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ABsTRACT. The laws of wind-speed variation with height and their modification with stability are discussed
and applied to observations in the first 2 m. over various cold surfaces. An exponential law is superior save
in frequent, near-neutral conditions, but the logarithmic law is superior in neutral and again in really
stable conditions. A power law and a logarithmic-plus-linear law give the best fit with the data only at
moderate stabilities. A logarithmic-plus-cubic law of wind speed is evolved that permits suppression of
linear additions to the logarithmic law at two distinct stabilities. A power form of variation of Richardson
number with height is found and compared with a linear form. The former is applied with the logarithmic-
plus-cubic law to the observed data, though with limited success. Eddy-viscosity coeflicients for the different
laws are compared.

REsUME. Vitesse du vent, stabilité et coefficient de viscosilé au-dessus de surfaces de glace en période de fonte. Les lois
de variation de la vitesse du vent en fonction de la hauteur et leur modification par stabilité sont discutées et
appliquées aux observations dans les deux premiers métres au-dessus de surfaces froides variées. Une loi
exponentielle est meilleure sauf dans des conditions fréquentes presque neutres, mais la loi logarithmique
est meilleure dans des conditions neutres et aussi dans des conditions réellement stables. Une fonction de
puissance ou une fonction logarithmique plus linéaire donne un meilleur accord avec les données seulement
a des stabilités modérées. Une loi logarithmique plus cubique (troisieme degré) de la vitesse du vent est
developée qui permet I'amortissement des additions linéaires a la loi logarithmique a deux stabilités. Une
fonction de puissance de la variation du nombre de Richardson avec la hauteur est établie et comparée
avec une fonction linéaire. La premiére est appliquée aux données observées avec une fonction logarith-
mique plus cubicue mais avec un succes limité. Les coefficients de viscosité pour les différentes fonctions sont
compares.

ZUSAMMENFASSUNG. Windgeschwindigheit, Stabilitit und Wirbelviskositat jiber schmelzenden Eisflichen. Es werden
die Gesetze fir die Anderung der Windgeschwindigkeit mit der Héhe und ihre Modifikation bei sich
dndernder Stabilitit diskutiert und auf Beobachtungen in den untersten zwei Metern iiber verschiedenen
Kaltflichen angewandt. Ausser unter den héufigen fast-neutralen Bedingungen ist cine Exponentialfunktion
zutreffend, doch in neutralen und dann wieder in wirklich stabilen Lagen iiberwiegt das logarithmische
Gesetz. Nur bei massigen Stabilititen stimmen ein Potenzgesetz und ein logarithmisches Gesetz mit linearem
Zusatzglied mit den Daten am besten iiberein. Es wird ein log-mit-kubisch-Gesetz {iir die Windgeschwindig-
keit entwickelt, das bei zwei bestimmten Stabilititen lineare Hinzufiigungen zum logarithmischen Gesetz
tberflissig macht. Eine Potenzfunktion fiir die Anderung des Richardson-Index mit der Héhe wird hergeleitet
und mit einer linearen Funktion verglichen. Die erste wird zusammen mit dem log-mit-kubisch-Gesetz auf
die Beobachtungsdaten angewandt, jedoch mit begrenztem Erfolg. Die Wirbelviskosititskoeflizienten der
verschiedenen Gesetze werden miteinander verglichen.

Tue transfer of heat, water vapour and momentum between the atmosphere and the ground
govern many of the physical processes enacted at the Earth’s surface. The rate of diffusion
of properties of the atmosphere by means of turbulence at the Earth’s boundary layer is
expressed by transfer coeflicients. If there is a certain identity in the vertical profiles of these
properties, the transfer coeflicients for heat, for water vapour and for momentum are assumed
equal, the last being evaluated from measurement of the variation of wind speed with height.
The form of the vertical profile of wind speed depends upon the physical characteristics of
the surface and the stability in the atmosphere over it. Air stability is expressed as a ratio of
the buoyancy forces to the inertial forces and may become so strongly positive that wind
eddies are suppressed near the surface—say in the lowest one or two metres of air. Something
near to this condition is experienced frequently over a melting ice surface which thus offers an
ideal opportunity for measurement of the range of turbulent mixing to correlate with stability
and hence find the exchange coefficients.

With the inherent difficulties of subjecting meteorological conditions to laboratory tech-
niques, most of the equations postulated as expressing the increase of wind speed with height,
have arisen empirically. Essentially, a universal law is sought which is applicable throughout
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the range of stabilities normally experienced in the surface layer of the atmosphere; the law
should not be so complex that it is generally impracticable. This paper considers the laws of
wind-speed variation with height in relation to available detailed measurements of wind speed
and temperature in the lowest 2 m. over various snow and ice surfaces.

Notation
The following symbols and abbreviations are used:
a,c constants for specific ranges of stability
T;—1T,

B inverse of a stability length = £ M (cm.™™)

Tn Uz
cp specific heat of air at constant pressure
fn) function of n
g acceleration due to gravity (cm. sec.”?)
H turbulent heat flux = pe, Ky g(cal. cm."*sec.” ")

4
k von Karman’s constant & 0-4
Ep eddy coefficient of momentum (eddy viscosity) (cm.” sec.”™)

K
KEu* dimensionless eddy viscosity = u_l‘::

*
Ku eddy coefficient of heat (eddy conductivity) (cm.* sec.”™)
{ mixing length
L mixing length at height z:
5 - H*3Tonp
L stability length = Foll (em.)
du
L o ToZ _ Kyl
Sl A o)
$dz

n power parameter > 1
¥4 power parameter
r linear dimension of object, e.g. radius of sphere in fluid or of pipe carrying

the fluid (cm.)

Re Reynolds number = ?
(a’T+ 1")
gl—
Ri Richardson number = % s ( I'is omitted when < %Z)
Z
Tl —
(dz)
s . Kpg dT|dz
Riy flux form of Ri = T, @ujdz)?
Ri, Richardson number at height z
s standard height (cm.)
e T.—T: o
Y stability index (after Deacon) = (°K. cm.7* sec.™?)

