have idE π = idE τ if and only if πτ−1 ∈ SE , where SE is the
subgroup of S defined by

SE = {π ∈ S | (i, iπ) ∈ E , ∀i ∈ n}.

The subgroup SE is generated by the set {tij | 1 � i < j � n, (i, j) ∈ E}, where tij
denotes the transposition which interchanges i and j. As an application of Theorem 4.16
we will provide an alternative proof of the presentation of Fn given by FitzGerald [10].

https://doi.org/10.1017/S0013091504001452 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001452


The factorizable braid monoid 621

Theorem 5.1 (FitzGerald [10]). The monoid Fn has monoid presentation 〈XF |RF 〉,
where XF = {σ1, . . . , σn−1, e} and RF is the set of relations (B1), (B2), (E1)–(E4), and

σ2
i = 1 for all i. (S)

Proof. Define Θ : (XB ∪ {e})∗ → Fn by σ±1
i Θ = si for each i, and eΘ = idE12 . Then Θ

is an epimorphism since Fn is generated by the si and idEij = eijΘ. Let ∼S be the
congruence on (XB ∪ {e})∗ generated by R together with relations (S). It is easy to check
that w1Θ = w2Θ for all (w1, w2) ∈ R and, since s2

i = 1 for each i, we have ∼S ⊆ ker Θ.
To show the reverse inclusion, suppose that w1, w2 ∈ (XB ∪ {e})∗ and w1Θ = w2Θ. We
have

w1 ∼R Ê1β̂1 and w2 ∼R Ê2β̂2

for some E1, E2 ∈ E and β1, β2 ∈ B. Put π1 = β̄1 and π2 = β̄2. Then

idE1 π1 = w1Θ = w2Θ = idE2 π2.

Thus, E1 = E2 and π1π
−1
2 ∈ SE1 , so that Ê1 = Ê2 and

π1π
−1
2 = ti1j1 · · · tikjk

for some k ∈ N, and some i1, . . . , ik, j1, . . . , jk ∈ n with is < js and (is, js) ∈ E1 for each
s ∈ k. But then

β̄1 = π1 = ti1j1 · · · tikjk
π2 = ςi1j1 · · · ςikjk

β2

so that β1 = ςi1j1 · · · ςikjk
β2γ for some γ ∈ P . Now, by Theorem 4.7, we have

γ̂ ∼B α±1
p1q1

· · ·α±1
phqh

for some h ∈ N, and p1, . . . , ph, q1, . . . , qh ∈ n with ps < qs for each s ∈ h, and so

w1 ∼S Ê1β̂1

∼S Ê1σi1j1 · · ·σikjk
β̂2α

±1
p1q1

· · ·α±1
phqh

∼S Ê1β̂2α
±1
p1q1

· · ·α±1
phqh

by Lemma 4.15

∼S Ê1β̂2 by (S)

= Ê2β̂2

∼S w2

so that ker Θ ⊆ ∼S . Thus, kerΘ = ∼S and so Fn
∼= (XB ∪ {e})∗/∼S . It finally remains

to observe, by rewriting the presentation using (S), that (XB ∪ {e})∗/∼S
∼= X∗

F /R�
F . �

Remark 5.2. Since Fn itself is a factorizable inverse monoid, an approach similar to
that used in § 4 may be used to obtain Theorem 5.1 directly.
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6. A second presentation of FBn

While the presentation of FBn we derived in § 4 was economical in terms of the number
of generators involved, the relations do not display a great deal of symmetry. The aim
of this section will be to introduce a number of new generators, thereby obtaining a
presentation which reflects the symmetry possessed by FBn. This presentation will also
highlight an interesting connection between FBn and SBn, the singular braid monoid
(introduced in [3,5]). We will explore this connection in the next section.

We begin with the presentation 〈XB ∪ {e}|R〉 of FBn obtained in Theorem 4.16. We
now rename e = e1, and add generators e2, . . . , en−1 to the presentation along with rela-
tions

ei = (σ−1
i−1 · · ·σ−1

1 )(σ−1
i · · ·σ−1

2 )e1(σ2 · · ·σi)(σ1 · · ·σi−1) for all i, (D)

which define them in terms of the original generators. In fact, in the notation of § 4, we
have ei = ei,i+1. So, by Corollary 4.9, and Lemmas 4.10, 4.12, 4.13 and 4.15, the relations

e2
i = ei = eiσi = σiei for all i, (E1)′

eiej = ejei for all i, j, (E2)′

eiσj = σjei if |i − j| > 1, (E3)′

eiσjσi = σjσiej if |i − j| = 1, (E4)′

eiσ
2
j = σ2

j ei if |i − j| = 1 (E5)′

follow from R. Thus, we add relations (E1)′–(E5)′ to the presentation. Now relations (E1),
(E2) and (E5) may clearly be removed since they are part of relations (E1)′, (E3)′

and (E5)′. Next we will show that relations (E3), (E4), and (D) may also be removed.
Put Y = XB ∪ {e1, . . . , en−1} and denote by R′ the set of relations (F), (B1), (B2) and
(E1)′–(E5)′.

Lemma 6.1. We have e1σ2e1σ2 ∼R′ σ2e1σ2e1.

