ON THE TIME CONSTANT AND PATH LENGTH OF FIRST-PASSAGE PERCOLATION

HARRY KESTEN,* Cornell University

Abstract

Let U be the distribution function of the passage time of an individual bond of the square lattice, and let p_T be the critical probability above which the expected size of the open component of the origin (in the usual bond percolation) is infinite. It is shown that if $(^*)U(0-)=0$, $U(0) < p_T$, then there exist constants 0 < a, $C_1 < \infty$ such that $P\{\exists a \text{ self-avoiding path of at least } n \text{ steps starting at the origin and with passage time <math>\leq an\} \leq 2 \exp(-C_1 n)$.

From this it follows that under (*) the time constant $\mu(U)$ of first-passage percolation is strictly positive and that for each $c > 0 \limsup (1/n)N_n(c) < \infty$, where $N_n(c)$ is the maximal number of steps in the paths starting at the origin with passage time at most cn.

 $\label{eq:resonance} \mbox{First-passage percolation; bernoulli percolation; time constant; } Route \mbox{ length }$

1. Statement of results

First-passage percolation was first studied by Hammersley and Welsh [2]. More recent results can be found in the monograph [5] of Smythe and Wierman. We generally follow the notation of [5]. The lattice L of integral points in the plane is viewed as a graph with vertices the points v = (v', v'') of $\mathbb{Z} \times \mathbb{Z}$, and edges or bonds the line segments between adjacent points. Here v and w are called adjacent if v' = w', |v'' - w''| = 1 or if |v' - w'| = 1, v'' = w''. All edges are undirected; e and f will denote generic edges. A path on L from v to w is a sequence $(v_0, e_1, v_1, \dots, e_n, v_n)$ with each v_i a vertex in L and such that $v_0 = v$, $v_n = w$ and v_{i+1} is adjacent to v_i , and with e_i the edge connecting v_{i-1} and v_i . The path is called self-avoiding if $v_i \neq v_i$ for $i \neq j$.

To each edge e is assigned a random variable X(e), called the passage time of e. It is assumed that all X(e), $e \in L$, are independent identically distributed with distribution function U, satisfying

(1.1)
$$U(0-)=0.$$

Received 4 April 1979; revision received 26 October 1979.

^{*} Postal address: Department of Mathematics, White Hall, Cornell University, Ithaca, NY 14853, U.S.A.

Thus all X(e) are non-negative w.p. 1. The passage time of the path $r = (v_0, e_1, \dots, v_n)$ is defined as

(1.2)
$$t(r) = \sum_{i=1}^{n} X(e_i),$$

and its length, l(r), as n. As in [5] we set

- (1.3) $a_{0,n} = \inf \{ t(r): r \text{ is a self-avoiding path from } (0,0) \text{ to } (n,0) \},\$
- (1.4) $b_{0,n} = \inf \{t(r): r \text{ is a self-avoiding path from } (0,0) \text{ to } (n,m) \text{ for some } m\}$
- (1.5) $t_{0,n} = \inf \{ t(r): r = (v_0, e_1, \dots, e_k, v_k) \text{ is a self-avoiding path from } (0, 0)$ to (n, 0) with $0 < v'_i < n$ for $1 \le i \le k - 1 \}$,
- (1.6) $s_{0,n} = \inf \{ t(r): r = (v_0, e_1, \dots, e_k, v_k) \text{ is a self-avoiding path from } (0, 0)$ to (n, m) for some m with $0 < v'_i < n$ for $1 \le i \le k - 1 \}$.

