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Abstract  In this paper we study the factorizable braid monoid (also known as the merge-and-part
braid monoid) introduced by Easdown, East and FitzGerald in 2004. We find several presentations
of this monoid, and uncover an interesting connection with the singular braid monoid. This leads to
the definition of the flexible singular braid monoid, which consists of ‘flexible-vertex-isotopy’ classes of
singular braids. We conclude by defining and studying the pure factorizable braid monoid, the maximal
subgroups of which are (isomorphic to) quotients of the pure braid group.
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1. Introduction and notation

The factorizable braid monoid §B, (also known as the merge-and-part braid monoid
and denoted B) was introduced in [8] as a ‘braid analogue’ of §F,, the monoid of uniform
block bijections on an n-set [10,11]. By this we mean that §5,, is a natural pre-image
of §, in the same way that the braid group is a pre-image of the symmetric group. In [8]
it was shown that §B, belongs to a class of factorizable inverse monoids that embed
in the coset monoid of their group of units (see [8,16] or the proof of Lemma 7.4 for
a description of the coset monoid). In this article we study §B,, and another (singular)
braid analogue of §,, by means of presentations. In §2 we outline a method, described
in [9], for constructing factorizable inverse monoids and finding their presentations. Then
in §3 we review the definition, and geometric interpretation, of §5,, from [8]. In §4 we
find a presentation of §B,, from which we deduce, in § 5, the presentation of §,, discovered
by FitzGerald [10]. In § 6 we provide a second presentation of §83,, which reflects more of
the symmetry possessed by §B,,. This second presentation also highlights an interesting
connection with the singular braid monoid [3,4]. This leads to the definition of the flexible
singular braid monoid §SB,,. In § 7 we find a presentation of §SB,, and show that, despite
many similarities, the monoids §B,, and §SB,, are not isomorphic. In doing so, we will
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show that one of the more ‘peculiar’ relations in our presentation of §5,, is not redundant.
In §8 we define the pure factorizable braid monoid §P,. We study §P, by analysing
presentations of its maximal subgroups. Each of these subgroups is (isomorphic to) a
quotient of the pure braid group P,, and we prove that these quotients are semidirect
products of free groups and free abelian groups, generalizing a well-known result of
Artin [2]. This leads to an algorithm for deciding whether two braids are merge-and-part
equivalent.

Without causing confusion, we will generally denote the identity of any monoid by 1.
Let M be a monoid. An equivalence relation ~ on M is a congruence if ab ~ c¢d whenever
a,b,c,d € M with a ~ ¢ and b ~ d. The quotient M/~ of all ~-classes is itself a monoid
under the inherited operation. If L is another monoid and ¢ : M — L a homomorphism,
then the kernel of ¢ is the congruence

ker(¢) = {(a,b) € M x M | ap = bp}.

The Fundamental Homomorphism Theorem (for monoids) states that M/ ker(¢) is iso-
morphic to the image of ¢. If G is a group, then a congruence ~ on G is completely
determined by the ~-class N of the identity 1 € G. In this case, N is a normal subgroup
of G and the quotients G/~ and G/N are precisely the same object. When referring to a
group homomorphism ¢, we will sometimes use the definition of ker(¢) as a congruence,
and sometimes as a normal subgroup.

We now establish the notation we will be using for monoid presentations. Let X be a
set, and denote by X* the free monoid on X. If W C X* then W* denotes the submonoid
of X* generated by W. For R C X* x X*, let R denote the smallest congruence on X*
containing R. We say that a monoid M has monoid presentation (X|R) if M = X* /R or,
equivalently, if there is an epimorphism f : X* — M with ker f = R!. In this case we say
that M has presentation (X|R) via f. An element (wq,w2) € R is called a relation, and
is often written as wy = wsy. If (w1, ws) € RY then we write wy ~pg ws. Even though R
need not be symmetric, we will often use a phrase such as ‘suppose that (wq,ws) € R’
to mean ‘suppose that either (wy,ws) € R or (we,w1) € R’.

2. Factorizable inverse monoids

Throughout this article, a monoid of commuting idempotents is referred to as a semilat-
tice. The reason for this terminology is that if M is a monoid of commuting idempotents,
then we may define a partial order on M by

e< f ifandonlyif ef=f

with respect to which each pair of elements e, f € M have a least upper bound, namely
the product ef.

An inverse monoid M is said to be factorizable it M = EG where E = E(M) is
the semilattice of idempotents of M, and G = G(M) is the group of units of M. (For
more details regarding factorizable inverse monoids, see [6].) In this section we review a
method, outlined in [9], for constructing factorizable inverse monoids, and finding their
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presentations. Suppose that G is a group, and that E is a semilattice. Suppose also
that for each g € G we have an automorphism ¢, : ¥ — E : e — €Y such that the map
0 : G = Aut(E) : g — @4 is an anti-homomorphism. Then we may form the semidirect
product

ExG=Ex,G={(e,g)|ec E, ge G}

with multiplication defined by

(61’91)(62792) = (6165139192)-

Suppose now that, for each e € E, we are given a subgroup G, of G such that G; = {1}
and

gGegilzGega v66E7 gEG, (
GV Gy =Gep, Ve feE, (
(
)

G.1
G.2)
G.3)

Here, for subgroups H and H' of G we have used the notation HV H' = (H U H'). We
may then define a congruence ~ on E x G by

ed =e, Ve e F, g € Ge.

€

(e1,91) ~ (e2,g2) if and only if e; =es and g1g5 " € Ge,.

Thus, we may form the quotient (E x G)/~. Denote the ~-class of (e,g) € ExG by [e, g],
and let [E,1] = {[e,1] |e € E} and [1,G] ={[1,9] | g € G}.

Theorem 2.1 (Easdown et al. [9]). The monoid (E x G)/~ is a factorizable inverse
monoid with semilattice of idempotents [F, 1] = E and group of units [1,G] 2 G.

Suppose that E and G have monoid presentations (Xg|Rg) via A, and (X¢g|Rg) via y,
respectively. We may assume that Xz and X are disjoint and that A and p are injective
when restricted to Xg and Xg, respectively. For each e € E, g € G, choose é € X},
g € X( such that éA = e and gu = g. Let

Ry = {(yz, 2AVy) | & € Xp, y € Xg ).

Suppose that for each © € Xg we have a subset S, C G such that G, is generated, as
a submonoid, by S,. Put

R. = {(xg,m) ‘ T e XEv g€ S:E}

Theorem 2.2 (Easdown et al. [9]). The factorizable inverse monoid (E x G)/~
has monoid presentation

<XG UXE|RG URgUR, UR~>

viav: (XqgUXEg)* — (E x G)/~ defined by

e\ 1] ifz e Xg,
v =
[1,zp] ifz e Xg.
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Figure 1. The braids ¢; (left) and ;"' (right) in B.

3. The factorizable braid monoid

We now review the construction of §B,, described in [8]. Fix n, a positive integer, and
denote by n the set {1,...,n}. The braid group B = B,, is the group of homotopy classes
of geometric braids on n strings. For details regarding braids refer to [4]. Without causing
confusion, we will generally identify a braid with its homotopy class, although in §7 it
will be convenient to draw a clear distinction. For i € {1,...,n — 1} we denote by g;
(respectively, gi_l) the (homotopy class of the) braid in which the ith string crosses over
(respectively, under) the (¢ + 1)th, all other strings passing vertically downwards (see
Figure 1).

Let S = Sym(n) be the symmetric group on n. For 8 € B we denote by 3 € S the
permutation associated to § so that 3 — [ is the natural epimorphism B — S under
which giil is mapped to the simple transposition s;, which interchanges ¢ and ¢ + 1. The
kernel of this epimorphism is the pure braid group P =P, = {8 € B| 3= 1}.