Proof. Observe first that if 1 � i, j � n − 1 and |i − j| = 1, then by (F) and (E4)′ we
have

σiejσ
−1
i ∼R′ σ−1

j σjσiejσ
−1
i ∼R′ σ−1

j eiσjσiσ
−1
i ∼R′ σ−1

j eiσj .

But then

e1σ2e1σ2 ∼R′ e1σ2e1σ
−1
2 σ2

2 by (F)

∼R′ e1(σ−1
1 e2σ1σ

2
2) by the observation

∼R′ (σ−1
1 e2σ1σ

2
2)e1 by (E1)′, (F), (E2)′ and (E5)′

∼R′ σ2e1σ
−1
2 σ2

2e1 by the observation again

∼R′ σ2e1σ2e1 by (F)

and we are done. �

Lemma 6.2. We have e1we1w ∼R′ we1we1, where w = σ2σ3σ1σ2.
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Proof. First observe that by (B1) and (E4)′ we have

e1w = e1σ2σ3σ1σ2 ∼R′ e1σ2σ1σ3σ2 ∼R′ σ2σ1e2σ3σ2

∼R′ σ2σ1σ3σ2e3 ∼R′ σ2σ3σ1σ2e3 = we3,

By a similar calculation we also have e3w ∼R′ we1. But then by (E2)′ and these obser-
vations we have

e1we1w ∼R′ we3e1w ∼R′ we1e3w ∼R′ we1we1,

completing the proof. �

Lemma 6.3. If 1 � i � n − 1, then

ei ∼R′ (σ−1
i−1 · · ·σ−1

1 )(σ−1
i · · ·σ−1

2 )e1(σ2 · · ·σi)(σ1 · · ·σi−1).

Proof. We prove the lemma by induction on i. If i = 1, then there is nothing to prove,
so suppose that the lemma holds for some 1 � i � n − 2. We then have

ei+1 ∼R′ σ−1
i σ−1

i+1σi+1σiei+1 by (F)

∼R′ σ−1
i σ−1

i+1eiσi+1σi by (E4)′

∼R′ σ−1
i σ−1

i+1(σ
−1
i−1 · · ·σ−1

1 )(σ−1
i · · ·σ−1

2 )e1(σ2 · · ·σi)(σ1 · · ·σi−1)σi+1σi

∼R′ σ−1
i (σ−1

i−1 · · ·σ−1
1 )σ−1

i+1(σ
−1
i · · ·σ−1

2 )e1(σ2 · · ·σi)σi+1(σ1 · · ·σi−1)σi by (B1),
and (F)

and we are done. �

The last three lemmas have shown that relations (E3), (E4) and (D) are implied by R′.
Thus, we have the following.

Theorem 6.4. The factorizable braid monoid FBn has monoid presentation 〈Y |R′〉
via σ±1

i �→ [1, ς±1
i ], ei �→ [Ei,i+1, 1].

Remark 6.5. We may also derive a second presentation of Fn from the presentation
of FBn given in Theorem 6.4. First we add the relations

σ2
i = 1 for all i (S)

to the presentation 〈Y |R′〉 to obtain, by the same method as in the proof of Theorem 5.1,
an intermediate presentation of Fn. This presentation then simplifies to 〈X ′

F |R′
F 〉, where

X ′
F = {σ1, . . . , σn−1, e1, . . . , en−1} and R′

F is the set of relations (B1), (B2), (E1)′–(E4)′,
and (S).
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··· ···

1 i n

Figure 6. The singular braid τi ∈ SBn.

7. Flexible singular braids and relation (E5)′

A singular braid is a collection of strings, much like a braid, with the exception that there
may exist a finite number of double points (or singular points) where a pair of strings
intersect. Let SBn denote the set of all singular braids with n strings. The concatenation
of two singular braids β, γ ∈ SBn is the singular braid βγ obtained by joining the ‘bottom’
of β to the ‘top’ of γ. Thus, SBn is a groupoid under concatenation. The singular braid
monoid, denoted SBn, is the monoid of rigid-vertex-isotopy classes of singular braids
on n strings. (For more details on singular braids, see [3,4].) In this section it will be
useful to draw a clear distinction between a singular braid β ∈ SBn and its rigid-vertex-
isotopy-class which we will denote by [β] ∈ SBn. The singular braid monoid is generated
by [ς±1

1 ], . . . , [ς±1
n−1] together with [τ1], . . . , [τn−1]. The singular braid τi ∈ SBn is pictured

in Figure 6.
The following was first proved in [4] (see also [3,13]).

Theorem 7.1 (Birman [4]). The singular braid monoid SBn has monoid presenta-
tion 〈Y |RSB〉 via

φSB : Y ∗ → SBn :

{
σ±1

i �→ [ς±1
i ]

ei �→ [τi]

where RSB is the set of relations (F), (B1), (B2), and

eiσi = σiei for all i, (SB1)

eiej = ejei if |i − j| > 1, (SB2)

eiσj = σjei if |i − j| > 1, (SB3)

eiσjσi = σjσiej if |i − j| = 1. (SB4)

Notice that relations (SB1)–(SB4) are part of relations (E1)′–(E4)′, so that, in partic-
ular, FBn is (isomorphic to) a quotient of SBn. If β, γ ∈ SBn are singular braids, then
we write:

(i) β �(i) γ if β and γ are equivalent under rigid-vertex-isotopy;

(ii) β �(ii) γ if β and γ are identical except for a neighbourhood which contains any of
the fragments catalogued in Figure 7; or

(iii) β �(iii) γ if β and γ are identical except for a neighbourhood which contains any of
the fragments catalogued in Figure 8.
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Figure 7. Move (ii).