It is proved in [5], Chapter 5, that if (1.1) holds and

(1.7)
$$\int_{[0,\infty)} x \, dU(x) < \infty,$$

then there exists a constant $\mu(U)$ such that

(1.8)
$$\lim_{n \to \infty} \frac{a_{0,n}}{n} = \lim_{n \to \infty} \frac{b_{0,n}}{n} = \lim_{n \to \infty} \frac{t_{0,n}}{n} = \lim_{n \to \infty} \frac{s_{0,n}}{n}$$
$$= \mu(U) \text{ w.p. 1 and in } L^1.$$

Recently Wierman [6] and Cox and Durrett [1] have shown that even without any moment conditions on U there exists a constant $\mu(U)$ such that $(1/n)a_{0,n} \rightarrow \mu(U)$ in probability. $\mu(U)$ is called the time constant of U. Note that under (1.1) all edges have non-negative passage times so that from any path r we can 'remove loops' to obtain a self-avoiding path \tilde{r} with the same initial and end point as r but $t(\tilde{r}) \leq t(r)$. Thus under (1.1) the restriction to self-avoiding r in (1.3)-(1.6) is superfluous. However, in Section 4 we shall also need (1.8) for some distributions U which do not satisfy (1.1) and for such U the proper definitions are as given in (1.3)-(1.6) (cf. [5], p. 64).

To formulate our results we also need the critical probability p_T which is defined in terms of Bernoulli percolation as follows. For our purposes, a Bernoulli percolation is a family of independent identically distributed random variables $\{X(e): e \in L\}$ as above with U a Bernoulli distribution:

(1.9)
$$U(\{0\}) = p, \quad U(\{1\}) = q = 1 - p$$

(U(A) is the mass assigned by U to the set A). It is customary to call e open (closed) if X(e) = 0 (respectively X(e) = 1). A path $r = (v_0, e_1, \dots, e_k, v_k)$ is open if each e_i in r is open. Set

V(p) = E{number of edges in L which belong to an open path starting at the origin}

$$= \sum_{e \in L} P\{\exists \text{ open path starting at the origin and containing } e\}.$$

Note that in terms of passage times governed by the distribution (1.9) we can also write

(1.10)
$$V(p) = \sum_{e \in L} P\{\exists \text{ path } r \text{ starting at the origin and containing } e \text{ with } t(r) = 0\}.$$

Now

(1.11)
$$p_T = \inf \{p : V(p) = \infty\}.$$

Our principal result is the following.

Theorem 1. If (1.1) holds and

(1.12)
$$U(0) < p_{\rm T},$$

then there exist constants 0 < a, $C_1 < \infty$ such that

(1.13) $P\{\exists \text{ self-avoiding path } r \text{ starting at the origin with } l(r) \ge n \text{ and} t(r) \le an\} \le 2e^{-C_1 n}$.

Remark 1. Under (1.1), U(0) is the atom of U at 0. Russo [3], Theorem 2 (see also Seymour and Welsh [4] and Smythe and Wierman [5], Section 3.4-3.6) states that for the Bernoulli percolation with U as in (1.9) and $p < p_T$ one has for each $\varepsilon > 0$

(1.14) $P\{\exists \text{ path } r = (v_0, e_1, \cdots, e_k, v_k) \text{ starting at } v_0(0, 0) \text{ and ending at some } v_k \text{ with } |v'_k| \ge 3^n \text{ or } |v''_k| \ge 3^n\} \le \varepsilon^n$

for *n* sufficiently large. (1.14) corresponds to the estimate $n^{(\log 3)^{-1}\log \varepsilon}$ for the left-hand side of (1.13) when a = 0. Clearly (1.13) is a considerable improvement of (1.14).

We also prove the following.

Theorem 2. If (1.1) and (1.12) hold, then for $\theta = a$, b, s or t

(1.15)
$$\lim \inf \frac{\theta_{0,n}}{n} \ge b > 0 \text{ w.p. } 1, \text{ for some } b = b(U) > 0.$$

In particular, $\mu(U) \ge b$.

Of course Theorem 2 is immediate from Theorem 1, with b = a. However, our method of proof forces us to prove Theorem 2 first.