(ur:5)*

air temperature ("K.)
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T, mean temperature (°K.)
Uy friction velocity = (7/p)* (cm. sec.™")
U wind speed (cm. sec.”*) at height 2z (cm.)
u', w' eddy components of wind speed, parallel with, and perpendicular to, the
mean flow (cm. sec.™)
v velocity of fluid (cm. sec.™)
X a non-linear height variable = L[exp (z/L)—1] (cm.)
Zo surface roughness parameter (cm.)
®, v, ¢ constants for specific ranges of stability
d*u [ du
B power parameter = 27
r dry adiabatic lapse rate (& 41 %107 °C. cm.™")
8 measured deviation from the logarithmic law (em. sec.™)
4 dimensionless deviation from logarithmic law = -y )
*

T |dT
A a power law parameter = Y
v molecular (kinematic) viscosity (cm.? sec.™)
p density of air (g. cm.=3)
o standard deviation of z, (cm.)
T the eddy flux of momentum or shearing stress (g. cm.™ sec.™?)

To shearing stress at the ground (g. cm. " sec.™)

I ReviEw oF ExisTiNG Laws
(a) The logarithmic law

Experiments with fluids of uniform density distribution, in pipes and over flat plates,
indicate that the velocity varies as the logarithm of the distance from the boundary. This
relationship is applicable over smooth or rough surfaces with turbulent flow, which may be
recognized by fairly high Reynolds numbers (Re = 75x10%). For the atmosphere, there is
no adequate definition of the characteristic length required by the Reynolds number but
turbulent flow prevails. In a neutral atmosphere, i.e. when the vertical profile of air tempera-
ture is governed only by change in pressure, the vertical wind profile appears to follow a
logarithmic distribution. Many observers have found that the logarithmic law is applicable
over a fairly wide stability range (Brunt, 1939, p. 247), but becomes less satisfactory (Fig. 1)
as stabilities depart from neutral (Pasquill, 1949[a], p. 124).

The mixing-length hypothesis, though somewhat discredited, has not been replaced by
any very satisfactory approach. That hypothesis postulates that [ is a unique length which
characterizes the local intensity of turbulent mixing (Sutton, 1953, p. 73). Fundamentally
the logarithmic law rests on the assumption that velocity fluctuations in both vertical and
horizontal directions are identically proportional to the wind-speed gradient, i.e.

; L du
v =w Z
— du\*
The shear stress 7 = —pu'w’ = pl*|—] .
dz
With the supposition that / varies linearly with height (I = kz)
du T\} 1 Uy
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The constant introduced on integration is a measure of the surface roughness, being the
height (z.) at which the wind speed is zero and hence incorporated in the logarithmic law
generally expressed as

*
U= In ~ (2)
and, since the wind shear
du
T = pKym E ’
the eddy viscosity
du
e FREEE
Ry = Kz de kuy 2. (3)
THEORETICAL VARIATION OF WINDSPEED WITH THE LOG OF HEIGHT
Ri<0 Ri=0 Ri>0
=
v

/

LOG HEIGHT

WINDSPEED
Fig. 1. Effect of stability on the variation of wind speed with height

(b) Power laws

A less exact expression has been evolved, similarly from pipe flow, relating velocity with a
fractional power of the distance from the boundary. The power parameter may be modified
to extend the applicability of the law through the whole range of stability. Since this power
reflects surface roughness also, it is not an independent index of stability. Over grassland, the
power varies from } in stable, through } in neutral, to { in unstable conditions (Sutton,
1932, p. 74). In work on heat and vapour transfer over glacier surfaces the power law has
been favoured by a number of workers (e.g. Wallén, 1948, p. 572) after being applied most
successfully by Sverdrup over snow surfaces (Sverdrup, 1936, p. 14):

u= ux(i)]m (4)

1
du  wifz\z1
dz  n\xu

Kot = f(n) (ure) *° (i) T (5)

Z1

therefore
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This simple power law is not now used since it does not incorporate the friction velocity
u, nor the surface roughness parameter z, and the power index can be most unsatisfactory.
To overcome these difficulties Deacon advanced empirically, a systematic power parameter
which would account for observed deviations from the logarithmic law in non-neutral
stability and be applicable to all stability ranges (Deacon, 1949). In addition, the power is
independent of surface roughness.

The velocity profile is represented by

gl

where B > 1 in unstable conditions, 8 <C 1 in stable conditions, and 8 = 1 in neutral stability
when the expression reduces to the logarithmic law. The eddy viscosity becomes

V'
By = kuyz (z—) . (7)

Priestley states (1959, p. 30) that Deacon’s law is the simplest and most widely used;
Dalrymple and others (1963, p. 13) applied Deacon’s law to analysis of micro-meteorological
data at the South Pole; this power law is, however, not satisfactory for a very stable atmos-
phere.

(c) Logarithmic-plus-linear laws

Holzman and earlier workers such as Rossby and Montgomery (Sutton, 1953, p. 265)
suggested incorporating a function of stability into the logarithmic law. Monin and Obukhov
(1954, p. 6 of translation) added a function of height and stability for the deviation from the

logarithmic form;
du 1 2
z- (5 =) =

The function I was expanded as a simple power series in terms of z/L and the first two terms

used
Z E
F (T,) ~ I—{*ﬂl E.

Stability is expressed as the ratio of wind shear, represented by the momentum flux, to the
buoyancy forces represented by the heat flux and opposed by gravity. The Richardson
number (sec notation) is generally used as a parameter of stability but since this involves
drawing tangents to vertical profiles of temperature and of wind speed, simpler expressions
arc frequently adopted. Monin and Obukhov expressed stability as

B — i Tg—Tr
To lt';'
which gives dimensions of inverse length. For use in the wind-speed expression, by combining
all the appropriate elements of the flux equations:

the wind shear

. du
T = PﬁM' E’
the heat flux
aq
H — *CppKH E,
and
g
Tﬂ,
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Monin and Obukhov found a stability length

—kg H
=gy )
L=u [ FEZ 0
This was used in the wind-profile equation from (8)
. 5 [
uﬁk[lnznﬂ—f‘} (10)
which produces an eddy viscosity
-1
KM=ku*z(x+a§) , (11)

These expressions assume, from the apparent similarity of the temperature and wind-speed
profiles, that the exchange coefficients for heat and momentum, if not identical, vary with
height at a constant rate, i.e. Kpg/ky = constant. Without actual heat flux measurements,
the characteristic stability length L and the universal constant o may be found only by
regression involving the modified Richardson number, B. Assuming that temperature can
also be expressed similarly to (10) then

=

s (_cx) _ ofln(zs/21) + (/L) (23— 21)]

L] L[n(zs/20) +(o/L) 22]*
and «/L can be determined from three wind speeds using equation (10). Monin and
Obukhov, using data from more than 8oo profiles, through a stability range, indicated by B,
from —0-084 to 0-015, found « = +0-62. They suggest other functions might be more
suitable outside a moderate stability range. Recently Taylor (1960, p. 77) found that different
constants for various stability regimes are more suitable as indicated by Table I. In conditions
of free convection (temperature lapse), which are infrequent over melting ice surfaces, Taylor
considers that this logarithmic-plus-linear law does not apply.

where

TasLE I. VALUES DERIVED FROM OBSERVATIONS OVER (GRASSLAND
oF THE LOGARITHMIC-PLUS-LINEAR LAW CONSTANT &

(after Taylor, 1960, p. 77; Deacon, 1962, p. 3171; Monin and Obukhov, 1954, p- 20).