Figure 8. Move (iii).

Figure 9. An intermediate triple singular point created during move (iii).

Remark 7.2. Move (ii) can be thought of as allowing a singular point to ‘swallow
up’ or ‘produce’ another twist or singular point directly above or below it, involving
the same two strings. Move (iii) can be achieved by allowing a triple singular point (see
Figure 9) to be momentarily created and then destroyed, as the strings pass from one of
the configurations of Figure 8 to another.

If β, γ ∈ SBn are singular braids, then we say that β and γ are flexible-vertex-isotopic,
and write β � γ if there is a sequence of singular braids β = β0, β1, . . . , βk = γ such that,
for each j, we have either βj �(i) βj+1, βj �(ii) βj+1, or βj �(iii) βj+1. We denote the �-
class of a singular braid β ∈ SBn by [β]� . It is clear that � is a (groupoid) congruence
on SBn, and that β(γδ) � (βγ)δ and 1β � β1 � β for all β, γ, δ ∈ SBn. Thus, we may
form the quotient monoid SBn/� = {[β]� | β ∈ SBn}, which we call the flexible singular
braid monoid and denote by FSBn.

Theorem 7.3. The flexible singular braid monoid FSBn has monoid presentation
〈Y |R′′〉 via

Φ : σ±1
i �→ [ς±1

i ]� , ei �→ [τi]� ,

where R′′ is the set of relations (F), (B1), (B2) and (E1)′–(E4)′.

Proof. Now Φ = φSBν : Y ∗ → FSBn, where ν : SBn → FSBn is the natural map
[β] �→ [β]� . So Φ is an epimorphism and, since w1Φ = w2Φ for each (w1, w2) ∈ R′′,
as may easily be checked, we have ∼R′′ ⊆ ker Φ. To show the reverse inclusion, suppose
that w1, w2 ∈ Y ∗ such that w1Φ = w2Φ. Choose β, γ ∈ SBn such that [β] = w1φSB and
[γ] = w2φSB. We then have β � γ, and we must show that w1 ∼R′′ w2. By induction it
suffices to assume that β �(i) γ, β �(ii) γ or β �(iii) γ. If β �(i) γ, then w1 ∼R′′ w2, using
the singular braid relations RSB ⊆ R′′. Suppose next that β �(ii) γ. There then exists
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{ }
Figure 10. The relation ς2

i τi+1 � τi+1ς
2
i does not appear to hold in FSBn.

1 � i � n − 1 such that w1 = wuw′ and w2 = wvw′ for some w, w′ ∈ Y ∗ and some

u, v ∈ {σ±1
i ei, eiσ

±1
i , e2

i , ei}.

But then we have w1 ∼R′′ w2 by (E1)′ and (F). Finally, suppose that β �(iii) γ. There
then exist 1 � i, j � n−1 with |i− j| = 1 such that w1 = wuw′ and w2 = wvw′ for some
w, w′ ∈ Y ∗ and some

u, v ∈ {eiej , ejei, eiσ
±1
j ei, ejσ

±1
i ej}.

The proof will be complete if we can show that all of the words in this set are R′′-
equivalent. Now eiej ∼R′′ ejei by (E2)′, while if {k, l} = {i, j}, then

ekσ±1
l ek ∼R′′ σ±1

l σ∓1
l ekσ±1

l ek by (F)

∼R′′ σ±1
l σ±1

k elσ
∓1
k ek by the observation in the proof of Lemma 6.1

∼R′′ σ±1
l σ±1

k elek by (E1)′ and (F)

∼R′′ elek by several applications of (E1)′, (E2)′ and (F),

completing the proof. �

Since the presentation of FSBn in Theorem 7.3 differs from the presentation of FBn

in Theorem 6.4 only by the absence of relation (E5)′, it is natural to wonder whether
in fact FSBn and FBn are isomorphic. The existence of such an isomorphism would be
guaranteed if relation (E5)′ was a consequence of relations R′′, which, by Theorem 7.3,
would be equivalent to knowing that τiς

2
j � ς2

j τi for each 1 � i, j � n−1 with |i− j| = 1.
Figure 10 gives a good indication that this relation ‘ought not’ to hold, and Lemma 7.4,
below, proves that it does not.

Lemma 7.4. Suppose that 1 � i, j � n − 1 and |i − j| = 1. Then eiσ
2
j �∼R′′ σ2

j ei.

Proof. Let C(B) be the set of all cosets of all subgroups of B = Bn. If H and K are
subgroups of B and β, γ ∈ B, then the product of the cosets Hβ and Kγ is defined to
be

(Hβ) ∗ (Kγ) = (H ∨ (βKβ−1))βγ.

This product turns C(B) into a (factorizable inverse) monoid known as the coset
monoid of the braid group (for more details see [8, 16]). We define a homomorphism
Ψ : Y ∗ → C(B) by

σ±1
i Ψ = {1}ς±1

i and eiΨ = 〈ςi〉 for each i.
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One may easily check that w1Ψ = w2Ψ for each (w1, w2) ∈ R′′ so that ∼R′′ ⊆ ker Ψ . Sup-
pose now that there exist 1 � i, j � n − 1 with |i − j| = 1 such that eiσ

2
j ∼R′′ σ2

j ei. We
must then have the coset equality

{ςm
i ς2

j | m ∈ Z} = 〈ςi〉ς2
j = (eiσ

2
j )Ψ = (σ2

j ei)Ψ = ς2
j 〈ςi〉 = {ς2

j ςm
i | m ∈ Z}.

