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SIGNAL SPACES—AN AXIOMATIC APPROACH TO SPACE-TIME

PETER SZEKERES

Dedicated to my father, George Szekeres, on his eightieth birthday

An axiomatic approach to relativity theory is proposed which is based entirely on
a single reflexive relation called signalling. This generalises and simplifies earlier
schemes of Kronheimer and Penrose and of Carter which are based on causality
relations. Many of the features of space-times, such as photon paths and topology,
have their counterparts in general signal spaces.

1. CASUAL SPACES

There is a school of thought [7] which regards Euclidean geometry as an excellent
piece of mathematical physics, that is, an axiomatic system which applies to the real
world. It was in something of this spirit in 1968 that George Szekeres, following a sug-
gestion of M.L. Urquhart, attempted to give an axiomatic foundation of the kinematic
part of Einstein's special theory of relativity [9]. This work was subsequently enlarged
on by John Schutz [8].

In a related vein there is Kronheimer and Penrose's axiomatic approach to space
and time based entirely on causal relations [6]. This work is motivated more by general
relativity than special, and attempts to encompass some of the unusual causal properties
which can arise in that theory. However it does allow for structures more general than
manifolds, and may eventually pave the way to a theory of discrete space-times which
could be reconciled with the paradoxes of quantum theory.

One thing which is not permitted in the Kronheimer-Penrose theory (hereinafter
referred to as KP) is closed timelike lines such as occur in the Godel universe [3]. Carter
[1] has extended the idea of a causal space to include the possibility of such causal loops.
The resulting structure is one he calls an etiological space. In this paper I shall adopt
a less arcane terminology.

By a pre-causal space we shall mean a triple (X, -<, <C) where X is a set endowed
with two relations -< (causality) and <C (chronology) satisfying the following axioms:

(Cl) x<x.
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(C2) If x -< y and y -< z then x •< z.

(C3) If x «C y then there exists z € X such that z ^ x, z =fi y and x -< z -< y.

(C4) H i « y , y - < 2 o r i - ( y , j / C ? then x < z.

Axioms (Cl) and (C2) say that causality is reflexive and transitive. (C3) says that
chronology only operates through distinct points. Condition (C4), called strong transi-
tivity, applies in general to spacetimes (where x -< y means there is a future-pointing
causal (timelike or null) curve from x to y, and x «C y means there is a timelike
curve from x to y), although Carter points out that it may be violated if the usual
requirement of C1 differentiability is relaxed. In place of (C3) Carter uses the slightly
weaker requirement that a point x can only be chronologically related to itself through
a distinct point, but apart from this minor difference our definition of a pre-causal space
is identical with Carter's etiological space. Our axiom makes an important fundamental
difference between chronology and causality in that the latter can be "atomic" (that is,
not broken down into finer connections) while the former can never be. Using (C2) and
(C3) it follows at once that chronology implies causality, that is,

x <; y implies x -< y.

Finally, the space will be called a causal space if it satisfies the further axiom

(C5) If x -< y and y -< x then x = y.

With a minor modification, this is essentially the same definition as used by KP. (C3)
and (C5) imply immediately that chronology never reflects, that is,

x •< x for no x € X.

KP also include a third relation —> called horismos, in their definition. It is defined
entirely in terms of the other two by

(H) x —• y if and only if x -< y and not x <C y.

Although it adds nothing fundamentally new to the space, its importance lies in that it
demarcates the border between causality and chronology. In space-times chronology is
defined as connectibility by a timelike curve (path of a material particle) while causality
allows null paths (photons) as well. In Minkowski space (special relativity) horismos
is simply the relation of being connected by a light signal, but in curved space-times
null cones can develop all sorts of pathologies such as caustics and focal points, making
the situation much more complicated—in general x —> y does imply that there is a
light signal from x to y, but the converse is not true. The following statement, called
horismoidal completeness, follows immediately from strong transitivity (C4):

(HC) If x -< y -< z and x—»z then x—*y and y—*z.
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Following Carter [1] with minor modifications, we define a subset Y of a pre-causal
space X to be vicious if it contains at least two points and both x -< y and y -< x
hold for all pairs of points x, y 6 Y. A subset Z will be called virtuous if the causality
condition (C5) holds for all pairs of points x, y € Z.

THEOREM 1 . A pre-causai space is a disjoint union of maximal vicious sets and

a remainder which is virtuous.