Value of a found by Taylor Value of
Temperature Jrom data by : by:
Regime Monin and Monin and
Rider Swinbank Qbukhov Deacon Obukhov
Adiabatic 12 6 6 g 6
Inversion 2.4 6 = — }0

Ellison (1957, p. 461) employs a modified form of the momentum coefficient

97

Ey*=—
M ez (12)

from equations (1) and (3)
U
(&)
£ b .

()L "
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; . 5 A 3
to determine the functlonf(f) in terms of the conditions which occur at extreme atmos-

pheric stability. If Ky* = k at Ri; = o, Ay* = o at Riy ., i.e. at very high stability.
Ellison’s expression for wind speed

Ku*\* Ku*z
k T kL
approximates to a logarithmic-plus-linear law
Uy & wla—u)
k
where £ — —. = a in Monin and Obukhov’s expression (10).
4 4‘le erit,

Using Rider’s data, Ellison finds « = 0-8 which compares with « = 0-6 by Monin and
Obukhov. To overcome the lack of absolute measurement of fluxes, Panofsky and others

(1960, p. 390) suggest

FF o KH e Uy Tu(di'l/dz)
© T T Ku T keldTldz)
and
,_Kn_
]lM
Expression (14) becomes
el k7o
U= []n re (z Zo)] (15)
and the eddy viscosity
= 22
hM_ku*z(I 411) (16)

The stability length L’ associated with this variation of the logarithmic-plus-linear law
may be defined in terms of actual gradients of wind speed and temperature. This avoids
dependence on stability indices or actual heat-flux measurements, but places heavy reliance
on the graphical construction of the profiles. Observational data appear to indicate a constant
y" = 18 for all except very stable conditions (Panofsky and others, 1960, p. 393). In such
conditions, Panofsky and others suggest that factors not considered in the similarity theory
may become important. Yamamoto (1959, p- 68) using Rider’s data over short grassland,
found ' = +56 in unstable and neutral conditions and, less distinctively, " = +7-3 in a
stable atmosphere.

An equation of similar logarithmic-plus-linear form has been suggested to account for
deviations of wind speed from its variation with the logarithm of height, especially in inversion
conditions (Liljequist, 1957, p. 212). However, as Liljequist suggests, a large vertical range of
observational data (up to 10 m.) is required for the definite recognition of the deviation; it
is scarcely possible for observations limited to the lowest 2 metres.

(d) Exponential law
To account for the change of shape of the wind profiles as indicated in Figure 1, Swinbank
(1964, p. 120) introduces into the form of the wind velocity gradient at neutral stability

I

Q..lﬁ..
| =
P’."‘Iz
P e
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a variable X which should be a function of heat and momentum fluxes as well as height

du Uy,

dX ~ kX'
Swinbank expresses the kinetic energy of turbulence in terms of the shearing stress and the
buoyancy

du du eH
o —

XTTE T T
from which the non-linear height X is evolved in terms of L

Xe=E [(E) = 1].
The wind gradient then becomes

du  uy =
& EL | ’ (17)
from which the difference between two wind speeds

Us | [CXP (2a/L) — l].

e T exp (zi/L)—1

)

k

With a value for £ and wind-speed observations at three heights, the length L and the friction
velocity u, can be evaluated.

Swinbank (1964, p. 123) shows that small errors in k£ (generally taken as = 0-4) can be
significant. Errors in u, will be equally significant; so to avoid these the measurements at
three heights are expressed as

[exp (z3/L)— I]

wu _ " S D=
Uy —Ur L= [PXP (51"1‘)_1]‘
exp (z:/L)—1

Although Swinbank’s exponential expression does not propose any critical value of stability, it
transforms to the logarithmic law in slight stabilities.

From (17) Kar = kugL[1—exp (—z/L)]. (19)

(18)

IT AppArRATUS
For the observations analysed here, the following apparatus was used :

Cassella-Sheppard sensitive cup anemometers were set up at all the sites. On the Britannia
Gletscher, Greenland, they were mounted at 30, 100, 200 and 400 cm.; on Britannia Se,
Greenland, at 6, 10, 30, 100 and 200 cm. ; in the Tarfala valley, Sweden, at 10, 30, 100, 200 cm.
and on the Storglaciiren, Sweden, at 100 and 200 cm. These last, giving the wind run over a
half or one hour interval, were a control on mean values of instantaneous wind speeds read
successively from hot bulb anemometers mounted at 1, 2, 4, 6, 8, 12, 30, 100 and 200 cm.
The hot bulb anemometer had been made to reduce the size of the anemometer and obviate
errors probable in closely setting the instruments, particularly near the surfaces, for detailed
vertical profiles. It comprised a sensistor (a semi-conductor with a high temperature coefficient
of resistance) heated by a constant voltage across it and cooled by the air flow, which varied
the temperature and hence the bulb resistance, which was in turn measured by amplifying
the out-of-balance current of a Wheatstone bridge. For reduction of rapid fluctuations and
part protection from the weather, the bulb was mounted vertically at the centre of a fine
wire gauze cylinder (Caisley and others, 1963, p. 42).
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In Greenland and at the valley station in Sweden, thermocouples were used to measure
profiles of temperature and vapour pressure (Lister and Taylor, 1961, p. 10). The apparatus
was similar to that of Pasquill (1949[b], p. 239). The 28 s.w.g. copper/constantan thermo-
couples were set in § in. (3-17 mm.) dia. X }in. (1:27 cm.) long copper rods to increase the
thermal capacity and attenuate the response to rapid fluctuations in temperature. Each pair
of couples was arranged as dry- and wet-bulb thermometers shielded from radiation and
mounted in an aspirated tubular mast at 2, 6, 10, 30, 100, 200, 300, and 400 cm. A light-point
galvanometer was switched in turn between each thermocouple junction and a standard
reference junction kept in a vacuum flask of melting ice, the temperature of which was
checked from time to time with a spirit thermometer. The galvanometer could be read more
quickly than a potentiometer; the eight pairs of thermocouples could be read in one minute.