In particular we must have ςiς
2
j = ς2

j ςm
i for some m ∈ Z, and so σiσ

2
j ∼B σ2

j σm
i . But since

two ∼B-equivalent words over XB have the same exponent sum, we must have m = 1
so that σiσ

2
j ∼B σ2

j σi. But then we must be able to transform σiσ
2
j into σ2

j σi using only
relations (B1) and (B2) (see, for example, [12]). But this is clearly impossible, and we
have the required contradiction. �

This lemma shows that the map FSBn → FBn : [ς±1
i ]� �→ [1, ς±1

i ], [τi]� �→ [Ei,i+1, 1]
is not an isomorphism. We now work towards showing that no isomorphism exists
from FSBn to FBn. We first state a well-known result concerning automorphisms of B.
For β ∈ B, we denote by χβ ∈ Aut(B) the inner automorphism defined by γχβ = β−1γβ

for all γ ∈ B. We also let ι ∈ Aut(B) be the automorphism of B determined by ςiι = ς−1
i

for each i.

Theorem 7.5 (Dyer and Grossman [7]). Suppose that ρ ∈ Aut(B). Then

(i) ρ = χβ for some β ∈ B;

(ii) ρ = ι; or

(iii) ρ = χβι for some β ∈ B.

Lemma 7.6. Suppose that ρ ∈ Aut(B). There then exists ρ̃ ∈ Aut(FSBn) such that
[γ]� ρ̃ = [γρ]� for all γ ∈ B.

Proof. Suppose first that ρ = χβ for some β ∈ B. Then we may take ρ̃ to be the
automorphism of FSBn defined by [γ]� ρ̃ = [β−1γβ]� for all γ ∈ FSBn. Suppose next
that ρ = ι. Then we define ρ̃ : FSBn → FSBn by [ς±1

i ]� ρ̃ = [ς∓1
i ]� and [τi]� ρ̃ = [τi]�

for each i. One may easily check, with the aid of Theorem 7.3, that ρ̃ is a well-defined
homomorphism, which is clearly an involution and hence an automorphism. The result
now follows from Theorem 7.5. �

Corollary 7.7. If the monoids FSBn and FBn are isomorphic, then there is an iso-
morphism φ : FSBn → FBn such that [β]�φ = [1, β] for all β ∈ B.

Proof. Suppose that ψ : FSBn → FBn is an isomorphism. Since [β]�ψ is invertible
for all β ∈ B, we must have [β]�ψ = [1, βρ] for some βρ ∈ B. But then ρ : β �→ βρ

is easily seen to be an automorphism of B. By Lemma 7.6, we may extend ρ to an
automorphism ρ̃ of FSBn such that [γ]� ρ̃ = [γρ]� for all γ ∈ B. The result now follows
with φ = ρ̃−1ψ. �

Theorem 7.8. The monoids FBn and FSBn are not isomorphic.
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Proof. Suppose that FBn and FSBn are isomorphic. Then, by Corollary 7.7, there is
an isomorphism φ : FSBn → FBn such that [β]�φ = [1, β] for all β ∈ B. By Theorem 7.3
and Lemma 6.3 (the proof of which uses only the singular braid relations), we have

τi � (ς−1
i−1 · · · ς−1

1 )(ς−1
i · · · ς−1

2 )τ1(ς2 · · · ςi)(ς1 · · · ςi−1)

for each i. This shows that φ is completely determined by [τ1]�φ, and also that FSBn

is generated by {[β]� | β ∈ B} ∪ {[τ1]�}. It follows that the monoid FBn is generated by
[1, B] ∪ {[τ1]�φ}, and since [τ1]�φ is an idempotent, we must have [τ1]�φ = [Eij , 1] for
some 1 � i < j � n. But then [Eij , ς1] = [τ1ς1]�φ = [τ1]�φ = [Eij , 1] so that (i, j) = (1, 2).
Therefore, we also must have

[τ1ς
2
2 ]�φ = ([τ1]�φ)([ς2

2 ]�φ) = [E12, 1][1, ς2
2 ]

= [1, ς2
2 ][E12, 1] = ([ς2

2 ]�φ)([τ1]�φ) = [ς2
2τ1]�φ.

Since φ is an isomorphism, it follows that τ1ς
2
2 � ς2

2τ1. But then, by Theorem 7.3, we
have e1σ

2
2 ∼R′′ σ2

2e1, which contradicts Lemma 7.4. This completes the proof. �

8. The pure factorizable braid monoid

The results of this section will generally be concerned with group presentations, so
we now take the time to establish the notation we will be using. Let X be a set,
and let X−1 = {x−1 | x ∈ X} be a set of formal inverses for the elements of X. Put
RF,X = {(x±1x∓1, 1) | x ∈ X}. The free group on X, denoted F (X), is defined to be the
quotient (X ∪ X−1)∗/R�

F,X . In practice, we will denote elements of F (X) simply as words
over X ∪ X−1, identifying two words w1 and w2 if (w1, w2) ∈ R�

F,X . If R ⊆ F (X)×F (X),
then we denote by R� the smallest congruence on F (X) containing R. We say that a
group G has group presentation 〈X|R〉 if G ∼= F (X)/R� or, equivalently, if there is an
epimorphism f : F (X) → G with ker f = R�. In this case we say that G has presentation
〈X|R〉 via f . If (w1, w2) ∈ R�, we write w1 ∼R w2.