Remark 2. Theorem 2 extends the known result (cf. [5], Proposition 7.1) that $\mu(U) > 0$ if $U(0) < \lambda^{-1}$, where λ is the so-called connectivity constant (Section [5], p. 24). Wierman and Reh [7] (also [5], Theorem 7.3) showed that $\mu(U) = 0$ if $U(0) > p_T$ or if $U(0) = \frac{1}{2}$. It seems to be generally believed that $p_T = \frac{1}{2}$. If this is correct, then we have for any distribution U with finite mean that $\mu(U) = 0$ if and only if $U(0) \ge \frac{1}{2}$. (See note on p. 863.)

Another immediate consequence of Theorem 1 concerns

(1.16) $N_n(c) = \sup \{l(r): r \text{ a self-avoiding path starting at the origin with } t(r) \leq cn \}.$

Theorem 3. If (1.1) and (1.12) hold, then

(1.17)
$$P\left\{N_n(c) \ge \frac{c}{a} n\right\} \le 2e^{-C_1 a^{-1} c n},$$

where a and C_1 are as in (1.13) and $c \ge 0$ arbitrary.

Remark 3. Smythe and Wierman [5] define

(1.18) $N_n^{\theta} = \min \{ l(r): r \text{ is a self-avoiding path starting at the origin with} t(r) = \theta_{0,n} \},$

 $\theta = a, b, s$ or t, and show that

(1.19)
$$\limsup_{n \to \infty} \frac{1}{n} N_n^{\theta} < \infty$$

for $U(0) < \lambda^{-1}$ or $U(0) > p_H$ (see [5], Chapter 8; p_H is defined on p. 29 of [5]). They raise the question ([5], Section 10.5) whether (1.19) remains valid for $\lambda^{-1} \le U(0) \le p_H$. Theorem 3 answers this question affirmatively for $U(0) < p_T$. Again, one believes that $p_T = p_H$. If this is true only the case $U(0) = p_H$ is left open. (See note on p. 863.)

For $U(0) < \lambda^{-1}$ Smythe and Wierman [5], Theorem 8.2, actually prove

(1.20)
$$\mu^+(0) \leq \liminf_{n \to \infty} \frac{1}{n} N_n^{\theta} \leq \limsup_{n \to \infty} \frac{1}{n} N_n^{\theta} \leq \mu^-(0) < \infty \text{ w.p. } 1,$$

where $\mu^+(0)$ ($\mu^-(0)$) is the right (respectively left) derivative at 0 of the function $y \rightarrow \mu(U \oplus y)$ and

$$U \bigoplus \mathbf{y}(\mathbf{x}) = U(\mathbf{x} - \mathbf{y})$$

 $(U \oplus y \text{ is the distribution } U \text{ shifted } y \text{ units to the right})$. From Theorem 3 one obtains the following corollary.

Corollary. If (1.1), (1.7) and (1.12) hold then (1.20) remains valid for $\theta = a$, b, s, or t. Moreover

(1.21)
$$\mu^{-}(0) \leq \frac{1}{a} \mu(U).$$

We have been unable to prove that $\lim_{n \to \infty} (1/n) N_n^{\theta}$ exists w.p. 1.

2. Proof of Theorem 2

Theorem 2 will follow from our next proposition.

Proposition 1. If (1.1) and (1.12) hold, then there exist constants 0 < b, C_2 , $C_3 < \infty$ such that

(2.1) $P\{\exists \text{ self-avoiding path } r \text{ from the origin to } (n, m) \text{ for some } m \text{ with } t(r) \leq bn\} \leq C_2 e^{-C_3 n}$.