On Storglacidren, temperature and humidity profiles were measured by resistance
thermometers (sensistors), mounted as wet and dry bulbs along a single axis of concentric
radiation screens and a small 12 V. motor and fan for aspiration (Caisley and others, 1963,
p- 39). Fine copper wire was wrapped around each sensistor to lag the response to temperature
and humidity changes. Resistance values were obtained with the same Wheatstone bridge
used to measure wind speeds. At each of the Storglaciéren sites, nine of these compact units
were mounted at 1, 2, 4, 6, 8, 12, 30, 100 and 200 cm,

Mean profiles of wet- and dry-bulb temperatures were taken from at least six sets of
profiles read at approximately equal intervals through one hour. Observations were made
during alternate hours for periods varying from 8 to 48 hr. on various days in the ablation
season at each glacier.

Instruments were interchanged vertically along their respective masts to ensure that any
experimental error would not systematically affect the whole series of observations.

Accuracy of the cup anemometers has been given as 2 em. sec.”" but on a glacier, vertical-
ity of the spindle cannot be perfectly maintained so -5 em. sec. " is more realistic. The hot-
bulb anemometers, calibrated in a wind tunnel, had an accuracy of -}-8 cm. sec. *; the
thermocouples +0-05° Ci.; the temperature measuring sensistors +0-04" C. The sensistors
were found, by recalibration, to have remained stable throughout the period of the field work.
Error in height interval between instruments was not more than o-5 cm. but the coincidence
of the height zero with a mean surface was inevitably the most difficult to achieve in the field.
From the plotted data, however, the height datum does not seem to be in error by more
than +1 cm. These errors were not exceeded when drawing vertical profiles, values from
which were used in calculations.

III SitEs WHERE OBSERVATIONS WERE RECORDED

Wind-speed and temperature measurements recorded during the melting season were
used from the following sites (the designation numbers are retained in Fig. 2):
1. Tarfala valley, -5 km. long, 0- 5 km. wide across the bottom of the U-shaped cross-section,
runs approx. north-south in the Kebnekaise massif in north Sweden. This hanging valley has
three tributary valleys occupied by glaciers, though the main valley is snow-free in summer;
it is steep walled and floored by fluvially re-worked moraine with sparse, very short vegetation.
The site of observation was on a gentle slope averaging 4 degrees that increased to the east,
into the valley wall. Stone fragments and cobbles, interspersed with patches of thin seil and
moss were dotted irregularly with 20 to 50 cm. dia. boulders. These last were cleared from
the immediate location of the site and were sparse in the direction of the prevailing wind,
down-valley. Zo = 04 cm. with standard deviation ¢ = 012 cm. Station height 1,110 m.
lat. 67° 58" N., long. 18° 38" E.
2. Storglacidren, 3 km. long, 0-8 km. wide, flowing cast from the cliff slopes of Kebnekaise,
in one of the valleys mentioned above. Two stations were set up approximately on the centre
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line of the glacier surface which had a 4 to 5 degree slope and was snow-covered initially but
changed to coarse firn and then largely to smooth ice intersected in places by melt-water
channels. Wind over the surface was generally at a small angle to the centre line and more
frequently down-glacier. Z, = 0-01 cm. ¢ = 0002 cm. Upper Station: height 1,385 m., lat.
67° 53" N., long. 18° 35" E. Lower station: height 1,325 m., lat. 67° 53’ N., long. 18° 36’ E.

STABILITY

3, LAPSE NEUTRAL INVERSION TOTAL
< ounen <-0125 I-u-m to -0.0125 I -0:0125 to +0.0125 [ +0-0125 to +0125 | >.0125
0 11 1 IV 1 111 L 1] 4 L i 0 Ll L 1
09- 09
o 2
o 05— ros
s
4
01- Lot
[
09- 09
[ — T I o .
i 2
T o5 Los
o
o 4
0= o
0
09- 09
- = N (R N ] || — — "
om L e 24ee - - |- e ————
Q Zos 05
8e ‘
01- Ll
t o
09" 09
oz | B S e e~
z 1
PR [ mm— 2 ——
<1 o5- L — 05
£ 4 4
=3
01- rod
0 - L o
o9- Fo9
ad
e, " :
« os- S B ] e (o0
o w I 1 =
3 § 4 R 4 T I D s
01- 4 . /
09- Los
bY 7 N :
O M os- LAn. . __m. ros N
=22 (1 1l e d et e R s
Q 4 4
o | - | (S —— Lo1
123 4 ' 5 [123 4 ' 5 [123 & 5 123 4 5 123 ¢ 5 1 23 4 5
= =
= <8 1 ICE-FREE VALLEY 0 20 4« &0 & g £
% W 2 STORGLACIAREN Lol lidad w oA
2 3 FROZEN LAKE NUMBER OF PROFILES -
Eu b E 4 UPPER BRITANNIA GLETSCHER REPRESENTED BY WIOTH OF ﬁ e 5
z 2 8 5 LOWER BRITANNIA GLETSCHER EACH INDIYIOUAL COLMN S ca
§ e ---- GROUP MEAN g S
&3 i)
w w
[ o w

Fig. 2. Mean deviation of wind speeds (observed in the lowest 2 m.) from laws of wind-speed variation with height. The two
scales on the ordinales are ““goodness of fit” o to 1 and mean deviation expressed as a percentage of the mean wind speed at
1 m. The abscissa scale gives the number of verlical wind profiles for which the respective law was applicable and is
divided inlo groups for different sites; the dotled line gives the mean fit for all sites. The summary on the right indicates
the applicability of each law at all stabilities
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Since these stations were 1 km. apart with similar surfaces the observations are taken in one
group in Figure 2.