Let E = &q,, denote the set of all equivalence relations on n. Here we regard an
element of F as a subset of n x n satisfying reflexivity, symmetry and transitivity. The
join, & V &s, of two equivalence relations &1, & € F, is defined as the smallest equivalence
relation on n containing & U &, and F forms a semilattice under V.

For £ € E and 8 € B we define

P ={(i,5) | . 7)Be & ={(i,7)B" | (i,)) € €},

where, for ¢,7 € n and 7 € S, we have written (i, j)m for (im, jm). It is easy to check that,
for each 3 € B, the map g : £ + €7 is an automorphism of E, and that ¢ : 8 — g is
an anti-homomorphism B — Aut(FE). Thus, we may form the semidirect product E x B
as above. For € € E we let Bg denote the subgroup of B generated by the set

{87 'aB | (i,i+1)B € £}

Since this set is empty if £ = 1 is the identity of E, we have By = {1}. In [8] it was
shown that these subgroups satisfy

BBgff ' =Bgs VEECE, BB, (Bel)
Be Vv Bgo = Bgvgo VE,E € E, (352)
Ef=¢ VE € E, B € Be. (Bg3)

As a result we may form the quotient (E x B)/~, which we call the factorizable braid
monoid and denote by §B5,,.
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Figure 2. The strings s (left) and t (right).

P=Q

Figure 3. The strings merging.

Figure 4. Possible configurations before and after merge-and-part.

Theorem 3.1 (Easdown et al. [8]). The factorizable braid monoid §B, is a fac-
torizable inverse monoid with semilattice of idempotents [F,1] 2 E and group of units
[1,B] = B.

The following geometric interpretation of §B,, was considered in [8]. Let s and t be
two strings descending from fixed points on an upper plane to connect to fixed points
on a lower plane (see Figure 2). We say that a homotopy causes s and t to merge and
part if, during the course of the homotopy, s and t come together just once at say P
and @ (see Figure 3), and then part, reconstituting as two strings made up of respective
upper and lower strands. See Figure 4 for a catalogue of the possible configurations in the
neighbourhood a moment before and after merge-and-part. Note that (1), (2), and (3)
can be interchanged using normal homotopy.

Let £ € E. We say that the ith and jth strings of a braid are £-related if and only if
(i,7) € £. If B,v € B, then we say that 8 and v are £-equivalent if there is a homotopy
from (a representative of) 3 to (a representative of) v during which £-unrelated strings
never touch, and £-related strings are allowed to merge and part (one at a time, a finite
number of times).

Theorem 3.2 (Easdown et al. [8]). Let £,& € FE and (3,09 € B. Then (£,3) ~
(&0, Bo) if and only if € = &y and B and [y are E-equivalent.

For £ € E, we denote by [(]¢ the E-equivalence class of § € B. We now define the
merge-and-part braid monoid

B:Bn:{[ﬁ]glgEEvﬁeB}
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with multiplication

[/81]51 [ﬂ2]52 = [ﬁlﬁQ]gl\/Sgl .

It is easy to check that this multiplication is well defined and associative, and that [1];
is an identity for B. Let [1]g = {[l]¢ | € € E} and [B]; = {[8]1 | 8 € B}. The map
ExB - B: (€,8) — [Blg is clearly an epimorphism whose kernel, by Theorem 3.2,
is ~. We have shown the following.

Theorem 3.3. The monoids §B, and B,, are isomorphic via [€, 8] — |Ble. Thus, B,
is a factorizable inverse monoid with semilattice of idempotents [1]g = E and group of
units [B]; &

4. A presentation of §B,,

In this section we will give a presentation of FB,,. We first gather the information required
to apply Theorem 2.2. Let Xp = {aiﬂ, cooit

'Y n—1J"

Theorem 4.1 (Artin [1]). The braid group B has monoid presentation (Xg|Rp)
via

+1 +1
¢pp: Xg— B:o " =,

where Rp is the set of relations

ool =1 for all i, (F)
005 = 0;0; lf‘l —j‘ > 1, (Bl)
0;0j0; = 00,0 lf‘l —j‘ =1. (BQ)

We choose a set of words {3 | 8 € B} C X7}, such that Bop = for all B € B, and
for convenience we will denote the congruence ~g, by ~p. If w = 01-511 e af: € X5, we
will denote by w~?! the word 0,50, € Xj so that wwt ~pw lw ~pg 1. We also
define a homomorphism X5 = S : w+— w = wép.

For 1 <i<j<nlet&; € E denote the equivalence {(r,s) | r = s or {r,s} = {i,j}}
and put Xp = {e;; | 1 <i<j<n}.

Theorem 4.2 (FitzGerald [10]). The semilattice E has monoid presentation
(Xg|RE) via
d)E:XE—)E:Eij*—)gij,

where Rg is the set of relations

€7 =¢y for all i, j, (Eql)
€ijERI = EkIEij for all i,j, k, 1, (Eq2)
€ij€jk = EjkEik = EikEij ifi<j<k. (Eq3)
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1 i j

AT

Figure 5. The braid ¢;; € B.

We choose a set of words {€ | £ € E} C X}, such that E¢p = £ for all € € E. Suppose
that 1 <i<j<nand 1<r<n—1. Itis immediate from the definitions that

gi—l,j ifr=1i-— 1,

giJrl’j if’f’:’i<j—].7
Er = gi,j—l if r =j—1>1,

Eijr ifr=j,

Eii otherwise.

+1

For 1 < i < j < n we use the notation &;; = &;; and €;; = ;5. We see then that Ef; =
Eis, js.- Thus, we may take Ry to be the set of relations

U,,Z_l:l@ij = 67;5T7jsr0'7:_t1 foreachl<i<j<nandl1<r<n—1 (x)
Before moving on, we find a different expression for the generators of the subgroups Be.
For 1 <i<j<n,let
oij = (01 0;))oi(0it1 - 0j1) € Xp
and put ¢;; = 0;;¢p € B (see Figure 5). We assume that ¢;; = 0;;. Recall that P = P,
denotes the pure braid group.

Lemma 4.3. If £ € E, then Bg is generated by the set {37 ;8| 3 € P, (i,j) € £}.

Proof. Let U = {5713 | (i,i + 1)3 € €} so that (by definition) Bg = (U), and let V
be the set in the statement of the lemma. It is clear that V' C U. To show the reverse
inclusion, suppose that u = y~1¢;y € U, where (i,i + 1) = (4, k) € €. Replacing v by ¢;y
(if necessary) we may assume that j < k. Put

G176 Sip1  if i < g,

a={ G ag e )<,

1 if i =j.
It can easily be checked that a~'gja =g, and (j,j + 1)a = (i,i + 1). Putting v1 = a7,
we then have u = Wflgj'yl, and (4,7 + 1)% = (4, k). Now put 2 = §1;11 T <;—:171 so that
u =5 "Sry2 and (4, k)¥2 = (j, k). Remove the jth and kth strings from ;' and put
them back in such a way that they pass straight down and always in front of all the other
strings, and call the resulting braid §. From the construction, it is clear that § commutes
with ¢jr. But then if we put v3 = dv2 € P, we see that u = 7§1§jk73, completing the
proof. O

https://doi.org/10.1017/50013091504001452 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091504001452

616 J. Fast
As a result of this lemma, we may take R. to be the set of relations
51]43710”& =g foralll<i<j<nandpgecP (~)

The following is now a direct consequence of Theorem 2.2.