We now state two general results concerning group presentations. A proof of the first
may be found in [15].

Lemma 8.1 (Magnus et al . [15]). Suppose that G is a group with presen-
tation 〈X|R〉 via f . Suppose also that W ⊆ F (X) is a set of words and that
N is the normal closure of Wf in G. Then G/N has presentation 〈X|R ∪ RW 〉 via
f ′ : F (X) → G/N : w �→ N(wf), where RW is the set of relations

w = 1 for all w ∈ W. �

Lemma 8.2. Let X and Y be two disjoint sets, and define

¯ : F (X ∪ Y ) → F (X)

by x̄ = x and ȳ = 1 for each x ∈ X and y ∈ Y . Suppose that G is a group with
presentation 〈X ∪ Y |R ∪ S〉 via f , where R ⊆ F (X) × F (X) and S̄ ⊆ R�. Then H =
(F (X))f has presentation 〈X|R〉 via φ = f |F (X) : F (X) → H : w �→ wf .
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Proof. Now, by definition, we know that φ is an epimorphism, and that ∼R ⊆ ker φ.
To prove the reverse inclusion, suppose that w, w′ ∈ F (X) and wφ = w′φ. There is
then a sequence of words w = w1, w2, . . . , wk = w′ ∈ F (X ∪ Y ) such that, for each i,
wi = xiuyi and wi+1 = xivyi for some xi, yi ∈ F (X ∪ Y ) and (u, v) ∈ R∪S. Since w̄ = w

and w̄′ = w′, the result will follow if we can show that w̄i ∼R w̄i+1 for each i. Now, if
(u, v) ∈ R, then

w̄i = x̄iuȳi ∼R x̄ivȳi = w̄i+1,

while if (u, v) ∈ S, then ū ∼R v̄ by assumption, so that

w̄i = x̄iūȳi ∼R x̄iv̄ȳi = w̄i+1,

completing the proof. �

We now return to our study of FBn. Recall that the pure braid group P = Pn is
the normal subgroup of B that consists of all braids β such that β̄ = 1. We identify P

with the subgroup [1, P ] = {[1, β] | β ∈ P} of FBn. With this in mind, we define the pure
factorizable braid monoid

FPn = {[E , β] | E ∈ E, β ∈ P} =
⋃

E∈E

[E , P ].

For E ∈ E we define a subgroup

PE = {β ∈ B | (i, iβ̄) ∈ E (∀i ∈ n)}.

Note that we have P ⊆ PE for each E ∈ E, with equality if and only if E = 1.

Lemma 8.3. Suppose that E ∈ E. Then [E , P ] = [E , PE ]. Further, BE is a normal
subgroup of PE and PE/BE ∼= [E , PE ].

Proof. Let E ∈ E. It is clear that [E , P ] ⊆ [E , PE ], since P ⊆ PE . To show the
reverse inclusion, suppose that β ∈ PE . Since (i, iβ̄) ∈ E for each i ∈ n, we have
β̄ = ti1j1 · · · tikjk

for some i1, . . . , ik, j1, . . . , jk ∈ n with is < js and (is, js) ∈ E for each
s ∈ k. Thus, β = γςi1j1 · · · ςikjk

for some γ ∈ P . But then [E , β] = [E , γ] ∈ [E , P ] since
βγ−1 = ςi1j1 · · · ςikjk

∈ BE by Lemma 4.3, and so [E , P ] = [E , PE ]. Finally, it is easy to
check that β �→ [E , β] defines a group epimorphism PE → [E , PE ] with kernel BE . �

In particular, FPn =
⋃

E∈E [E , PE ] is the disjoint union of the groups [E , PE ], which are
therefore the maximal subgroups of FPn. To make further progress towards understand-
ing the structure of FPn we will study the quotients PE/BE ∼= [E , PE ]. We say that two
equivalences E1, E2 ∈ E are conjugate if E2 = Eβ

1 for some β ∈ B.

Lemma 8.4. If E1, E2 ∈ E are conjugate, then [E1, PE1 ] ∼= [E2, PE2 ].

Proof. If E2 = Eβ
1 for some β ∈ B, then it is easy to check that [E1, γ] �→ [E2, βγβ−1]

defines a group isomorphism [E1, PE1 ] → [E2, PE2 ]. �
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Suppose now that E ∈ E and that n/E = {N1, . . . , Nk} with min(N1) < · · · < min(Nk).
Put λi = |Ni| for each i. We say that E is convex if r < s whenever r ∈ Ni and s ∈ Nj with
1 � i < j � k. If E is convex, then we say that E is standard if we also have λ1 � · · · � λk.
Note that every equivalence E ′ ∈ E is conjugate to a (unique) standard equivalence E
and so, by Lemmas 8.3 and 8.4, we have PE′/BE′ ∼= PE/BE . From now on we fix E ∈ E, a
standard equivalence, with the Ni and λi as defined above. The remainder of this section
will be devoted to analysing the structure of the quotient PE/BE . For i ∈ k we put
N �

i = Ni \ {max(Ni)}, and let

n� = N �
1 ∪ · · · ∪ N �

k.