PROOF: Given two points x, y G X we write x = y if x -< y and y -< x. This is
an equivalence relation on X. The equivalence classes consisting of two or more points
are disjoint maximal vicious sets, while the remainder consisting of all those equivalence
classes which axe singletons forms a virtuous set. D

Finally a few words concerning order relations. A transitive relation < on a space
X is sometimes called a pre- ordering, while if it further satisfies the anti-symmetric
condition (C5) it is called a partial order. If for any pair of points x, y £ X one has
either x < y or y < x then the relation is called a total pre-order, while if it is a partial
order and total it is called a simple order. If < is a non-reflexive partial order (that
is, for no x is x < x), the order topology is the coarsest topology such that the sets
J+(x) = {y;y > x} and /~(x) = {y;y < x} are open. If < is a simple order the
topology is called the interval topology and is Hausdorff.

2. SIGNAL SPACES

In the foregoing two relations -<,C invoking four or five axioms were required.
Furthermore, despite this complexity, the horismos relationship does not provide a
suitable basis in general relativity for the concept of a light signal. One is thus led
to enquire whether a much simpler scheme could not be found in which the physical
notion of a light signal plays the central role. To this end we define a signal space as
a pair (X, S) consisting of a set X and a reflexive binary relation S. S is called the
signalling relation and we write xSy to signify that x signals y with a light ray. Note
that as in relativity the points x and y should be called events, and should not be
confused with observers. The single axiom is the requirement of reflexivity

(R) xSx for all x £ X.

It is hard to conceive of a simpler mathematical structure than this, yet it immediately
imposes on X a pre-causal structure as follows.

First define a causality relation Xs by

as -<s V if and only if there exists a sequence of events x\ = x, xi, . . . , xn =
y such that

x.-Sxi+i (t = l, 2, . . . , n - l ) .
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Such a sequence is called a signal sequence from x to y and n is its length. A signal
sequence is called complete if XiSxj for all 1 < i ^ j ^ n. We define a relation —*s by

x—*sV if and only if x -<s y and every signal sequence from x to y is
complete.

Note how the horismoidal completeness relation (HC) follows immediately from this

definition, and also that x—*sy implies xSy as required in space-times.

Finally define

x <Cs y if and only if x -<s y and not x—*sy-

This chronology relation is equivalent to saying that there exists an incomplete signal
sequence from x to y. The space (X, -Ksi'Cs) is readily shown to satisfy axioms (Cl-
C4) and therefore forms a pre-causal space, said to be generated by 5 . If this space
is causal, that is, satisfies (C5), then the signal relation 5 is said to be causal—it is
equivalent to the existence of no non-trivial signal loops, that is,

x = Xi5x2-5... Sxn = x implies x< = Xj for all i, j .

How much is lost by restricting oneself to signal-generated pre-causal spaces? Very
little it would seem. All space-times are signal-generated, as may be seen by the fact
that any timelike line can be approximated by a zig-zagging sequence of null geodesies
(known by the descriptive term "zitterbewegung"). Also all ,4-spaces (denned by KP
to be those causal spaces in which every pair of points x -< y can be connected by a
horismoidal chain x = x\ —>x2 -> . . . —*xn = y) are signal-generated by setting xSy
if and only if x—*y. Furthermore, every pre-causal space can be "embedded" in a
signal-generated space as the following theorem shows.

THEOREM 2 . Let (X, -<,<C) be a pre-causal spa.ee. Then there exists a signal

space (y, S) such that X C Y and X,<§C are precisely the relations -<s and <tis

restricted to the subset X.

PROOF: Set xSy for x, y € X if and only if x—*y. If x <§C y and there is no
horismoidal chain x — Xi—>X2—»... —>xn = y then define a new point Pxy and set

xSPxy, ySPzy and PxySPxy.

Let Y be the set consisting of the union of X and all such added points Pxy. Then
(Y, S) is clearly a signal space and it is easily shown for any pair of points x, y £ X

that

* ~<S y if and only if x -< y, and x <Cs y if and only if x <C y. _

Quite possibly the more powerful statement that all pre-causal spaces can be
signal-generated is true. It may be shown equivalent to the following set-theoretical
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statement—let (X, ^ ) be a partially ordered set which is dense in itself, then there
exists a subset D such that D and ~ D are dense in each other. [A subset Y is said
to be dense in a subset Z if for all x, z 6 Z there exists y € Y such that z < y < z.]

3. RAYS

Let (X, S) be a signal space. A subset Y of X will be called signal complete if for
every pair of points x, y 6 Y either xSy or ySx. A maximal signal complete set (that
is, one which is not a proper subset of any other signal complete set) will be called a
ray.