(2.1) implies (1.15) because $\theta_{0,n} < bn$ implies the existence of a path from (0,0) to (n, m) for some m with t(r) < bn. We need some additional notation:

$$H_n = \{ v = (v', v'') \in Z \times Z : v' \ge n \},\$$

 $A(v, n, x) = \{\exists \text{ self-avoiding path } r \text{ from } v \text{ to some point in } H_n \text{ with } t(r) \leq x\},\$

(Note that the left-hand side of (2.1) is just $P\{A((0, 0), n, bn)\}$.) For a fixed integer N

$$S(v) = S(v, N) = \{ w = (w', w'') \in \mathbb{Z} \times \mathbb{Z} : |w' - v'| = N \text{ and} \\ |w'' - v''| \le N \text{ or } |w' - v'| \le N \text{ and } |w'' - v''| = N \}.$$

S(v) is the circumference of a square of edge length 2N centered at v. We denote its interior by $\mathring{S}(v, N)$. For fixed N and $\Delta > 0$ we set

(2.2) $f(N, \Delta) = P\{\exists \text{ self-avoiding path } r \text{ from } v \text{ to some point of } S(v, N) \text{ with } t(r) \leq \Delta \text{ and such that all vertices of } r \text{ except the final one belong to } \mathring{S}(v, N)\}.$

The principal estimate is given by the following.

Lemma 1. If v' < n - N, then for all $\Delta > 0$

(2.3)
$$P\{A(v, n, x)\} \leq \sum_{w \in S(v, N)} P\{A(w, n, x - \Delta)\} + f(N, \Delta) \sum_{w \in S(v, N)} P\{A(w, n, x)\}.$$

Proof. Let

$$E = \bigcup_{w \in S(v)} A(w, n, x - \Delta).$$

Clearly the first term in the right-hand side of (2.3) is an upper bound for $P\{E\}$, so that we only have to estimate $P\{A \setminus E\}$. Assume that $A(v, n, x) \setminus E$ occurs and that $r = (v, e_1, v_1, \dots, e_k, v_k)$ is a self-avoiding path from v to $v_k \in H_n$ with $t(r) \leq x$. Since v' < n - N, $S(v, N) \cap H_n = \emptyset$ and the endpoint v_k of r must lie outside S = S(v, N). Let a be the smallest index with $v_a \in S$ and b the largest index with $v_b \in S$. Also let $r_0 = (v, e_1, v_1, \dots, e_a, v_a)$ (the initial piece of r) and $r_2 = (v_b, e_{b+1}, \dots, e_k, v_k)$ (the final piece of r), and finally $r_1 = (v_a, e_{a+1}, \dots, e_k, v_k)$. Then $v_a \in S$ and since E does not occur neither does $A(v_a, n, x - \Delta)$ and necessarily $t(r_1) > x - \Delta$. Together with $t(r) \leq x$ this implies

(2.4)
$$t(r_0) = t(r) - t(r_1) \leq \Delta$$

Thus r_0 is a path from v to a point of S with $t(r_0) \leq \Delta$ and all vertices but the last one in \mathring{S} . Furthermore, r_2 is a path from v_b to H_n with $t(r_2) \leq t(r) \leq x$, and by definition of b, r_2 has no vertex other than v_b in $S \cup \mathring{S}$. Thus we proved

(2.5) $P\{A(v, n, x) \setminus E\} \leq \sum_{w \in S} P\{\exists a \text{ self-avoiding path } r_0 \text{ from } v \text{ to } S \text{ with } t(r_0) \leq \Delta \text{ and all vertices but the last one in } \mathring{S}, \text{ and } \exists a \text{ path } r_2 \text{ from } w \text{ to } H_n \text{ with } t(r_2) \leq x \text{ and no vertex of } r_2 \text{ besides } w \text{ lies in } S \cup \mathring{S}\}$ = $f(N, \Delta) \sum_{w \in S} P\{\exists a \text{ path } r_2 \text{ from } w \text{ to } H_n \text{ with } t(r_2) \leq x \text{ and no vertex of } r_2 \text{ besides } w \text{ lies in } S \cup \mathring{S}\}$ $\leq f(N, \Delta) \sum_{w \in S} P\{A(w, n, x)\}.$

The first equality in (2.5) follows from the fact that passage times of paths with all edges in \mathring{S} and of paths with all edges in the exterior of S are independent. (2.3) is now immediate from (2.5).