Lemma 4.4. The factorizable braid monoid §B,, has monoid presentation
<XB UXE|RB UREgUR, URN>

via 0t = [1,6EY, 45 > [Eij, 1]
We will now work towards simplifying this presentation. As a first step, we will remove
a number of the generators. With this in mind, let e = €12. By (%) and (F') we see that,

for any 1 <7 < j < n, the relation
— (51 -1 -1 -1
eij = (0,1 oy o205 )e(oz--0j-1)(01 - 05-1) (*)

is in (Rp U Rg U Ry U R.)% So we remove the generators €;5, replacing their every
occurrence in the relations by the word on the right-hand side of (), which we denote
by e;; (noting in particular that e;o = e). We denote the resulting relations by (Eql)’—
(Eq3)’, (x)’, and (~)’. The entire sets of relations which have been modified in this way
will be denoted by R, R/, and R/_.

Corollary 4.5. The factorizable braid monoid §B,, has monoid presentation
(XpU{e}|REURZ UR,UR.)
via oF! v 1,65, e = [E12, 1]

Lemma 4.6. The following relations are in (Rg U Rl U R, U R’)*:

e =e=eoy, (E1)

eo; =oe ifi#2 (E2)

e0oe09 = 09€09%€, (E3)
€02030109€02030109 = 09030102€02030103€, (E4)
eos = ole. (E5)

Proof. Now (E1) is part of (Eql) and (~)’, while (E2) is part of (x)’. For the
remainder of this proof, let ~ denote the congruence (Rp U Ry U R, U R/ )*. To show
that (E3) holds, note that by (x)’ and (Eq2)’ we have

€02€02 = €1202€1202 = 02€13€1202 = 02€12€1302 = 02€1202€12 = 02€02€.

Next put w = o9030102. Observe that (1,2,3,4)w = (3,4, 1,2) so that by (x)" we have

€12W = We3zy and e34W =X Wweq9.
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But then (E4) holds since, by (Eq2)’ and the observation, we have
EWEW = €12We W R WELE12W R We 2€34W R WeaWe g = Wewe.
For (E5), note that by (x)" we have
eo3 = €105 N 0261302 X 0ae13 = Oae.
This completes the proof. O

Denote by R the set of relations (F), (B1), (B2), and (E1)—(E5). Our aim is to show
that §B,, has monoid presentation (Xp U {e}|R). By Lemma 4.6, we may add relations
(E1)—(E5) to the presentation stated in Corollary 4.5. We will show that relations (Eql)’—
(Eq3)’, ()" and (~)" may be eliminated.

For1<i<j<nlet

aij = (051 0ip1)o; (0,35 - 05 1),

and put A = {aiijl | 1 << j<n}. The following result is well known. For proofs see,
for example, [2,4].
Theorem 4.7 (Artin [2]). Ifw € X5 and wop € P, then w ~p w' for somew’ € A*.

Lemma 4.8. If w € X} and wo¢p € P, then we ~p ew.

Proof. Suppose that 1 <4 < j < n.If ¢ > 2, then by relations (F), (E2) and (E5) we
have a;je ~g eq;. If i = 1 and j = 2, then we have aqze ~p eaqz by (E2). If i =1 and
j > 2, then it is easy to check that ai; ~p al_lagjal, so that ajje ~g eas; by (E2),
(F), and the first calculation. Now, if w € X} and w¢p € P, then by Theorem 4.7 we
have w ~p w’ for some w’ € A*. The result now follows by induction on the number of
generators from A involved in w’. O

For 1 < ) <] < n let Wi = (02"'0']',1)(0'1 "'Uifl) so that €ij = ww

EWjj.
Corollary 4.9. If1 <i < j <n and w € X5 with wpp € P, then we;; ~r e;;w.

Proof. Now (wijwwi_jl)qﬁg = (w;j¢B)(wop)(w;j¢p) "' € P, so that, by relation (F)
and Lemma 4.8, we have

we;j ~R wi_jl(wijww;jl)ewij ~R wi_jle(wijwwigl)wij ~R €W,
completing the proof. O
Lemma 4.10. Suppose that 1 <i<j<n,r€{l,...,n—1}, and n € {£1}. Then

Ne..g N . .
Oy elJUr ~R elSmJSrr'

https://doi.org/10.1017/50013091504001452 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091504001452

618 J. Fast
Proof. First note that if 0)e;jo. " ~g €y, js,., then we also have
- —2 —n 2 -2 2
o, "ejjol ~g o, Moleijo, 0 ~R o e, 5,0, ~R €is, s,

by (F) and Corollary 4.9. Thus, it suffices to prove the lemma for any choice of 7.
Ifr=i—1lorr=45—1>4 weusen =1, whileif r =4 < j—1orr =j, we use
17 = —1, and the result follows trivially. Suppose now that either r ¢ {i — 1,4,7 — 1,5} or
r =14 =j — 1. It is an easy exercise, using the braid relations, to show that

Or42Wij ifr<i-— 1,
WwijOr ~B Or4+1W5j5 ifi<r< 7j—1,
OrWij lfj <r,
01W;ij ifTZiZj—l.

It now follows that o, le;j0, = a;lw;jlewijar ~pr e;; using (F) and (E2). O

Corollary 4.11. If w € X} and 1 <i < j < n, then w’leijw ~R €iw,jw-

Proof. This follows from Lemma 4.10 and induction on the length of w. (]
Lemma 4.12. If 1 < i< j < n, then efj ~R €j.

Proof. This follows immediately from (F) and (E1). O
Lemma 4.13. If 1 <i<j<nandl<k<Il<n, then e;jey ~r erei;.

Proof. We first show that ejae93 ~p €a3e19 and e12e34 ~ g esse12. For the former we
have

€12€23 = 6Uf10;160201
~p 0] ecy *ore0301 by (E2) and (F)
~p oy oy eareos01 by (F) and (E5)
~p o7 toy 2ogeasea; by (E3)
~R Uf1051€0201€ by (F) and (E2)

= €23€12.
For the latter, note that wg_fqu € P so that

€12€34 = ew3_4lew34
~R ewzfwzsewsy by (F)
~R Wi ewssewsy by Lemma 4.8
~R Wif wssewsge by (E4)
~R ’UJ3_41€U)34€ by (F)

= €34€12.
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Returning to the general case, suppose first that one of k,[ (say k) is equal to one of i, j
(say j). Choose w € X such that (1,2,3)w = (4,4,1). By Corollary 4.11, (F) and the
first calculation, we then have

-1 -1 -1 -1
€ij€jl = Clw,2wC2w,3w ~R W ~C12WW “€23W ~R W €12€23W ~YR W €23C12W ~R €41C;j.
Finally, if 4, j, k and [ are all distinct, then we choose w € X} such that (1,2,3,4)w =

(4,7, k,1). We use the same trick, and the second calculation, to show that e;;jer; ~r exie;;.
O

Lemma 4.14. If1 <i < j <k <n, then e;jejr ~R €jr€ik ~R CikCij-

Proof. As in the proof of the previous lemma, we need only show that the lemma
holds when (¢, 7, k) = (1,2, 3). Now

€12€23 = 60;105160201

~p €0y 2ogedy0 by (E1) and (F)
and

(
~R 05 2edsedaa; by (E5) and (F)
~R 0y 2ogeaqea; by (E3)
~R 0y eoqe by (F) and (E1)
= €13€12-

Next observe that

-1 _—1
€2302 = 01 09 €020102

~R Jfl(f;lealogol by (B2)

~R 0'1_10'2_160'20'1 by (E1)
= €23.
But then
€23€13 = 62305161202
~R €23€1202 by the observation and (F)
~R €12€2302 by Lemma 4.13
~R €12€93 by the observation again
and we are done. O

Lemma 4.15. If 1 <i< j<nandp € P, then eijﬁ_laijﬁ ~R €5
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Proof. Now, it may easily be checked that ¢;; ~p w;;

Soif € Pand 1 <1< j < n, we then have

orw;; for each 1 <7 < j < n.

eijﬁilaijﬁ ~R Bileijaijﬁ by Corollary 4.9
~R Bilwi_jlewijwi_jlolwijﬁ
~R B_lw;jlealwij,é by (F)
~R B_lwi_jlewijﬁ by (E1)
=B""e;B
~R €ij by Corollary 4.9 and (F)
and the lemma is proved. O

Lemmas 4.10 and 4.12-4.15 show that relations R U R}, U R/, are all implied by R.
Thus, we have the following.