3. Britannia Se, approximately 10 km. long, g km. wide, is a frozen, ice-dammed lake in
north Dronning Louise Land, north-east Greenland. Instruments were sited 200 m. from the
northern shore of the lake and operated when the wind was east or west, giving a fetch of
approximately 2 km. over the melting ice surface, which had slightly roughened patches where
the ice had candled. Zo = 0:04 cm. ¢ = 0-005 cm. Station height 223 m., lat. 77° o9’ N.,
long. 23° 40" W,

4. Britannia Gletscher, 14 km. long, 8 km. wide, is a valley glacier flowing south into Dronning
Louise Land from the Greenland Ice Sheet. Above the comparatively steep glacier snout,
overall slope varied little from 2 degrees. Coarse snow in sastrugi 10—40 cm. high at the
beginning of the melt season gave place to undulating wet snow and finally to bare, hum-
mocked ice. The upper station data is representative of conditions on the margin of the inland
ice. Apparatus was located 1-5 km. from the eastern edge of the glacier but the wind, largely
N.N.W., had a fairly uniform fetch of nearly 4 km. z, = 0-7 cm. (early summer 2o = 1: 14
0-25, middle summer 2z, = 0-68+40-14, late summer zo = 0-58+40-15). Upper Station:
height 620 m., lat. 77° 14" N, long. 23° 48" W.

5. Britannia Gletscher, the lower station data are representative of conditions over the
ablation zone of the glacier. The station was 0-5 km. from the glacier edge but well clear of
changes in slope and steeper streams, though towards the end of the ablation season, a deep
channel passed near the site. The surface was fairly uniform over 5 km. upwind. z, = 0-5 cm.
(early summer zo = 0- 404016, middle summer zo = 0-504-0-31, late summer z, = 0-57
+0-15). Lower station: height 460 m., lat. 77° 12’ N,, long. 23° 48" W.

IV ApprLicaTiON oF ExisTING Laws To OBSERVED DATA

As a first step in finding the coeflicient of eddy diffusion for subsequent evaluation of heat
and vapour transfer over the various melting ice surfaces, the observed wind-speed profiles
were examined to find which law of wind-speed variation with height offered the best fit.
When classified into stability groups according to the Richardson number the data confirmed
first impressions that unstable conditions were infrequent over melting ice. Highest stabilities
(Ri > +o0-5) were found on the Britannia Gletscher, especially at the lower station where
low wind speeds (@200 = 1-6 m. sec.”') were more frequent. The mean deviation was found
from the sum of the separation of observed wind speeds from the best theoretical profile of
each wind law that could be drawn for that one hour test. A law which gave a profile that
attained an overall mean deviation of less than 11 per cent from the mean wind speed of the
observed profile was retained. Only those profiles which reached this standard for at least one
law were ultimately recognized. 20 per cent of the profiles were outside this criterion; they
could be fitted by none of the above laws. Fig. 2 summarizes the relationship of the mean
deviation and the goodness of fit of the profiles in respect to site, law and stability.

(a) Suitability of the logarithmic law

The logarithmic law was most applicable in neutral conditions and, very unexpectedly,
in marked inversions also (an example is shown in Figure 3). For each site the surface rough-
ness parameter was evaluated from this law in neutral conditions and has been given with
the site descriptions in section IIT. Roughness parameters of the same order of magnitude
have been determined by other workers at similar sites (e.g. Sverdrup, 1936; Liljequist, 1957;
Keeler, 1964). The friction velocity, u, , was usually within the range 45 to 15 cm. sec.™.

(b) Suitability of the power laws
A power law, and Deacon’s modification of it, also fitted the observations fairly well, but,
within stability groups, the variation of the power parameters was often quite large as shown
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in Table IT and Figure 4. On the frozen lake and at the Swedish sites, the index 1/n for the
power law in neutral conditions was approximately 4 which agrees with the empirical value
quoted in Section I above, whereas that for the Greenland glacier (the roughest surface) was
1. In the few unstable conditions experienced, the power law index was 4y which also agrees
with the value givenin Section I but these values were also found for the very stable conditions.
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Fig. 3. Wind profiles and associated temperature profiles in various stabilities at the lower glacier site on Britannia Gletscher

Taere II. VAriaTION wiTH STABILITY OF CONSTANTS IN LAws oF WIND-SPEED VARIATION WITH HEIGHT
Figures in brackets indicate number of profiles used here,

Sites: 1 Ice-free surface (Tarfala valley)
2 Storglacidren
3 Frozen lake (Britannia Se)
4 Britannia Gletscher—upper
5 Britannia Gletscher—lower
Stability Lapse Neutral Inversion Site
Richardson number < —o0-125 —0-0125 to —0-0125 to +0-0125 to =0-125
—0-125 -+o-0125 -+0-125
9-20 (2) 6-79 (10) 6-16 (8) 415 (6) 5-46 (5) 1
n 12-50 (1) 8-44 (1) 6.76 (1) 6-09 (2) 23-17 (5) 2
in power law — — 6:-79 (3) 6-45 (7) 6-28 (4) 3
expression (4) £== = 4-71 (29) 4-41 (10) 6-35 (7) 1
= - 4-83 (11) 5-11 (39) 6-13 (14) 5
1-17 (2) 1-10 (10) 1-04 (8) 100 (6) 1-16 (5) 1
B 1-20 (1) 1-09 (1) 0-93 (1) 0-86 (2) 1-14 (5) 2
in Deacon’s law —_ = 0:97 (3) 0:96 (7) 0:95 (4) B
expression (6) — — 0-99 (29) 1-04 (10) 1-14 (7) 4
= = 1-02 (11) 1:05 (39) 1-09 (14) 5
5 5 —5 —i 1
a — 73 — 73 i 2
in log-plus-linear law 1 s 14 +14 3 3
expression (10) = +14 + 14 ? 4
— +14 +14 ? 5
+35 +35 +35 —wt 1
¥y —10 =10 — 10 —10 2
in log-plus-linear law 2 = +20 +20 = 3
expression (15) = = —4 —4 4
= —4 —4 —4 5
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The B value in Deacon’s power law (Table I1 and Fig. 5) was generally greater than unity
even in stable conditions. A minimum is suggested for 8 in Figure 5 at what appears to be a
critical value of Ri = o0-2. It seems that neither the logarithmic nor the power laws are
satisfactory through the range of stability experienced over melting ice.
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* Lower Glacier the group mean law

Fig. 4. Variation wilh stability of the index n in Sverdrup’s power law (expression (4))