THEOREM 3 . Every signal complete set is contained in a ray.

PROOF: Let C be a signal complete set. Let C be the set of all signal complete
supersets of C, partially ordered by set inclusion. Every linearly ordered subset A of
C is bounded above by A = [JA, which is clearly signal complete. Hence by Zorn's
lemma, C contains a maximal element, which will be a ray containing C. D

Define the future and past signal cones of x £ X to be

S+(x) = {y£ X;xSy} and S~(x) = {y £ X;ySx}

respectively. The signal cone of x is their union S(x) = S+(x) U S~(x). If Y is any
signal complete subset of X we set

S{Y) = fl S{y).

That is, S(Y) is the set of points which are signal connected to all points of Y.

THEOREM 4 . A signal complete set Y is contained in a unique ray if and only if
S(Y) is signal complete.

PROOF: If S(Y) is signal complete then it is clearly maximal, and since every ray
containing Y must be contained in S(Y), it is the unique ray containing Y. Conversely
if S(Y) is not signal complete then there exists x, y E S(Y) — Y such that neither xSy
or ySx. Y U {«} and Y U {y} are signal complete sets which are contained in rays R\
and R2 • Clearly Ri ^ .R2 since x E Ri and x £ R2 • D

If S(Y) is signal complete we say the ray R = S(Y) is generated by Y. We set

(a, b) = {x £ X; aSx and xSb}.

If R is a ray and a, b 6 R with aSb then we define the ray segment from a to b to be

R{a, b) =Rn(a,b).
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We will call the ray R regular if for any pair of points a, b € R, R is either generated
by one of the ray segments R(a, b) or R(b, a).

The notion of a regular ray lends itself to the physical interpretation of a ray being
the path of a signalling particle (photon), a role occupied by null geodesies in general
relativity. It is not hard to construct space-times having non-regular rays. For example
if there exist three events a, 6, c such that there are separate null geodesies from a to
b, b to c, and a to c respectively (such a set of three points is easily found for example
in the Einstein static universe), then the three points R = {a, b, c} will form a ray (if
no other event is signal-connected simultaneously to each of them), but it will not be
regular since it is not the unique ray generated by {a, 6} = R(a, b).

One of the key properties of space-times is that if two signal-connected points
are close enough ("proximate" in a sense to be defined below) then there is a unique
geodesic connecting them. We accordingly define a signal space as regular if for any
two points a and 6 such that aSb there exists a regular ray R which is generated by
R(a, b). Our definition of regularity discounts certain rays which arise in a more or less
accidental fashion, such as the above example of a non-regular ray. Also, in the event
of both aSb and bSa the ray may only be regular for one of these pairs—to achieve
the reverse direction a new regular ray may have to be found.

A comparable notion of regularity is provided by KP entirely in terms of horismos.
It is not hard to show that our notion of regularity implies KP regularity, but in a sense
our concept is more general since it applies to pre-causal spaces, whereas KP regularity
is only applicable to causal spaces.

From KP we take the following definition: two points x and y will be called
proximate if x—*y and there exists a point u such that either (x—>u and y—*u) or
(•u—*x and u—*y), that is, x and y form the "short side" of a horismoidal triangle. This
is just another way of saying that the points are close enough that their horismoidal
connection can be continued at least in one direction.

THEOREM 5 . Let (X, S) be a regular signal space, and a, b £ X a pair of
proximate points. Then there exists a unique regular ray through a and b.

PROOF: Suppose a—»6 and there is a point c such that a^*c and b—*c (the proof
is identical if c horismoidally precedes a and b). By regularity there exists a ray R
which is generated by R(b, c). Let xi, x^ be any pair of points in (a, b). Then

a -< Xi -< c for t = 1, 2

and since a—*c we have by (HC) that

a—*Xi-*c for i = 1, 2.
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Now let w be any point in R(b, c). Then for each i = 1, 2 we have Xi -< b •< w -< c,
and since a;,-—*c we have by (HC) that X{—*w. Thus X{Sw and it follows that both xi
and X2 belong to S(R(b, c)) = R. Since R is ray signal complete we must have that
either X1SX2 or xiSx\. Hence (a, 6) is signal complete and R is the unique regular
ray through a and b. Q

4. TOPOLOGY

Various possibilities suggest themselves for defining a topology on a signal space in
a natural way.

ALEXANDROFF TOPOLOGY.