Theorem 4.16. The factorizable braid monoid §1, has monoid presentation
<X BU {e}|R>

via ol — [1,(?1], e [E12,1].

5. The monoid of uniform block bijections

For £ € E we denote by n/€ the quotient of n by £, which is the set of £-classes of n. A
block bijection on n is a bijection 0 : n/E — n/E’ where £,E’ € E. The set of all block
bijections on n forms an inverse monoid, denoted 7, called the dual symmetric inverse
monoid (see [11] for details).

A Dlock bijection 6 : n/E — n/&’ is called uniform if |A| = |A6| for every E-class
A € n/€. The set of all uniform block bijections, denoted §,, is the largest factorizable
inverse submonoid of Z* (see [10,11]). We identify n/1 with n, where here 1 represents
the identity of E, and in the same way we may regard a permutation 7 : n — n as a
block bijection 7 : n/1 — n/1. For £ € E denote by idg : n/€ — n/€ the identity map
on n/E. We have E(F,) = {ide | £ € E} = F since idg idg: = idgyer for each £,&" € E,
and G(F,) = S. Thus, every element 6 € §,, has a factorization

6:idgﬂ'

for some £ € E and some 7w € S. In this factorization, £ is uniquely determined, but m
need not be. In fact, we have idg 7 = idg 7 if and only if 77! € Se¢, where Sg is the
subgroup of S defined by

Se={mreS|(iin) € E, Vi € n}.

The subgroup Sg is generated by the set {t;; |1 <i<j<n, (i,j) € £}, where t;;
denotes the transposition which interchanges i and j. As an application of Theorem 4.16
we will provide an alternative proof of the presentation of §,, given by FitzGerald [10].
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Theorem 5.1 (FitzGerald [10]). The monoid §,, has monoid presentation (Xp|RF),
where Xp = {01,...,0n_1,¢} and Rp Is the set of relations (B1), (B2), (E1)-(E4), and

0?2 =1 foralli. (S)

Proof. Define © : (Xp U {e})* — &, by 0510 = s, for each i, and e© = idg,,. Then ©
is an epimorphism since §, is generated by the s; and idgij =¢;;0. Let ~g be the
congruence on (Xp U {e})* generated by R together with relations (S). It is easy to check
that w10 = w90 for all (w1, ws) € R and, since sf =1 for each i, we have ~g C ker ©.
To show the reverse inclusion, suppose that wy,ws € (Xp U {e})* and w10 = w0. We
have

wy ~p €161 and  wy ~g Eafs
for some &£1,& € E and £y, 2 € B. Put 7 = 81 and 75 = B5. Then
idgl ™ = w1@ = w2@ = id52 2.

Thus, & = &5 and 7T17T51 € Sg,, so that (‘:’1 = 52 and

_1 — . . . .
Ty~ = tiygy * Liggy,

for some k € N, and some 41, . ..,4k, j1,...,Jk € n with i; < j, and (is,js) € & for each
s € k. But then

Bi=m1 = tiygy o i T2 = Siviy o Singi 52
so that £1 = G, 4, -~ Gy 5, B2y for some v € P. Now, by Theorem 4.7, we have

2 +1 +1
VB Qpq Qppqy,

for some h € N, and p1,...,pn,q1,---,qn € n with ps < ¢, for each s € h, and so

wy ~g 161

~S glailjl T Uikjkﬁzazilql T a;thlqh

~s ngQQilql e Oz,jfhlqh by Lemma 4.15
~s €102 by (S)

=&y

~S W2

so that ker©® C ~g. Thus, ker ©® =~g and so §, = (Xp U {e})*/~s. It finally remains
to observe, by rewriting the presentation using (S), that (Xp U {e})*/~g = X}/Rg,. O

Remark 5.2. Since §,, itself is a factorizable inverse monoid, an approach similar to
that used in §4 may be used to obtain Theorem 5.1 directly.
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6. A second presentation of B,

While the presentation of §B,, we derived in §4 was economical in terms of the number
of generators involved, the relations do not display a great deal of symmetry. The aim
of this section will be to introduce a number of new generators, thereby obtaining a
presentation which reflects the symmetry possessed by §B,,. This presentation will also
highlight an interesting connection between §B,, and SB,,, the singular braid monoid
(introduced in [3,5]). We will explore this connection in the next section.

We begin with the presentation (Xp U {e}|R) of FB,, obtained in Theorem 4.16. We
now rename e = e1, and add generators es, ..., e,_1 to the presentation along with rela-
tions

ei= (oY oy )o7 oy De(og - -03) (o1 0_1)  for all 4, (D)

which define them in terms of the original generators. In fact, in the notation of §4, we
have e; = €; ;+1. So, by Corollary 4.9, and Lemmas 4.10, 4.12, 4.13 and 4.15, the relations

e? =e; = e;0; = oie; for all 4, (E1)
eie; = eje; for all 4, 7, (E2)
€0 = 0;€; if |Z —]| > 1, (Eg)/

€i0;0; = 0;04€; if |Z — ]| = 1, (E4)/
2 2 . . o
€i0; = a5e; if i —jl=1 (E5)

follow from R. Thus, we add relations (E1)'—(E5)’ to the presentation. Now relations (E1),
(E2) and (E5) may clearly be removed since they are part of relations (E1)’, (E3)’
and (E5)'. Next we will show that relations (E3), (E4), and (D) may also be removed.
Put Y = XpU{ey,...,en—1} and denote by R’ the set of relations (F), (B1), (B2) and
(E1)—(E5)".

Lemma 6.1. We have ej09e109 ~p/ 09e109€1.

Proof. Observe first that if 1 < i,5 <n—1 and |i — j| = 1, then by (F) and (E4)’ we

have
,._1N _1,,._1N _1,,,_1N _1,.
gie;0; R O] 0j0i€;j0; R O €i0;j0;0; R O} €i0];.
But then
-1 2
€102€109 ~R/ €102€10,5 0% by (F)
~p el(aflegalag) by the observation
—1 2 / / /
~p (07 ‘e20105)er by (E1), (F), (E2)" and (E5)
~ R 0’2610’2_10'561 by the observation again
~ R 02€102€1 by (F)
and we are done. O

Lemma 6.2. We have eqyweiw ~g wejwey, where w = 09030103.
2
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Proof. First observe that by (B1) and (E4)" we have

€1W = €102030102 ~YR' €102010302 ~YR/ 0201€20302

~R/ 0201030263 ~YR 02030102€3 = WeEg,

By a similar calculation we also have ezw ~p wey. But then by (E2)" and these obser-
vations we have

ClwWeLw ~Rrr wese1w ~rr Wejesw ~rr wejweq,
completing the proof. O
Lemma 6.3. If 1 <i<n—1, then
-1 —1y/—1 —1
i~ (07 -0p )0y oy Jer(on---04)(01 - 0ia),

Proof. We prove the lemma by induction on 4. If i = 1, then there is nothing to prove,
so suppose that the lemma holds for some 1 < ¢ < n — 2. We then have

€it1 ~R/ 0;101-1110#101‘6#1 by (F)
~ R Ui_laa_lleiai+1oi by (E4)’
~reoytop (o o (o oy Dea(og - 00) (01 0im1)oi 0y
~r oy oy oy Do (o7t oy ei(oz - 03)oigi (01 0i-1)oi by (BL),
and (F)
and we are done. ]

The last three lemmas have shown that relations (E3), (E4) and (D) are implied by R'.
Thus, we have the following.