Let XP = {aij | 1 � i < j � n}. The following result is well known. For proofs see, for
example, [2] or [4].

Theorem 8.5 (Artin [2]). The pure braid group P has group presentation 〈XP |RP 〉
via

π : F (XP ) → P : aij �→ αijφB ,

where RP is the set of relations

arsaija
−1
rs = aij if i < r or i > s, (P1)

arsasja
−1
rs = (a−1

sj a−1
rj )asj(arjasj), (P2)

arsarja
−1
rs = a−1

sj arjasj , (P3)

arsaija
−1
rs = (a−1

sj a−1
rj asjarj)aij(a−1

rj a−1
sj arjasj) if r < i < s, (P4)

with 1 � r < s � n, 1 � i < j � n, and s < j in each case.

For convenience we will simply write ∼RP
as ∼P . For 1 � i < j � n let α̃ij = aijπ ∈ P ,

and put X̃P = {α̃ij | 1 � i < j � n}. Also, put ΣE = {σi | i ∈ n�} and Σ̃E = {ςi | i ∈ n�}.
A proof of the next lemma is included for the reader’s convenience, although it follows
from general facts about parabolic subgroups of Coxeter groups (see, for example, [14]).

Lemma 8.6. Suppose that β ∈ PE . Then β̄ = si1 · · · si�
for some i1, . . . , i	 ∈ n�.

Proof. Suppose that c = (a1, . . . , ar) is a cycle from the cycle decomposition of β̄.
Now c = tar−1ar · · · ta1a2 , and we have a1, . . . , ar ∈ Nj for some j ∈ k since (i, iβ̄) ∈ E
for all i ∈ n. Now for each i ∈ {1, . . . , r − 1} we have

taiai+1 =

{
(sai

· · · sai+1−2)sai+1−1(sai+1−2 · · · sai
) if ai < ai+1,

(sai+1 · · · sai−2)sai−1(sai−2 · · · sai+1) if ai > ai+1.

Each of the subscripts in this expression are in n� since (ai, ai+1) ∈ E and E is convex. �

Lemma 8.7. The subgroup PE is generated (as a group) by X̃P ∪ Σ̃E .

https://doi.org/10.1017/S0013091504001452 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001452


The factorizable braid monoid 631

Proof. We clearly have X̃P ∪ Σ̃E ⊆ PE , so that 〈X̃P ∪ Σ̃E〉 ⊆ PE . To prove the reverse
inclusion, suppose that β ∈ PE . Then, by Lemma 8.6, we have β̄ = si1 · · · si�

for some
i1, . . . , i	 ∈ n�. Putting γ = ςi1 · · · ςi�

, we have β = (βγ−1)γ. Choose w ∈ X∗
B such that

wφB = βγ−1. Now βγ−1 ∈ P and so, by Theorem 4.7, we have

w ∼B α±1
p1q1

· · ·α±1
phqh

for some h ∈ N, and p1, . . . , ph, q1, . . . , qh ∈ n with pt < qt for each t ∈ h. But then

β = α̃±1
p1q1

· · · α̃±1
phqh

ςi1 · · · ςi�
∈ 〈X̃P ∪ Σ̃E〉,

and we are done. �

Now put XPE = XP ∪ ΣE .

Lemma 8.8. The group PE has group presentation 〈XPE |RPE 〉 via

πE : F (XPE ) → PE :

{
aij �→ α̃ij ,

σh �→ ςh,

where RPE is the following set of relations:

braid relations among the σi, (B)

pure braid relations among the aij , (P)

aij = (σj−1 · · ·σi+1)σ2
i (σ−1

i+1 · · ·σ−1
j−1) if (i, j) ∈ E , (D)

σraijσ
−1
r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a−1
ij ai−1,jaij if r = i − 1,

ai+1,j if r = i < j − 1,

a−1
ij ai,j−1aij if r = j − 1 > i,

ai,j+1 if r = j,

aij otherwise.

(C)

Proof. By Lemma 8.7 we see that πE is an epimorphism. For the remainder of
this proof, let ≈ denote the congruence R�

PE
on F (XPE ). One may easily check that

RPE ⊆ ker πE so that ≈ ⊆ ker πE . To show the reverse inclusion, suppose that w ∈ F (XPE )
and wπE = 1. It is sufficient to show that w ≈ 1. Now, by relations (C) we have

w ≈ w1w2

for some w1 ∈ F (XP ) and w2 ∈ F (ΣE). By Lemma 8.6, we have w̄2 = w̄ = si1 · · · si�
for

some i1, . . . , i	 ∈ n�. We also assume that this expression is of minimal length. Now by
relations (B) and (D), and Theorem 4.7, we have

w2 ≈ w′
2σi1 · · ·σi�

for some w′
2 ∈ F (XP ), and so w ≈ w1w

′
2σi1 · · ·σi�

. Since wπE = 1 we must have � = 0
and w1w

′
2 ∼P 1 so that w ≈ 1. �
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Lemma 8.9. The subgroup BE is the normal closure in PE of Σ̃E .