(c) Suitability of the logarithmic-plus-linear laws

Following Monin and Obukhov’s theory, different constants were derived for various
stabilities at the six sites, Figure 6 shows the regression between B and f(«/L) for the ice-free
valley site. From Table II it appears that « (in expression 10) is not a universal constant.
Table II shows a variety of constants evaluated for the second logarithmic-plus-linear law
(15). At very great stabilities Ri > +0-5 a relevant constant could not be distinguished and
generally this law gave a relatively poor fit. The main difference between these two laws is
that for Monin and Obukhov’s law the ratio «/L is found from each profile and this ratio
determines the remaining velocities at various heights for comparison with observed wind
speeds. For the second log-plus-linear law, however, each profile gives z/L’ (after Panofsky and
others, 1960), but " must be found graphically from Ellison’s relationship between k/Kj*
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RICHARDSON'S NUMBER Ri
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and z/L'. The applicability of the first law to each profile, is, therefore, independent of a
general constant, although this is essential to the second law. Hence the first logarithmic-plus-
linear law would be expected to fit individually, better than the second law, as it appears here

(Fig. 2).
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Fig. 7. Variation of L with the ratio of wind-speed differences in Swinbank's exponential law

(d) Swmitability of the exponential law

To apply Swinbank’s exponential wind profile (18) directly to the observations, Figure 7
was prepared giving the ratios of wind-speed differences for various values of L. Similarly
the friction velocities were derived as a function of L. From Figure 7 it will be seen that
there is a limiting wind ratio for the depth of the air layer concerned. As L increases in
neutral stabilities, the extreme ratio of expression (18) becomes

U3—ux In ZyIZI
u:—ur  In Z:/ZI.

With 21, 22, and z; = 30, 50 and 100 cm. this ratio is 2-36. Ratios beyond this limit were
found to have occurred for some of the inversion conditions but for 38 per cent of the wind
profiles, a stability index L and a friction velocity #, could be determined. With these values,
the velocities at 200 cm. and 10 cm. have been calculated to compare with observed wind
speeds at these heights. The mean deviation for all sites considered range from 10-2 cm. sec.™
over 21 profiles in adiabatic conditions to g-2 cm.sec.” over 10 profiles in conditions of
strong inversion.
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The limit in the number of wind profiles to which the exponential law could be applied
precludes a comparison of the fit of the law in the manner used in Figure 2 for comparison
of other laws. But the differences between the total mean deviations of the exponential
application and of the total mean deviations of the other expressions tried here, are shown

in Table I11.

Tasre I1I. THE DiFFERENCES BETWEEN MEAN ESTIMATES FOR WIND SPEEDS (oM. sEc.™') BY THE EXPONENTIAL
ExPRESSION AND THAT BY ALL OTHER Laws

+ indicates that the exponential expression is superior, being nearer the observed value.

Lapse Adiabatic Inversion
Law of wind-speed —0-125 —0-0125 +0-0125 fo-125
variation with height Ri < <R < < Ri< < Ri < = Ri
—0-125 —0-0125 +0-0125 +0.125

Logarithmic law +0-69 +0-24 —6-68 —o0-06 —o0-08
Power law +1:50 +0:35 —g=71 —0-01 {0-52
Deacon’s law +1-09 2046 —4-98 +1-10 {0:06
Logarithmic | linear law (1) +0-82 479 — 1741 —0-55 b1e13
Logarithmic}linear law (2) +29-46 + 1444 +1-00 f4-19 +380-0

Swinbank’s expression is more fitting over the whole stability range than the second log-
linear law only, but for all lapse conditions it is the superior expression. There are few profiles
in stable conditions to which the exponential form could be applied, but the differences
resulting between it and the logarithmic law are very small.

Since fluxes were not available to accompany the wind-speed observations used here, L
and u, could not be found independently for comparison with values determined from the
exponential function. However, Swinbank (1964, p. 133) used a drag coefficient and wind
speeds at low heights to estimate friction velocities and found a very high correlation (0-99)
of these with the values derived from his exponential expression; the observations were
recorded in convection conditions. From the data in adiabatic and stable conditions analysed
here, friction velocities were obtained using the exponential expression for the air layer from
10 to 100 cm. to give the most representative values for each wind profile. These were com-
pared with friction velocities determined from the drag coefficient and wind speeds at 30 cm.
(Fig. 8). The correlation coefficient for the 111 values found by the two methods is 0-56
with a significance level greater than o-0o1. This comparatively low coeflicient is indicated
in Figure 8 by the wide scatter about the unit-gradient line. Generally, the estimates via the
exponential function are too low,

Thus, though Swinbank’s expressions seem more applicable than any other in lapse
conditions, it does not satisfy the observations in a neutral nor in a stable atmosphere. The
exponential expression implies a continuously increasing deviation of the wind-speed profile
from the logarithmic form as stability intensifies. For the observations considered here, the
logarithmic law is satisfactory in neutral and in high stabilities, so here the failure of the
exponential law is apparent.

It must be concluded that none of the existing laws are satisfactory. The most difficult
part of the range is in the stable region, which is dominant over melting ice. It is thus necessary
to look further for one functional expression which would encompass the whole spectrum of
stability conditions.

V VARIATION OF THE RICHARDSON NUMBER wiTH HEIGHT

A problem arising from any form of velocity gradient as a function of the stability gradient
is that of integration from the gradient expression to the wind-speed equation when the
Richardson number is involved. Priestley (1959, p. 25) assumed that the Richardson number

https://doi.org/10.3189/50022143000019109 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000019109

WIND SPEED, STABILITY AND EDDY VISCOSITY OVER MELTING ICE Il7

varies linearly with height. Deacon (1953, p. 45) similarly suggested that a linear relation
would be a good approximation since if

ou eT
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Fig. 8. Comparison of u, found from the exponential law and from the drag coefficient

The power indices are a little different from unity and they do not change by the same
amount under different stabilities, so the relation between stability and height though
approximately linear may in fact be more complex. No systematic relationship between A
and B, or A and stability was apparent in these observations, so Deacon’s expression for the
Richardson number could not be employed.

The Richardson number itself can be found rather inaccurately, without an exact mathe-
matical knowledge of the velocity and temperature profiles, by measuring gradients graphi-
cally.

As a stability index, only one value of the Richardson number is generally found for a
profile, solittle data on its variation with height are directly available. However, the Richardson
number has been evaluated at 10, 30 and 100 cm. for 36 per cent (6o profiles) of the data
used here. After grouping into classes, a distinctive pattern can be seen (Fig. g) in which
stability varies as a power of height and the power varies with the mean stability of the
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profile. If Ri; and Ri, are the Richardson numbers at a standard height and at height z
respectively, then

Z\P

Ri, = Ri; (—) . (20)

Zs
This equation ensures a dimensionally correct function. For all the profiles observed over a
2 m. height interval, the Richardson number had been found at the mean logarithmic height
of 55 em. so Rig became Ris;.