The rest of the proof of Proposition 1 is now routine. Now set S = S((0, 0), N) and let μ be the measure on $S \times \{0, \Delta\}$ given by

$$\mu(w, \Delta) = 1 \quad \text{if} \quad w \in S,$$
$$\mu(w, 0) = f(N, \Delta) \quad \text{if} \quad w \in S$$

Then (2.3) can be rewritten as

(2.6)
$$P\{A(v, n, x)\} \leq \sum_{(w, y) \in S \times \{0, \Delta\}} \mu(w, y) P\{A(v+w, n, x-y), v' < n-N.$$

But clearly

$$P\{A(v, n, x)\} = 0 \quad \text{for} \quad x < 0$$

and

$$P\{A(v, n, x)\} \leq 1$$
 always.

Thus, by iteration of (2.6) we obtain for any $k \ge 1$, and v = (0, 0), n > N,

$$P\{A((0, 0), n, x)\} \leq \sum_{w_{1}, y_{1}} \mu(w_{1}, y_{1}) P\{A(w_{1}, n, x - y_{1})\}$$

$$\leq \sum_{w_{1} \geq n - N \atop y_{1} \leq x} \mu(w_{1}, y_{1})$$

$$+ \sum_{w_{1} < n - N \atop y_{1} \leq x} \mu(w_{1}, y_{1}) P\{A(w_{1}, n, x - y_{1})\}$$

$$\leq \cdots \leq \sum_{j=1}^{k} \sum_{i=1}^{(j)} \prod_{i=1}^{j} \mu(w_{i}, y_{i})$$

$$+ \sum_{w_{1}' + \cdots + w_{k} < n - N \atop y_{1} + \cdots + y_{k} \leq x} \prod_{i=1}^{k} \mu(w_{i}, y_{i}).$$

Here $\sum^{(j)}$ is the sum over $w_1, \dots, w_j, y_1, \dots, y_j$ with $w'_1 + \dots + w'_{j-1} < n - N$, $w'_1 + \dots + w'_j \ge n - N$ and $y_1 + \dots + y_j \le x$. Of course all sums in (2.7) are also restricted to $(w_i, y_i) \in S \times \{0, \Delta\}$.

Next we show that N and Δ can be chosen such that

(2.8)
$$\sum_{w \in S((0,0),N)} \mu(w,0) \leq \frac{3}{4}.$$

To prove this, note that if there exists a path $r = ((0, 0), e_1, \dots, e_k, v_k)$ from the origin to S = S((0, 0), N) which has all vertices but the last one in $\mathring{S} = \mathring{S}((0, 0), N)$ and t(r) = 0, then necessarily e_k is an edge between a point in \mathring{S} and a point in S, and e_k is contained in the path r with t(r) = 0. Thus

$$f(N, 0) \leq \sum_{\substack{e \text{ connects a point} \\ \text{of } S with a point of S}} P\{\exists \text{ path } r \text{ starting at the} \\ \text{origin and containing } e \\ with t(r) = 0\}.$$

Consequently, by (1.10) and (1.11), if $U(0) < p_T$, then

$$\infty > V(U(0)) = \sum_{e \in L} P\{\exists \text{ path } r \text{ starting at the origin and} \\ \text{containing } e \text{ with } t(r) = 0\}$$

$$\geq \sum_{N=0}^{\infty} f(N, 0).$$

In particular, we can fix N > 0 such that

$$8Nf(N,0) = \sum_{w \in S((0,0),N)} f(N,0) \leq \frac{1}{2}.$$

Since

$$f(N, \Delta) \downarrow f(N, 0)$$
 as $\Delta \downarrow 0$

we can next choose $\Delta > 0$ such that

$$\sum_{w\in S} f(N,\Delta) \leq \frac{3}{4},$$

which is just (2.8).

Now

$$\varphi(\lambda) \equiv \sum_{(w,y)\in S\times\{0,\Delta\}} \mu(w,y) e^{-\lambda y} \leq \frac{3}{4} + \sum_{w\in S} \mu(w,\Delta) e^{-\lambda \Delta} \leq \frac{3}{4} + 4N e^{-\lambda \Delta},$$

and we can fix $\lambda > 0$ such that

$$\varphi(\lambda) \leq \frac{7}{8}$$
.