In a causal space X the Alexandroff topology is defined as the coarsest (smallest)
topology such that the sets I+(x) = {y\y ^> a;} and / ~ = {y «C x} are open. This
is essentially the interval topology defined at the end of Section 1 with respect to
chronology as a partial order. This topology is quite unsuitable for general pre-causal
spaces, and even in causal spaces it need not be Hausdorff. In space-times it leads to
the manifold topology if and only if it is Hausdorff [4]. In such cases the space-time is
called strongly causal.

ZEEMAN TOPOLOGY.

A different approach to the topology of Minkowski space has been given by Zeeman
[10], based purely on its causal properties. Zeeman type topologies are defined by the
topologies they induce on certain subsets, for example, the interval topology on straight
timelike lines. This idea can, with modifications, be extended to space-times in general
[2, 5]. This type of topology does not generally reproduce the manifold topology in
space-times (usually it is too fine), but has interesting properties in its own right.

For signal spaces, particularly regular signal spaces, the construct might proceed
as follows. On any regular ray R one can define a relation a ^R b as holding if and
only if aSb and R is generated by R(a, b). We say the ray is oriented if

a ^ H 6 and b < H C implies a < R C.

If this holds then ^n is a pre-order on R. In causal spaces all rays are orientable and
the pre-order is a partial order. When the space is regular the partial order becomes a
simple order. In general a Zeeman type topology is available when the space is regular
and orientable. It can be defined as the finest topology which induces a subtopology of
the interval topology on all regular rays. Although this topology is frequently Hausdorff
even in non-causal signal spaces, problems arise when a regular ray R exists such that
aSb and bSa for all a, b £ R. Such "signal loops" have no preferred orientations and
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every open set would be required to contain the whole ray if it contained a single point
of it.

Such topologies are in general finer than the manifold topology in the case of
space-times. For example in Minkowski space any open neighbourhood U of the origin
with all events of the form (x = 0, y = 0, z = 0, t > 0) removed is open in our Zeeman
topology but is clearly not open in the manifold topology.

INFRASTRUCTURE TOPOLOGIES.

Carter [1] has introduced the notion of a causal infrastructure. This is a way of
providing a causal structure (U, -<u,^.u) for every subset U which is a substructure
of (X, -<,<S). We define a signal infrastructure on a signal space (X, S) to consist of
a signal relation Su for every subset U C X such that

(151) If U C V then aSvb implies aSvb.

(152) If aSvb and V D U 2 <a, b>v= {x;aSvx and xSvb} then aSvb.

These two axioms imply, by Zorn's lemma, that any pair of points such that aSb are

contained in a minimal set M (not necessarily unique) such that aSttb. We impose

the following axiom on such minimal sets:

(153) If aSb and M is a minimal set connecting a and 6 then M is SM-
complete.

Hence minimal sets are always part of a ray connecting a and b, and (IS3) avoids the
need for imposing regularity as a way of modelling light signals. The path of a photon
from a to b can be regarded as proceeding along a minimal set.

A Zeeman type topology can be defined as the finest topology which induces a
subtopology of the interval topology (with respect to the simple order S) on all causal
minimal sets. Whenever regular rays can be covered by causal minimal sets, which
is certainly true in space-times for example, then we essentially recover the Zeeman
topology given above.

To obtain a topology closer to the manifold topology in the case of space-times it
seems necessary to impose a number of restrictions on the signal space and its infras-
tructure. We shall call a subset U normal if it has the following properties:

(Nt) The infrastructure signal relation Su is causal.

(N2) If o G U then every set of the form ^(a) = Rn S±(a) where R is
a regular ray through a (that is, a ray "starting" or "ending" at a)
intersects U in a point distinct from a.

(N3) If a <Ctr b then every regular S'tr-ray through a meets S(b) in a unique
point.

These properties all hold for suitable normal geodesic neighbourhoods of points in space-

times and are therefore minimal requirements. We will say the signal space is normal
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if every point a has a normal neighbourhood U. We can define a topology having a

subbase consisting of all subsets of the form

< « , & » [ / = {a;; a <Ci/ x and x <Ct/ &}

where U is any normal subset. This topology is clearly a refinement of the Alexandroff

topology. It can be shown to be Hausdorff when the signal space is normal, and reduces

to the manifold topology in the case of space-times (even when not causal).

It still remains an open question exactly what conditions must be imposed on a

signal space in order to recover completely the notion of a space-time, and indeed the

whole of general relativity.
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