Theorem 6.4. The factorizable braid monoid §B,, has monoid presentation (Y|R')
£l — [17<1':t1]7 €; — [gi,i+171]'

via o;

Remark 6.5. We may also derive a second presentation of §, from the presentation
of §B,, given in Theorem 6.4. First we add the relations

o7 =1 foralli (S)

to the presentation (Y'|R’) to obtain, by the same method as in the proof of Theorem 5.1,
an intermediate presentation of §,. This presentation then simplifies to (X |R%), where
Xp=A{o1,...,0n_1,€1,...,en_1} and R is the set of relations (B1), (B2), (E1)'~(E4)’,
and (S).
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Figure 6. The singular braid 7; € SB,,.

7. Flexible singular braids and relation (E5)’

A singular braid is a collection of strings, much like a braid, with the exception that there
may exist a finite number of double points (or singular points) where a pair of strings
intersect. Let SB,, denote the set of all singular braids with n strings. The concatenation
of two singular braids 3,y € SB,, is the singular braid 8- obtained by joining the ‘bottom’
of 3 to the ‘top’ of v. Thus, SB,, is a groupoid under concatenation. The singular braid
monoid, denoted SB,,, is the monoid of rigid-vertex-isotopy classes of singular braids
on n strings. (For more details on singular braids, see [3,4].) In this section it will be
useful to draw a clear distinction between a singular braid 8 € SB,, and its rigid-vertex-
isotopy-class which we will denote by [5] € SB,,. The singular braid monoid is generated
by [si1], ..., [¢F1,] together with [1],. .., [7,_1]. The singular braid 7; € SB,, is pictured
in Figure 6.
The following was first proved in [4] (see also [3,13]).

Theorem 7.1 (Birman [4]). The singular braid monoid SB,, has monoid presenta-
tion (Y|Rgp) via

ot e 6]
¢SB Y — SBn :
e; — [Tz]
where Rgp is the set of relations (F), (B1), (B2), and
€i0; = 0,€; for all i, (SB1)
€;ej = €;5€; if ‘Z — j‘ > 1, (SBQ)
€i0; = 0;€; 11(."6 —_]‘ > 1, (SB?))
€;00; = 0404€; if ‘Z —j‘ =1. (SB4)

Notice that relations (SB1)—(SB4) are part of relations (E1)'—(E4)’, so that, in partic-
ular, FB,, is (isomorphic to) a quotient of SB,. If 3,7 € SB,, are singular braids, then
we write:

(i) B =@~ if B and v are equivalent under rigid-vertex-isotopy;

(ii) B =) if B and 7 are identical except for a neighbourhood which contains any of
the fragments catalogued in Figure 7; or

(iii) B =iy if 8 and ~y are identical except for a neighbourhood which contains any of
the fragments catalogued in Figure 8.
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Figure 8. Move (iii)

Figure 9. An intermediate triple singular point created during move (iii).

Remark 7.2. Move (ii) can be thought of as allowing a singular point to ‘swallow
up’ or ‘produce’ another twist or singular point directly above or below it, involving
the same two strings. Move (iii) can be achieved by allowing a triple singular point (see
Figure 9) to be momentarily created and then destroyed, as the strings pass from one of
the configurations of Figure 8 to another.

If B,~+ € SB,, are singular braids, then we say that 3 and ~ are flexible-vertez-isotopic,
and write 0 < -y if there is a sequence of singular braids 8 = By, 01, - . -, B = 7y such that,
for each j, we have either 8; =) Bj11, B; =) Bj+1, or 85 =iy Bj+1. We denote the =-
class of a singular braid 8 € SB,, by [0].. It is clear that =< is a (groupoid) congruence
on SB,,, and that G(yd) =< (Bv)d and 18 < 1 < for all 3,7,6 € SB,,. Thus, we may
form the quotient monoid SB,,/=<= {[#]. | 8 € SB,,}, which we call the flexible singular
braid monoid and denote by §SB,,.

Theorem 7.3. The flexible singular braid monoid §SB,, has monoid presentation
(Y|R") via

b 0'7;i1 — [giil]x) € — [T’i]x7

where R" is the set of relations (F), (B1), (B2) and (E1)'—(E4)'.

Proof. Now @ = ¢gpv : Y* — §SB,,, where v :SB,, — §5B,, is the natural map
[B] = [B].. So @ is an epimorphism and, since w1® = wo® for each (wy,ws) € R’
as may easily be checked, we have ~g/ C ker @. To show the reverse inclusion, suppose
that wy,wy € Y* such that wy® = we®. Choose 3,7 € SB,, such that [8] = wi¢sp and
[7] = wagsp. We then have ﬂ = v, and we must show that w; ~g ws. By induction it

suffices to assume that 3 =), 8 =)y or 8 =) 7. If 8=()7, then wy ~gr wa, using
the singular braid relatlons RSB C R". Suppose next that 3 <()~y. There then exists
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iy

Figure 10. The relation §z'27'i+1 = T¢+1§i2 does not appear to hold in FSB,,.

DAL

1 < i< n—1such that w; = wuw’ and wy = wvw’ for some w,w’ € Y* and some
+1 +1 2
u,v € {0; " e;,€;0; €5, €}

But then we have w; ~g» we by (E1)" and (F). Finally, suppose that 8 <) y. There
then exist 1 < 4,7 < n—1 with |i — j| = 1 such that w; = wuw’ and we = wovw’ for some
w,w’ € Y* and some

+1 +1
u,v € {ejej, eje;,€,0; €, €50, €j}.

The proof will be complete if we can show that all of the words in this set are R'-
equivalent. Now e;e; ~prv eje; by (E2)', while if {k,{} = {i,j}, then

ekalﬂek ~ Ry Ulilaflekalﬂek by (F)
Ul:tl +1. _F1

~ Ry o;,e0; ey by the observation in the proof of Lemma 6.1

~rr oo ey by (E1)" and (F)

~Rr €ley by several applications of (E1)’, (E2)" and (F),
completing the proof. |

Since the presentation of §SB,, in Theorem 7.3 differs from the presentation of 5,
in Theorem 6.4 only by the absence of relation (E5)’, it is natural to wonder whether
in fact §SB,, and §B,, are isomorphic. The existence of such an isomorphism would be
guaranteed if relation (E5)" was a consequence of relations R, which, by Theorem 7.3,
would be equivalent to knowing that ;67 < ¢77; for each 1 <i,j <n—1with [i—j] = 1.
Figure 10 gives a good indication that this relation ‘ought not’ to hold, and Lemma 7.4,
below, proves that it does not.

Lemma 7.4. Suppose that 1 <i,j <n—1and |[i — j| = 1. Then eiajz AR U?ei.
Proof. Let C(B) be the set of all cosets of all subgroups of B = B,,. If H and K are

subgroups of B and 3,7 € B, then the product of the cosets HF and K+ is defined to
be

(HB) * (Kv) = (HV (BKB71))57.

This product turns C(B) into a (factorizable inverse) monoid known as the coset
monoid of the braid group (for more details see [8,16]). We define a homomorphism
v:Y* - C(B) by

oF'w = {1} and W = () for each i.
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One may easily check that wi¥ = w9 for each (wy,ws) € R” so that ~g» C ker ¥. Sup-
pose now that there exist 1 < i,j7 < n — 1 with |¢ — j| = 1 such that eia? ~ Ry ojz-ei. We
must then have the coset equality

{"F Im € Z} = ()} = (eio)W = (05e;)¥ = ¢ (i) = {J<]" | m € Z}.