With these choices of N, Δ and λ

$$\sum_{\substack{w_i \in S \\ y_1 + \dots + y_j \leq x}} \prod_{i=1}^{j} \mu(w_i, y_i) \leq e^{\lambda x} \sum_{\substack{(w_i, y_i) \in S \times \{0, \Delta\} \\ 1 \leq i \leq j}} \prod_{i=1}^{j} \{\mu(w_i, y_i) e^{-\lambda y_i}\}$$
$$\leq e^{\lambda x} \{\varphi(\lambda)\}^j \leq e^{\lambda x} (\frac{7}{8})^j.$$

If we also take into account that $w_j \in S$ implies $w'_i \leq N$ so that $w'_1 + \cdots + w'_j \geq n - N$ can occur only for $j \geq N^{-1}n - 1$, we obtain from (2.7)

$$P\{A((0, 0), n, x)\} \leq \lim_{k \to \infty} e^{\lambda x} \left\{ \sum_{(n/N)-1 \leq j \leq k} {\binom{7}{8}}^{j} + {\binom{7}{8}}^{j} \right\}$$
$$\leq 10 e^{\lambda x} {\binom{7}{8}}^{n/N}, \quad n > N.$$

If we take x = bn with b so small that

$$e^{\lambda b} \left(\frac{7}{8}\right)^{1/N} = e^{-C_3}$$

for some $C_3 > 0$, then we obtain (2.1).

Remark 4. We proved above that (1.12) implies

(2.9)
$$8Nf(N,0) < 1$$
 for some $N > 0$.

Conversely, the proof of Proposition 1 goes through with the hypothesis (1.12) replaced by (2.9), and then the conclusion (2.1) of Proposition 1 directly implies $V(U(0)) < \infty$ and hence $U(0) \le p_T$. If (2.9) holds then it continues to hold even when U(0) is slightly increased because for each fixed N, f(N, 0) is a continuous function of U(0). Thus (2.9) actually implies $U(0) < p_T$ and (1.12)

and (2.9) are equivalent. The above argument also shows that the interval of p's with $V(p) < \infty$ is open on the right, so that $V(p_T) = \infty$.

3. Proof of Theorem 1

To estimate (1.13) we divide L into the $N \times N$ squares

$$S_{i,i} = \{ v \in L : iN \le v' \le (i+1)N, jN \le v'' \le (j+1)N \}.$$

N will be chosen later. Now consider a vertex v on the left boundary segment of $S_{i,j}$, i.e., v' = iN, $jN \le v'' \le (j+1)N$, and let $s = (v, e_1, v_1, \dots, e_k, v_k)$ be a self-avoiding path starting at v with length

$$l(s) = k \ge (2N+1)(3N+1).$$

Since there are only (2N+1)(3N+1) distinct vertices in the set

$$\tilde{S}_{i,j} = \bigcup_{|l-j| \le 1} \left(S_{i-1,l} \cup S_{i,l} \right)$$

(which is a union of six of the $S_{i,j}$), there must be some $b \le k$ with v_b on the circumference of $\tilde{S}_{i,j}$. Let b be the smallest index with this property, and for the sake of definiteness let v_b lie on the right edge of $\tilde{S}_{i,j}$, i.e. $v'_b = (i+1)N$, $(j-1)N \le v''_b \le (j+1)N$. Next let a be the largest index less than b with $v'_a = iN$. Then $\tilde{s} = (v_a, e_{a+1}, \dots, v_b)$ is a self-avoiding path (it is part of s) which lies entirely in