From Figure g it can be seen that as stabilities increase, gradients decrease until at

12 3 A4 65B 7 8
)012) @ © 6N (2)
. S o

100 T T

1-8 UPPER BRITANNIA GLETSCHER

A,B FROZEN LAKE SITE
@ NUMBER OF TESTS

LOG Z(cm.)
30

01 10 10 100 1000
RICHARDSON NUMBER x10°

Fig. 9. Variation of Richardson number with height z

Ri= 0-2 the gradients change sign. Values of Ris; and p plotted on logarithmic paper show
a good linear regression

0-2
p = 1-317log '
Hence

(21)

o] logio (0°2/[Rigsl)
Riz e Riss I:_]

55
It may be noted that this expression implies that with Ri; = o-2 stability is constant with
height; below this value the power index is positive, Ri increasing with height. To accom-
modate temperature lapse conditions, in which Ri is negative a modulus sign is necessary,
hence |Riss| in the power index.

Though there is very little data on the variation of stability with height, Dalrymple’s
observations at the South Pole give Richardson numbers at 1, 2, and 4 m. calculated from
differences of observed values rather than from drawn gradients (Dalrymple, and others,
1964, p. 12). The form of the Richardson number used is

g 4z4T

Ri = To_—(du)z

(22)
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Using the Richardson number obtained at 100 cm. as a standard value, the Richardson
number at 200 cm. has been calculated via the power function (21) and the linear function

2 . B
Ri; = Riz—.
Zs

(23)

The agreement of the calculated with the “observed” Richardson numbers is not very good
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Fig. ro. Comparison of observed and calculated Rizoo based upon Dalrymple and others’ (1963) South Pole dala

but the agreement using the power function is slightly superior (Fig. 10). The root-mean-
square of the deviations using the power function is 0013 whereas that of the lincar function

estimate is 0-025.

Independent of the characteristic stability of a profile, neutral stability predominates very
near the ground. The function suggested here gives this relationship, but does not always
indicate an increase of the Richardson number with height. For values greater than Ri; = 0-2
the maximum value of Ri must be found at heights less than the standard height. The power
function of the variation of Richardson number with height is used in the subsequent analysis

of wind-speed profiles.
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V1 DeviaTtioNn oF WIND SPEED FROM THE LOGARITHMIC FORM As A FUNCTION OF THE
Ricuarpson NUMBER

In conditions of free convection, the mixing length (see Section I(a)) should tend to plus
infinity and become zero at some high positive stability where turbulence is precluded. But
the deviation from the logarithmic law for these observations over snow and ice has been
shown (Fig. 2) to become a minimum at two separate ranges of stability. A cubic form thus
seems appropriate (Fig. 11) for the relation of stability to the mixing length and, by differ-
entiation, also for the velocity profile.

Velocity Profile—b/
X /
kz e
e
/ \ / +Vi
P \ / h
i % o
0 55 & 00
-ve
/ Mixing Length—
D - deviation from Log Law
I I - mixing length (cm.)
k -von Karmdn's constant =040
I z -height (cm)
¥ 1 "
i 0 +0'5
-ve +ve

THE RICHARDSON NUMBER

Fig. r1. Variation with stability of the mixing length and of the deviation of observed wind profiles from the logarithmic law,
implied in Figure 2

The average deviation between observed wind speeds and those velocities determined
from the best-fitting logarithmic expression was found for each profile (Section IV). The wind-
speed deviation from the logarithmic form may be taken as positive in stable, and negative
in unstable, atmospheres (similar to Figure 1) and may be expressed, for all z, as

T &
u—Tlnaﬁ|8| (24)
The cubic variation of 8 with the standard Richardson number is apparent in Figure 12
although it must be noted that dimensionally, § is a wind speed. To be pliable differentially,
a simpler, dimensionless function is required, such as

u = HT* [lnzE - A] where 4 = —k+8. (25)

Uy
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The same logarithmic profiles as used to find 8§ also gave u,. This used the mean of the
wind-speed observations near the surface but assumed the logarithmic distribution applicable.
As a check on this, the u, values were also derived from the wind speed at the lowest height
of observation and the drag coefficient u, */u* at that height, assumed to be the same as that
found from near-neutral profiles. Figure 13 shows good agreement in most of the values of
u, found by these methods. A cubic form of the variation of 4 with stability seems to be

5§=136 Ri—
+0-2 +
*1
] o ;
6=45Ri-45Ri"+11 Ri
+01 4+
5 13 12 ia
5 49
0
+06
1
1
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» o Ice free Surface 7 s
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inversions : +0-02 oO-IOI- +0 ;36
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-02 0 +02 +04

THE RICHARDSON NUMBER AT 55 CM.

Fig. 12. Variation with stabilily of the mean deviation & in m. sec.™" of observed wind-speed values from the logarithmic law

required as in Figure 14. A simple linear addition to the logarithmic law, shown by the line
through the origin of this graph, is less representative than the cubic form. Hence

u==* [ln (Zi) + 848 (RP—Ri*+0-25 Ri)]- (26)

From this function, differentiation gives an expression for the mixing length

0*2

~1
l=k= [1 +11-18 loge (m)(g,Rﬁ—zRiz—l—o-zg,Ri)] : (27)

The eddy viscosity from the logarithmic-plus-cubic expression can be found as Ky = u,l.
This expression for the mixing length shown in Figure 15 presents a rather peculiar pattern
which differs significantly from that predicted theoretically, and so deters the use of the cubic
function; it implies that the function is only representative for the range —o-10 < Rigy <<

~+0-50.
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If the expression describing the variation of the Richardson number with height was a
more direct one, then an examination of the influence of stability on the velocity profile or
on the mixing length would lead to the reciprocal curves postulated in Figure 11. Since the
velocity function (24) was derived from direct measurements, it appears to be more reliable
than the derived mixing length.