In particular we must have gicjz = gjzgim for some m € Z, and so O'Z'JJZ ~B a?o}”. But since
two ~p-equivalent words over Xp have the same exponent sum, we must have m = 1
so that oiajz ~B O'JQ»O'Z'. But then we must be able to transform oio? into UJZO'Z‘ using only
relations (B1) and (B2) (see, for example, [12]). But this is clearly impossible, and we

have the required contradiction. O

This lemma shows that the map FSB, — FB, : [ — [, [mi] = [Eiir1, 1]
is not an isomorphism. We now work towards showing that mo isomorphism exists
from §SB,, to FB,. We first state a well-known result concerning automorphisms of B.
For 3 € B, we denote by xs € Aut(B) the inner automorphism defined by vxg = 37178
for all v € B. We also let ¢ € Aut(B) be the automorphism of B determined by ;v = ¢; !
for each 1.

Theorem 7.5 (Dyer and Grossman [7]). Suppose that p € Aut(B). Then
(i) p = xp for some 3 € B;

(ii) p=1; or

(iii) p = x gt for some € B.

Lemma 7.6. Suppose that p € Aut(B). There then exists p € Aut(§SB,,) such that
.= bl for ally € B.

Proof. Suppose first that p = xg for some § € B. Then we may take p to be the
automorphism of FSB,, defined by [y]_p = [8~1v0]_ for all v € FSB,. Suppose next
that p = . Then we define p : §SB, — FSB, by [¢F']_p =[], and [ri]_p = [1i]_
for each 7. One may easily check, with the aid of Theorem 7.3, that g is a well-defined
homomorphism, which is clearly an involution and hence an automorphism. The result
now follows from Theorem 7.5. O

Corollary 7.7. If the monoids §SB,, and §B,, are isomorphic, then there is an iso-
morphism ¢ : FSB,, — FB,, such that [B]_¢ = [1, 5] for all § € B.

Proof. Suppose that ¢ : §SB,, — §B, is an isomorphism. Since [5]_1 is invertible
for all B8 € B, we must have [5]_v = [1, 8p] for some Bp € B. But then p : § — [p
is easily seen to be an automorphism of B. By Lemma 7.6, we may extend p to an
automorphism p of FSB,, such that [y]_p = [yp]. for all v € B. The result now follows
with ¢ = 5~ 14. O

Theorem 7.8. The monoids §B, and §SB,, are not isomorphic.
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Proof. Suppose that §B,, and §SB,, are isomorphic. Then, by Corollary 7.7, there is
an isomorphism ¢ : §SB,, — §B, such that [5]_¢ = [1, 5] for all § € B. By Theorem 7.3
and Lemma 6.3 (the proof of which uses only the singular braid relations), we have

= (5 DT g D) (61 siea)

for each i. This shows that ¢ is completely determined by [m1]_¢, and also that FSB,,
is generated by {[5]. | 8 € B} U {[m1].}. It follows that the monoid §B,, is generated by
[1,Bl|U{[n].¢}, and since [11]_¢ is an idempotent, we must have [11]_¢ = [£;;,1] for
some 1 < i < j < n.But then [£;, 6] = [mia]_¢ = [11]_¢ = [&;,1] so that (i,7) = (1,2).
Therefore, we also must have

[n3].¢ = ([nl.0) (3] ¢) = [E12, 1][1, ]
= [1,G][E12,1] = ([G]-0) (] ¢) = [G71]¢.

Since ¢ is an isomorphism, it follows that 7165 < ¢37;. But then, by Theorem 7.3, we
have elag ~ R a%eh which contradicts Lemma 7.4. This completes the proof. O

8. The pure factorizable braid monoid

The results of this section will generally be concerned with group presentations, so
we now take the time to establish the notation we will be using. Let X be a set,
and let X! = {271 |2 € X} be a set of formal inverses for the elements of X. Put
Rpx = {(z*'271,1) | 2 € X}. The free group on X, denoted F(X), is defined to be the
quotient (X U X~1)*/ R% - In practice, we will denote elements of F'(X) simply as words
over X U X !, identifying two words wy and wy if (w1, ws) € Rg«“,x- IfRC F(X)xF(X),
then we denote by R? the smallest congruence on F(X) containing R. We say that a
group G has group presentation (X|R) if G = F(X)/R? or, equivalently, if there is an
epimorphism f : F(X) — G with ker f = R*. In this case we say that G has presentation
(X|R) via f. If (w1, ws) € R, we write w; ~g wa.

We now state two general results concerning group presentations. A proof of the first
may be found in [15].

Lemma 8.1 (Magnus et al. [15]). Suppose that G is a group with presen-
tation (X|R) via f. Suppose also that W C F(X) is a set of words and that
N is the normal closure of W f in G. Then G/N has presentation (X|R U Rw) via
f'F(X)—= G/N:ww— N(wf), where Ry is the set of relations

w=1 forallweW. O
Lemma 8.2. Let X and Y be two disjoint sets, and define
TLF(XUY) = F(X)

by £ = x and § = 1 for each x € X and y € Y. Suppose that G is a group with
presentation (X UY|RU S) via f, where R C F(X) x F(X) and S C R*. Then H =
(F(X))f has presentation (X|R) via ¢ = flpx): F(X) = H:ww— wf.
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Proof. Now, by definition, we know that ¢ is an epimorphism, and that ~g C ker ¢.
To prove the reverse inclusion, suppose that w,w’ € F(X) and w¢ = w'¢. There is
then a sequence of words w = wy,wa,...,wp = w’ € F(X UY) such that, for each 1,
w; = ziuy; and w;1 = x;0y; for some x;,y; € F(X UY) and (u,v) € RUS. Since w = w
and @' = w’, the result will follow if we can show that w; ~gr w;11 for each i. Now, if
(u,v) € R, then

W; = Tiuy; ~R TivY; = Wiy1,
while if (u,v) € S, then @ ~g © by assumption, so that
W; = TiUY; ~R TiVY; = Wiy1,

completing the proof. O

We now return to our study of §B,. Recall that the pure braid group P = P, is
the normal subgroup of B that consists of all braids 3 such that 8 = 1. We identify P
with the subgroup [1, P] = {[1, 5] | B € P} of §B,,. With this in mind, we define the pure
factorizable braid monoid

§P.={€.8|E€E, pePt=][£P

PASI D)

For £ € E we define a subgroup
Pe ={B€ B (i,if) € £ (Vi € n)}.

Note that we have P C Pg for each £ € E, with equality if and only if £ = 1.

Lemma 8.3. Suppose that € € E. Then [€, P| = [€, Pg|. Further, Bg is a normal
subgroup of Pg and Pg/Bg = [€, Pe].

Proof. Let £ € E. Tt is clear that [£,P] C [£, Pg], since P C Pg. To show the
reverse inclusion, suppose that 3 € Pg. Since (i,i3) € £ for each i € n, we have
8= tivjy -+ - tipj, fOr some iy,...,%%,j1,...,jk € 0 with iy < js and (is,]s) € € for each
s € k. Thus, 8 =76, j, - Sipj, for some v € P. But then [£,6] = [£,7] € [€, P] since
By =G j, - Sipje € Be by Lemma 4.3, and so [€, P] = [€, P¢]. Finally, it is easy to
check that 8+ [€, ] defines a group epimorphism Pz — [£, Pe] with kernel Bg. O

In particular, §P, = Ugcpl€, Pe] is the disjoint union of the groups [, Pg], which are
therefore the maximal subgroups of §P,,. To make further progress towards understand-
ing the structure of FP,, we will study the quotients Ps/Bg = [, Pe]. We say that two
equivalences &1,&; € E are conjugate if E; = Ef for some § € B.