$$R_{i,i} = \{ v \in L : iN \le v' \le (i+1)N, (j-1)N \le v'' \le (j+1)N \}.$$

Moreover, only its initial and final vertex lie on $\partial R_{i,j}$, the circumference of $R_{i,j}$, and these points lie on the opposite long sides of $\partial R_{i,j}$ ($R_{i,j}$ is an $N \times 3N$ rectangle). We call such a path \tilde{s} a 'crossing of $R_{i,j}$ '. Had v_b been on the left edge of $\tilde{S}_{i,j}$, i.e. $v'_b = (i-1)N$, $(j-1)N \leq v''_b \leq (j+1)N$, then \tilde{s} would have been a crossing of $R_{i-1,j}$. Similarly, if v_b is in the top (bottom) edge of $\tilde{S}_{i,j}$ then we find that part of s is a crossing of the rectangle

$$T_{i,j+1} = \{ v \in L : (i-1)N \le v' \le (i+1)N, (j+1)N \le v'' \le (j+2)N \}$$

(respectively $T_{i,j-1}$).

Now set M = (2N+1)(3N+1) and let $r = ((0, 0), e_1, v_1, \dots, e_n, v_n)$ be a self-avoiding path of length l(r) = n with $n \ge M$, starting at the origin. Then some piece $\tilde{r} = (v_a, e_{a+1}, \dots, e_b, v_b)$ with $a < b \le M$ is a crossing of one of the rectangles $R_{0,0}, R_{-1,0}, T_{0,1}, T_{0,-1}$. Applying the above reasoning to the remaining part $(v_b, e_{b+1}, \dots, e_n, v_n)$ of r we see that some piece $\tilde{\tilde{r}} = (v_c, e_{c+1}, \dots, v_d)$ with $b \le c < d \le b + M$ is the next crossing of some rectangle R_{ij} or T_{ij} . Moreover given which rectangle was crossed by \tilde{r} , there are at most 19

possibilities for the rectangle which is crossed by \tilde{r} . In this way we find that there is a string of $[nM^{-1}]$ rectangles D_1, D_2, \dots, D_K , $K = [nM^{-1}]$, each D_l equal to some R_{ij} or T_{ij} , such that r successively crosses each one of the D_l . Also given D_l there are no more than 19 possibilities for D_{l+1} so that there are at most 19^K such strings. It follows that the left-hand side of (1.13) is bounded by

(3.1)
$$\sum_{D_1,\dots,D_K} P\{\exists \text{ self-avoiding path } r = ((0,0), e_1, v_1, \dots, e_n, v_n) \text{ which crosses } D_1,\dots,D_K \text{ and with } t(r) \leq an\},$$

and the sum in (3.1) runs over at most 19^{κ} possible strings. We now fix D_1, \dots, D_{κ} and estimate the corresponding terms in (3.1). There are only 2(3N+1) possible initial points for a crossing of any given D_l . Moreover, since r is self-avoiding, all its crossings of a given D_l must be disjoint (i.e. pass through disjoint sets of vertices). Thus the same D_l can be crossed at most (6N+2) times by r. In other words, any given rectangle D can occur at most (6N+2) times among the D_l . Let $\gamma > 0$ (its precise value will be determined below) and let

- ν = number of distinct D_l which occur at most γN times among the D_1, \dots, D_K ,
- ρ = number of distinct D_l which occur more than γN times among the D_1, \dots, D_K .

Then, by the above

(3.2)
$$\nu\gamma N + \rho(6N+2) \ge K.$$

In addition each D_l intersects exactly 45 other rectangles R_{ij} or T_{ij} . Thus we can find at least $\nu_1 = \nu/46$ ($\rho_1 = \rho/46$) disjoint D_l which occur at most γN (respectively more than γN) times among the D_1, \dots, D_K . We now also fix subsets $\{D(i_1), \dots, D(i_{\nu_1})\}$ and $\{D(j_1), \dots, D(j_{\rho_1})\}$ of disjoint rectangles from the D_1, \dots, D_K with

(3.3)
$$\gamma \nu_1 + 8\rho_1 \ge \frac{1}{46N} K,$$

and only consider those self-avoiding paths r which cross each $D(i_p)$ at most γN times and each $D(j_q)$ more than γN times. There are at most 3^K choices for these subsets, $\{i_1, \dots, i_{\nu_1}\}$ and $\{j_1, \dots, j_{\rho_1}\}$, since we already fixed D_1, \dots, D_K before.