Proof. Since Σ̃E ⊆ BE and BE is normal in PE , we see that the normal closure of Σ̃E
is contained in BE . Conversely, by Lemma 4.3 we know that BE is generated by elements
of the form β−1ςijβ with β ∈ P , 1 � i < j � n, and (i, j) ∈ E . In particular, we have
i, i + 1, . . . , j − 1 ∈ n�. Now

β−1ςijβ = (ςi+1 · · · ςj−1β)−1ςi(ςi+1 · · · ςj−1β),

and since ςi+1 · · · ςj−1β ∈ PE , the proof is complete. �

For β ∈ PE we will denote the coset BEβ ∈ PE/BE by [β]E . There is no conflict with our
use of this notation in § 3 since, by Theorem 3.2, the set of braids which are E-equivalent
to β is precisely the coset BEβ.

Corollary 8.10. The quotient PE/BE has presentation 〈XPE |RPE ∪ RO〉 via

π′
E : F (XPE ) → PE/BE :

{
aij �→ [α̃ij ]E ,

σh �→ [ςh]E ,

where RO is the set of relations

σi = 1 for all i ∈ n�. (O)

Proof. This follows from Lemmas 8.1, 8.8 and 8.9. �

We now examine the manner in which the presentation of PE/BE given in Corollary 8.10
simplifies. Denote by ∼E the congruence (RPE ∪ RO)�.

Lemma 8.11. If (r, s) ∈ E with r < s, then

(i) air ∼E ais for all 1 � i < r,

(ii) arj ∼E asj for all s < j � n.

Proof. To prove (i), suppose that r, s ∈ N	 for some � and 1 � i < r < s. Then, since
E is convex, we must have r, . . . , s − 1 ∈ N �

	 and it follows, by (O) and (C), that

air ∼E (σs−1 · · ·σr)air(σ−1
r · · ·σ−1

s−1) ∼E ais.

Statement (ii) is proved in an almost identical manner. �

Corollary 8.12. If (i, j), (r, s) ∈ E with i < r and j < s, then air ∼E ajs.

Proof. Using the previous lemma, we have air∼E ajr ∼E ajs if j < r and
air ∼E ais ∼E ajs if r � j. �

Lemma 8.13. If (s, j) ∈ E with s < j, then

aijars ∼E arsaij for all 1 � i < j and 1 � r < s.
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Proof. First observe that by (O) and (D), we also have apq ∼E 1 if (p, q) ∈ E . Now if
i < r or i > s, then the commuting relation already exists as part of (P1). If i = s, then
aij = asj ∼E 1 by the observation, and the relation is trivial. If i = r, then by (P3) and
the observation we have arsarja

−1
rs ∼E a−1

sj arjasj ∼E arj . If r < i < s, then using (P4)
and the observation again, we have

arsaija
−1
rs ∼E (a−1

sj a−1
rj asjarj)aij(a−1

rj a−1
sj arjasj) ∼E (a−1

rj arj)aij(a−1
rj arj) ∼E aij .

�

Corollary 8.14. If 1 � i < r < j and j ∈ N	 for some � ∈ k with λ	 > 1, then

aijarj ∼E arjaij .

Proof. Choose s ∈ N	 \ {j}. If r < s, then by Lemmas 8.11 (i) and 8.13 we have
aijarj ∼E aijars ∼E arsaij ∼E arjaij . If s � r, then since E is convex we must have
(r, j) ∈ E so that arj ∼E 1 and the commuting relation is trivial. �

Corollary 8.15. If 1 � i < j � n, 1 � r < s < j, and j ∈ N	 for some � ∈ k with
λ	 > 1, then

arsaija
−1
rs ∼E aij .

Proof. By Theorem 8.5, we have arsaija
−1
rs ∼E waijw

−1 for some word w in the a±1
hj .

By Corollary 8.14, we have waijw
−1 ∼E aijww−1 ∼E aij and we are done. �

For i ∈ k, let µi = min(Ni), and denote by k0 ∈ k the index such that

(i) λj = 1 for all 1 � j � k0,

(ii) λj > 1 for all k0 < j � k.

Note that µj = j if 1 � j � k0 + 1, while µj > j if k0 + 1 < j � k.

Corollary 8.16. If 1 � r < s � k, 1 � i < j � k, and j > k0, then

aµrµs
aµiµj

a−1
µrµs

∼E aµiµj
.

By Corollary 8.12, and the observation in the proof of Lemma 8.13, we have

ars ∼E

{
1 if (r, s) ∈ E ,

aµiµj if r ∈ Ni and s ∈ Nj with 1 � i < j � k.

So we remove all generators ars ∈ XP unless r = µi and s = µj for some i and j. We
replace any occurrence of a±1

rs in the relations by a±1
µiµj

if r ∈ Ni and s ∈ Nj with
1 � i < j � k, or by 1 if (r, s) ∈ E . By (O) we may remove each σi ∈ ΣE with i ∈ n�. We
also remove relations (O), (D), (B), and (C), which are now trivial.