Lemma 8.4. If £;,&; € E are conjugate, then [E1, Pe,] &2 [E3, Peg,].

Proof. If & = 515 for some 3 € B, then it is easy to check that [£1,7] — [E2, Bv87!]
defines a group isomorphism [£7, Pg,] — [£2, Pe,]- O
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Suppose now that £ € F and that n/E = {Ny, ..., Ni} with min(N;) < - -+ < min(Ng).
Put \; = |N;| for each i. We say that € is convex if 7 < s whenever r € N; and s € N; with
1 <1< j < k. If €is convex, then we say that £ is standard if we also have A\ < -+ < Ag.
Note that every equivalence £ € FE is conjugate to a (unique) standard equivalence &
and so, by Lemmas 8.3 and 8.4, we have Pg//Bg: & Pg/Bg. From now on we fix £ € E, a
standard equivalence, with the N; and \; as defined above. The remainder of this section
will be devoted to analysing the structure of the quotient Pg/Bg. For i € k we put
N? = N; \ {max(N;)}, and let

n’ =N U---UN;,.

Let Xp = {a;; | 1 <i < j < n}. The following result is well known. For proofs see, for
example, [2] or [4].

Theorem 8.5 (Artin [2]). The pure braid group P has group presentation (Xp|Rp)
via
I F(Xp) — P Qi — Ozijgf)B,

where Rp is the set of relations

arsaijafsl = a;; ifi<rori>s,
-1 _ (—1,-1 )

ArsQsjlrg = (asj arj )aSj (a‘TjaSJ)v
-1 _ -1

ArsQrjQps = a’sj Qrjlsj,

-1 _ -1 1. Ny
ArsQijlrs = (asj a’rj GSJaTj)aU (CL

)

-1 . .
gj arjas;) ifr <i<s,

withl <r<s<n,1<i1<j<n,ands < j in each case.

For convenience we will simply write ~g, as ~p. For 1 <i < j < nlet &;; = a;;m € P,
and put Xp = {@;; | 1 <i < j < n}. Also, put Xg = {0; | i € n’} and 5 = {¢; | i € n’}.
A proof of the next lemma is included for the reader’s convenience, although it follows
from general facts about parabolic subgroups of Coxeter groups (see, for example, [14]).

Lemma 8.6. Suppose that 3 € Pg. Then 3 = s;, ---s;, for some iy, ...,i; € n’.

Proof. Suppose that ¢ = (ay,...,a,) is a cycle from the cycle decomposition of 3.
Now ¢ = tq, ,a, **tajas, and we have as,...,a, € N; for some j € k since (¢,i03) € €
for all ¢ € n. Now for each ¢ € {1,...,r — 1} we have

(Sai e Sai+1_2)8ai+1_1(8ai+1_2 e Sai) if a; < Qi+1,
tajai =

(Sairs " Sa;—2)8a;—1(Sa;—2 """ Sa;py) i @i > aiq1.

b

Each of the subscripts in this expression are in n® since (a;,a;+1) € £ and £ is convex. [

Lemma 8.7. The subgroup Pg is generated (as a group) by 5(:]3 UXe.
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Proof. We clearly have )~(p U Xe C Pe, so that ()}p U i’g} C Pg. To prove the reverse
inclusion, suppose that 3 € Pe. Then, by Lemma 8.6, we have § = s;, -+ 8, for some
i1,...,i¢ € n°. Putting v = ¢;, - --;,, we have 3 = (8y~!)y. Choose w € X} such that
wop = By~ L. Now By~ € P and so, by Theorem 4.7, we have

+1 +1
w~B aﬁlhql aph%

for some h € N, and py,...,pn,q1,...,qn € n with p; < ¢; for each ¢ € h. But then

51 ~E1 Y 3
6 = Opigr 7 AppgnSin T Sie € <XP U 25>’

and we are done. O
Now put Xps =XpUXeg.

Lemma 8.8. The group Pg has group presentation (Xp.|Rp,) via

aij = Qi
e F(Xp,) = Pe:
Oh ¥ Shs
where Rp, is the following set of relations:
braid relations among the o;, (B)
pure braid relations among the a;j;, (P)
aij = (0jo1 - 0is1)07 (07 - "0;_11) if (,j) € €, (D)

1 . .
Cl” Qi—1,5Q45 ifr=1i— 1,

Qit1,j ifr=i<j—1,

orajo;t = ai_jlai,j_laij ifr=j5-—1>4, (©)
@i j+1 ifr =j,
aij otherwise.

Proof. By Lemma 8.7 we see that m¢ is an epimorphism. For the remainder of
this proof, let &~ denote the congruence Rﬁ&g on F(Xp,). One may easily check that
Rp, C kermg so that = C ker mg. To show the reverse inclusion, suppose that w € F(Xp,)
and wrg = 1. It is sufficient to show that w = 1. Now, by relations (C) we have

w =~ WiwWs2

for some wy € F(Xp) and wy € F(X¢). By Lemma 8.6, we have we = w = s;, - - - 8;, for
some iq,...,i; € n’. We also assume that this expression is of minimal length. Now by
relations (B) and (D), and Theorem 4.7, we have

~ !
Wy =~ W0y, =04,y

for some wh € F(Xp), and so w ~ wywhoy, -+ - 04,. Since wrg = 1 we must have £ = 0
and wywh ~p 1 so that w ~ 1. O
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Lemma 8.9. The subgroup Bg is the normal closure in Pge of e

Proof. Since ¥¢ C Bg and Bg is normal in Pe, we see that the normal closure of e
is contained in Bg. Conversely, by Lemma 4.3 we know that B¢ is generated by elements
of the form ﬁ_lgijﬁ with 8 € P, 1<i<j<n, and (i,j) € £. In particular, we have
i,i+1,...,5—1€n’ Now

B8 = (Sig1 - j—18) " si(Sit1 - 5-13),
and since Gj41 - - gj—18 € Pg, the proof is complete. ]

For 8 € Pz we will denote the coset B¢ € Ps/Bg by [5]e. There is no conflict with our
use of this notation in § 3 since, by Theorem 3.2, the set of braids which are £-equivalent
to [ is precisely the coset Bef.

Corollary 8.10. The quotient Pg/Bg has presentation (Xp,|Rp, U Ro) via

Ajj — [dl ']57
7% F(Xp,) = Pg/Be:{ ’
on = [Shles

where Rq is the set of relations
o;=1 forallien’. (0)
Proof. This follows from Lemmas 8.1, 8.8 and 8.9. O

We now examine the manner in which the presentation of Pe¢ /Bg given in Corollary 8.10
simplifies. Denote by ~¢ the congruence (Rp, U Ro)*.

Lemma 8.11. If (r,s) € £ with r < s, then
(1) ay ~g ais forall 1 <i<r,
(ii) arj ~¢ asj for all s < j < n.

Proof. To prove (i), suppose that r, s € Ny for some £ and 1 < i < r < s. Then, since
£ is convex, we must have r,...,s—1 € sz and it follows, by (O) and (C), that

-1 -1
Ay ~E (Os—l e Ur)air(ar e Us—l) ~E Qis-
Statement (ii) is proved in an almost identical manner. (]

Corollary 8.12. If (i,5),(r,s) € € with i < r and j < s, then a;, ~¢ a;s.