VII Tee Fir oF THE Locaritamic-PLus-CuBic ExPrEssioN FOR WIND SPEED WITH
OBSERVED DATA

The validity of expression (26) for the velocity profile may be tested by applying it through
various stabilities. As mean deviations for groups of profiles were used to solve the function

20+ ~1
l 02\ (003 oeyi2 , :I
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L = [1 nmlogm(lml){a P-2Ri%025Ri }
kz
15
05 +
1 1 1 1 1 1 1
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THE RICHARDSON NUMBER AT 55 CM.

Fig. 5. Variation of the mixing length with stability

it would not be expected to fit individual profiles exactly. The plotted standard errors (Figs.
12 and 14) give some indication of how representative these means are. The goodness of fit
of this new expression for the velocity profile depends also on the form of the variation of
Richardson number with height and on the estimated friction velocity u,. Accepting the
power expression (21) for the Richardson number, a mean value of u, was found for each
profile, which was then applied in expression (26). The last section of Figure 2 shows the
difference between the observed and the calculated profile. It will be seen that the log-
arithmic-plus-cubic law is only slightly superior to the second logarithmic-plus-linear law.
Under strong inversions, with their normally low wind speeds, errors arise more readily
through the actual recording of the values. In this stability region a relatively larger sample
than that indicated in Figures 12 and 14 may be required to represent these extreme condi-
tions, which would mean that from the data available only those near adiabatic conditions
(|Ri|] =< o-1) are justifiably worth using. Within this reduced range a linear expression would
be preferably for the relation between & (also A) and stability (Figs. 12 and 14). Such a
function would be very similar to the logarithmic-plus-linear law of Monin and Obukhov
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discussed above. The difficulties of expansion need not arise with this wind-speed expression,
for it is not raised to a fractional power, and limitations of the mixing length would be less
severe. This straight-line function, forming the logarithmic-plus-linear relationship, is the
limiting tangent at the origin of the cubic form already used.

VIII THE Laws oF WIND-SPEED VARIATION wiTH HEIGHT AND THE COEFFICIENT OF EDDY
ViscosiTy

Of the seven wind-speed laws compared here, the logarithmic law appears superior in
strong inversions as well as in adiabatic conditions and generally may be considered the most
applicable for observations in the lowest 2 m. above a melting ice surface. The exponential
law, though superior for lapse conditions can be difficult near neutral and in part of the stable
range. It requires great precision in observation for satisfactory parameters to be determined.
A power law and logarithmic-plus-linear law of the first type (Fig. 2) fit observations almost
equally well in moderately stable conditions but these laws have the difficulties, discussed
above, of changes in the constants used. Furthermore the selection of a particular law deter-
mines different values for eddy viscosity, the most extreme values deriving from the power
laws (Table IV). Logarithmic or power laws have generally been used in evaluation of

components in the heat balance at a glacier surface; the choice of law has a very marked
effect on the conclusions.

TasLe IV. Coerricients oF Eppy DIFFUSION FOR MoOMENTUM (M.% SEC. ') AT 05 M.
(Figures in brackets indicate number of profiles used.)

—0-125 —0-0125 +0-0125

Law of wind-speed Rie < Ri= < Ri= < Ri < Ri

variation with height —0-125 —0-0125 +o0-0125 +0-125 > +40-125
Logarithmic law 00268 (3) 0-0326 (11) 0-0730 (52) 00442 (64) 0-0196 (35)
Power law 0-0118 (3) 0-0103 (11) 0-0107 (52) 00082 (64) 0-0052 (35)
Deacon’s law 0-1237 (2) 0-0882 (11) 0-0846 (51) 00678 (63) 0-0701 (35)
Logarithmic-linear law (1) 0-0071 (2) 0-0251 (9) 0-0024 (50) 0-0281 (6o) 0-0216 (26)
Logarithmic-+lincar law (2) 0-0465 (1) 0-0349 (9) 00745 (48) 0-0466 (59) 0-0195 (22)
Exponential law 0-0902 (3)  ©0-0752 (5)  ©0-0436 (26)  0-0207 (48)  ©-0094 (12)
Logarithmic-+ cubic law 0:0499 (3) 00545 (11) 0-0823 (52) 0-0429 (b4) 0-0236 (18)
Average Ky (excluding
power laws) 0-0468 (12) 00416 (45) 0-0763 (228) 0-0388 (205) o0-0196 (113)

The eddy viscosity appears to change significantly with stability except in the case of
Deacon’s derivation in which the inconsistent variation of g with the Richardson number
would become important.

The variation of eddy viscosity with stability as shown in Table IV has already been
indicated, for the logarithmic-plus-cubic form of wind-speed variation, in Figure 15 as 1/kz
since from Section I (a) and (c)

du KM Uy

ey AR = =
Uy = ldz and Ky i Mlie

(28)
therefore
Ky* = k.

The pattern from Figure 15 is shown in Figure 16 as the expected variation of Ky * to compare
with the dimensionless eddy viscosity found from (28). The simple form of the latter tends to
confirm the applicability of the logarithmic expression to wind-speed profiles over a wide
range of the stable atmosphere.
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The variable eliminated in the use of Ky*, the friction velocity, varies significantly with
stability (Fig. 17). It decreases rapidly as stability begins to increase from zero to approxi-
mately Ri = 0-2. Values for the eddy viscosity in Table IV reflect this decrease in the friction
velocity, and hence the shearing stress, from neutral stability to very low values at more
extreme stability.

O Ice-free surface
g 4 x Storglacidren
2 W V2 + Frozen lake
A Upper Britannia Gletscher
x| ¥V Lower Britannia Gletscher
3 Number of protiles
Ji considered
« ©9 Mean variation
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o5 A X
KE\ P8 /
m \ "
29 A, g
\V1 P
04 133 — >
1 7 ~ V3 s
\\. 2 & ~ ~
o= i PO
03 + +3
1 1 1 1 1 i 1
-02 0 +02 +0-4
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Fig. 16, Variation of Ky * with stability

Such change in eddy coefficients over melting ice is important in the heat-balance cal-
culations and conclusions drawn in association with melt-water supply and with climatic
change. Increase in air temperature so affects the wind-speed profile that momentum transfer
(and probably heat and vapour transfer) may be reduced, which further raises the general
importance of radiation in these considerations.

Further work is required in assessing the variation with height of shearing stress and
Richardson number before satisfactory comparisons of eddy coefficients and the dependent
heat and water balance can be made over glacier surfaces. Until a better approach is possible
it seems that the simple logarithmic law of wind-speed variation with height and the direct
eddy viscosity is most applicable over a wide range of stability conditions.
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