Put XE = {aµiµj
| 1 � i < j � k}. By the previous paragraph, and Corollary 8.16, we

have the following.
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Theorem 8.17. The quotient PE/BE has presentation 〈XE |RE〉 via

ΠE : F (XE) → PE/BE : aµiµj �→ [α̃µiµj ]E ,

where RE is the set of relations

arsaija
−1
rs = aij if i < r or i > s, (RE1)

arsasja
−1
rs = (a−1

sj a−1
rj )asj(arjasj), (RE2)

arsarja
−1
rs = a−1

sj arjasj , (RE3)

arsaija
−1
rs = (a−1

sj a−1
rj asjarj)aij(a−1

rj a−1
sj arjasj) if r < i < s, (RE4)

with 1 � r < s � k0, 1 � i < j � k0, and s < j in each case, together with

aµrµsaµiµj a
−1
µrµs

= aµiµj if j > k0, (RE5)

with 1 � r < s � k, 1 � i < j � k, and s � j in each case.

For � ∈ k let UN�
be the subgroup of PE/BE generated by {[α̃µiµ�

]E | 1 � i < �}, and
let (PE/BE)′ be the subgroup generated by {[α̃µiµj ]E | 1 � i < j � k − 1}.

Lemma 8.18. We have the decomposition PE/BE = UNk
� (PE/BE)′.

Proof. Now if λk = 1, then PE/BE ∼= P and the result is well known (see, for example,
[2,4]). So suppose that λk > 1. It is immediate from Theorem 8.17 that UNk

is normal
in PE/BE , and PE/BE is clearly generated by UNk

∪ (PE/BE)′. Suppose now that β ∈ PE
such that [β]E ∈ UNk

∩ (PE/BE)′. Since [β]E ∈ UNk
, and since UNk

is commutative by
(RE5), we have

[β]E = [α̃m1
µ1µk

· · · α̃mk−1
µk−1µk

]E

for some m1, . . . , mk−1 ∈ Z. By Theorem 8.17 we see that, for each 1 � i < j � k, there
is a well-defined homomorphism

expij : PE/BE → Z : [α̃µrµs ]E �→
{

1 if r = i and s = j,

0 otherwise.

Since [β]E ∈ (PE/BE)′, we have mi = expik([β]E) = 0 for each 1 � i < k so that
[β]E = [1]E . This shows that UNk

∩ (PE/BE)′ = {[1]E} and completes the proof. �

Lemma 8.19. Let E ′ ∈ Eqn−λk
be the equivalence relation such that

{1, . . . , n − λk}/E ′ = {N1, . . . , Nk−1}.

Then (PE/BE)′ ∼= PE′/BE′ , where here we regard PE′ and BE′ as subgroups of Bn−λk
.

Proof. This follows from Lemma 8.2 and Theorem 8.17. �
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Theorem 8.20. We have the decomposition

PE/BE = UNk
� (UNk−1 � (· · · � (UN3 � UN2) . . . )).

Furthermore,

(i) if λi = 1, then UNi is the free group with basis [α̃µ1µi
]E , . . . , [α̃µi−1µi

]E ;

(ii) if λi > 1, then UNi is the free abelian group with basis [α̃µ1µi ]E , . . . , [α̃µi−1µi
]E .

Proof. The semidirect product decomposition follows from Lemmas 8.18 and 8.19
and a simple induction.

(i) If λi = 1, then the subgroup of PE/BE generated by {[α̃µrµs ]E | 1 � r < s � i} is
isomorphic to Pi via the map

[α̃µrµs
]E �→ α̃µrµs

= α̃rs for each 1 � r < s � i.

The image of UNi under this isomorphism is Ui, the subgroup of Pi generated by
α̃1i, . . . , α̃i−1,i. It is well known (see, for example, [2,4]) that Ui is a free group of
rank i − 1.

(ii) If λi > 1, then the map UNi
→ Zi−1 defined by

[β]E �→ (exp1i([β]E), . . . , expi−1,i([β]E))

is clearly an isomorphism.

�

Theorem 8.21. The problem of deciding whether two elements [E1, β1], [E2, β2] ∈ FBn

are equal is decidable.

Proof. Now [E1, β1] = [E2, β2] if and only if E1 = E2 and β1β
−1
2 ∈ BE1 . An algorithm

to determine whether or not this is the case is as follows.

(i) If E1 �= E2, then [E1, β1] �= [E2, β2]. If E1 = E2, then go to step (ii).

(ii) Choose γ ∈ B such that E = Eγ
1 is a standard equivalence, and put β = γβ1β

−1
2 γ−1.

Then β1β
−1
2 ∈ BE1 if and only if β ∈ γBE1γ

−1 = BE . Now if β �∈ PE , then β �∈ BE ,
and so [E1, β1] �= [E2, β2]. If β ∈ PE , then go to step (iii).

(iii) If β ∈ PE , then we have β̂ ∼B wσi1 · · ·σir for some w ∈ A∗ and i1, . . . , ir ∈ n�. Let
w′ ∈ F (XE) be the word obtained from w by replacing each α±1

rs by α±1
µiµj

, where
r ∈ Ni and s ∈ Nj (and then deleting any resulting α±1

µiµi
). Let w′′ ∈ F (XE) be the

word obtained from w′ by replacing each α±1
µiµj

by a±1
µiµj

. Now, by Theorem 8.17,
we have β ∈ BE if and only if w′ ∼RE 1. Again by Theorem 8.17, we have

w′ ∼RE wk · · ·w2,

where each wj is a word over {a±1
µiµj

| 1 � i < j}. By Theorem 8.20, w′′ ∼RE 1 if and
only if each word wj either freely reduces to the empty word (in the case j � k0),
or has a zero exponent sum for each aµiµj (in the case j < k0).

�
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