Proof. Using the previous lemma, we have aiy~g ajr ~e¢ ajs if 7 < r and
Qir ~g Qis ~g ajs if 7 < . U

Lemma 8.13. If (s,j) € £ with s < j, then

Aijars ~¢ Grsa;; foralll <i<jandl<r<s.
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Proof. First observe that by (O) and (D), we also have ap, ~¢ 1 if (p,q) € €. Now if
i <rori> s, then the commuting relation already exists as part of (P1). If ¢ = s, then
a;; = as; ~¢ 1 by the observation, and the relation is trivial. If ¢ = r, then by (P3) and
the observation we have arsarja;; ~g a;jlarjasj ~g apj. If r < i < s, then using (P4)
and the observation again, we have

arsijayy ~e (a3 aasjan)aij(a) o) arjasg) ~e (ar) arpai(ar) ary) ~e .

Corollary 8.14. If 1 < i <r < j and j € Ny for some ¢ € k with Ay > 1, then
aijarj ~e arjaij.

Proof. Choose s € Ny \ {j}. If » < s, then by Lemmas 8.11 (i) and 8.13 we have
GijQrj ~E Gijlrs ~E QrsQij ~g Qrjai . If 5 < r, then since £ is convex we must have
(r,j) € € so that a,j ~¢ 1 and the commuting relation is trivial. O

Corollary 8.15. If 1 <i<j<n,1<r<s<j,andj € Ny for some { € k with

A¢ > 1, then
—1
ArsQijQpg ~g Qg .
Proof. By Theorem 8.5, we have amaijar_sl ~g waijw_l for some word w in the afjl.
By Corollary 8.14, we have waijw_l ~g aijww_l ~¢ a;; and we are done. O

For ¢ € k, let u; = min(X;), and denote by kg € k the index such that
(i) Aj =1forall 1 <j< ko,
(i) A\j > 1 for all kg < j <k.

Note that u; = jif 1 < j < ko+ 1, while p; > jif kg +1 < j < k.

Corollary 8.16. If 1 <r<s<k,1<i<j<k, andj > ko, then

-1
Oprprs Cpuipng Cpppgig ~E Qpagpug»

By Corollary 8.12, and the observation in the proof of Lemma 8.13, we have

1 if (r,s) € €,
Ars ~E
Qg ifreN;and s € N; with 1 <i<j <k

So we remove all generators a,s € Xp unless 7 = y; and s = u; for some ¢ and j. We
replace any occurrence of af! in the relations by ailﬂj if r € N; and s € N; with
1<i<j <k, orbylif(rs) €& By (O) we may remove each o; € X¢ with i € n’. We
also remove relations (O), (D), (B), and (C), which are now trivial.

Put Xe = {ay,,, | 1 <i<j <k}. By the previous paragraph, and Corollary 8.16, we

have the following.
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Theorem 8.17. The quotient Pg/Bg has presentation (Xg|Rg) via
g : F(Xg) — Pg/Bg CQupy [dmuj}g,

where Rg is the set of relations

arsaijar_sl = a;j ifi<rori>s, (Rel)
arstsjar, = (a; arag;(arjas;), (Re2)
arsarja;sl = a;jlarjasj, (Re3)
amaija,fsl = (a;jla;jlasjarj)aij(a;jla;jlarjasj) ifr<i<s, (Re4)
with 1 <r <s< kg, 1<i<j<ky, and s < j in each case, together with
Qg Cpri g a;rlus = Qpip; if j > ko, (Reb)

withl <r<s<k,1<i<j<k,ands < j in each case.

For ¢ € k let Uy, be the subgroup of Pg/Bg generated by {[a,u,]e | 1 < i < ¢}, and
let (Pg/Bg)" be the subgroup generated by {[a,,;]e |1 <i<j<k—1}

Lemma 8.18. We have the decomposition Pg/Bg = Uy, % (Ps/Bg)’.

Proof. Now if A\, = 1, then Pz/Bg = P and the result is well known (see, for example,
[2,4]). So suppose that \; > 1. It is immediate from Theorem 8.17 that Uy, is normal
in Pg/Bg, and Pg/Bg is clearly generated by Uy, U (Pg/Bg)’. Suppose now that 3 € Pg
such that [B]e € Un, N (Pe/Bg)'. Since [f]e € Un,, and since Uy, is commutative by
(Re5), we have

[Ble = [dnlllﬂk T dm;:luk]g
for some my,...,mg_1 € Z. By Theorem 8.17 we see that, for each 1 < i < j < k, there
is a well-defined homomorphism

B 1 ifr=1iand s=j,
exp;; : Pe/Be = Z: [ap,pu.]e = )
0 otherwise.

Since [B]¢ € (Pg/Bg)’, we have m; = exp;,([fle) =0 for each 1 < i < k so that
[Ble = [1]¢. This shows that Uy, N (Pe/Be) = {[1]¢} and completes the proof. O

Lemma 8.19. Let £ € &q,,_,, be the equivalence relation such that
{1, ey, — /\k}/gl = {Nl, e ;Nk—l}-
Then (Pg/Bg)' = Per/Bg:, where here we regard Pg/ and Bg: as subgroups of By, _y, .

Proof. This follows from Lemma 8.2 and Theorem 8.17. |
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Theorem 8.20. We have the decomposition
Pg/Bg = Z/{Nk X (UNk_l X ( < X (Z/INB X UNQ) e ))

Furthermore,
(i) if \; = 1, then Uy, is the free group with basis [Qu, u, e, - - [Guy_ypile;
(ii) if A\; > 1, then Uy, is the free abelian group with basis [G, e, -+ [Qpiq e

Proof. The semidirect product decomposition follows from Lemmas 8.18 and 8.19
and a simple induction.

(i) If A; = 1, then the subgroup of P¢/Bg generated by {[a,, u.]Je |1 <r <s<i}is
isomorphic to P; via the map

[Gppsle = Gy, = Gps foreach 1 <r < s <.

The image of Uy, under this isomorphism is U;, the subgroup of P; generated by
@14y - - -, Gi—1,4- 1t is well known (see, for example, [2,4]) that U; is a free group of
rank 7 — 1.

(ii) If A\; > 1, then the map Uy, — Z*~! defined by

[Ble = (expy;([Ble); - - - 7eXPi—1,i([5]£))
is clearly an isomorphism.
O

Theorem 8.21. The problem of deciding whether two elements [E1, (1], [E2, 52] € FBn
are equal is decidable.

Proof. Now [&1, 81] = [Eq, o] if and only if & = & and /615;1 € Bg,. An algorithm
to determine whether or not this is the case is as follows.

(l) If 51 7£ 52, then [51,61] 7§ [52,,82]. If 51 = 527 then g0 to step (11)

(ii) Choose v € B such that & = £] is a standard equivalence, and put 3 = 7615517’1.
Then ﬂlﬁgl € Bg, if and only if 8 € yBg,7v~! = Be. Now if 8 ¢ Pg, then 3 & Bg,
and so [E1, 1] # [E2, B2]. If B € Pg, then go to step (iii).

(iii) If B € Pg, then we have B ~p wo;, ---0; for somew € A* and iy,...,7, € n’. Let
w' € F(Xg) be the word obtained from w by replacing each of! by ailﬂj, where
r € N; and s € N; (and then deleting any resulting a/ilm) Let w” € F(X¢) be the
word obtained from w’ by replacing each ai_lﬂj by ailﬂj. Now, by Theorem 8.17,
we have 8 € Bg if and only if w’ ~p, 1. Again by Theorem 8.17, we have

!
W ~Re Wk -+ W2,

where each w; is a word over {ailw | 1 <i< j}. By Theorem 8.20, w” ~g, 1if and
only if each word w; either freely reduces to the empty word (in the case j < ko),
or has a zero exponent sum for each a,,,,; (in the case j < ko).

O
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