So far the analysis has been purely deterministic. We now bring in the random passage times. For any rectangle R_{ii} or T_{ii} , D say, let Y = Y(D) be the

minimal passage time of any crossing of D. Then by Proposition 1

(3.4)
$$E\{e^{-Y}\} \leq e^{-bN} + \sum_{v} P\{\exists \text{ crossing } s \text{ of } D \text{ which starts at } v \text{ and with}$$

$$t(s) \leq bN\} \leq e^{-bN} + (6N+2)C_2e^{-C_3N}.$$

Indeed, as observed above there are at most (6N+2) possible starting points v for crossings of D, and if for instance $D = R_{i,j}$ and v is on its left edge then a crossing of D starting at v is a self-avoiding path from v to some w with w' = v' + N. (3.4) will suffice for all the rectangles $D(i_p)$. For the rectangles $D(j_q)$ we need a stronger estimate. Let D be a rectangle as above and denote by Z = Z(D) the minimum over all sets of γN disjoint crossings of D of the sum of the passage times of the γN crossings.

Formally

(3.5)
$$Z(D) = \min_{\substack{r_1, \cdots, r_{\gamma N} \\ \text{disjoint crossings of } D}} \sum_{j=1}^{\gamma N} t(r_j).$$

We shall prove below that for each fixed γ and Γ we have for all large N

$$(3.6) E\{e^{-Z(D)}\} \leq e^{-\Gamma N}$$

Before proving (3.6) we show that Theorem 1 follows from (3.4) and (3.6). Indeed for each choice of $D(i_1), \dots, D(i_{\nu_1})$ and $D(j_1), \dots, D(j_{\rho_1})$ we have

(3.7) $P\{\exists \text{ self-avoiding path } r \text{ which crosses each } D(i_p) \text{ and crosses each } D(j_q) \text{ at least } \gamma N \text{ times and has } t(r) \leq an\}$

$$\leq e^{an} E \left\{ \exp - \sum_{p=1}^{\nu_1} Y(D(i_p)) - \sum_{q=1}^{\nu_1} Z(D(j_q)) \right\}$$

because

$$t(r) \ge \sum_{p=1}^{\nu_1} Y(D(i_p)) + \sum_{q=1}^{\rho_1} Z(D(j_q))$$

for any r which crosses each $D(i_p)$ at least once and each $D(j_q)$ at least γN times. Since all $D(i_p)$ and all $D(j_q)$ are disjoint, all the

$$Y(D(i_p)), \quad 1 \leq p \leq \nu_1, \quad \text{and} \quad Z(D(j_q)), \quad 1 \leq q \leq \rho_1,$$

are independent. Thus, by (3.4) and (3.6) the right-hand side of (3.7) is at most

(3.8)
$$e^{an}[e^{-bN} + (6N+2)C_2e^{-C_3N}]^{\nu_1}e^{-\rho_1\Gamma N}$$

Now set $C_4 = \frac{1}{2} \min(b, C_3)$ and choose γ , Γ , N and a such that

(3.9)
$$60 \exp{-\frac{C_4}{92\gamma}} \leq \frac{1}{2}, \quad \Gamma = \frac{8C_4}{\gamma},$$

N so large that (3.6) holds as well as

$$e^{-bN} + (6N+2)C_2e^{-C_3N} \leq e^{-C_4N},$$

and lastly

$$a = \frac{1}{4\gamma} \{ (2N+1)(3N+1) \}^{-1} \frac{C_4}{46} \le \frac{1}{92\gamma} C_4 \frac{K}{n} \quad \text{(for } n \ge M \}.$$

With these choices we see for any ν_1 and ρ_1 satisfying (3.3) that (3.8) (and hence (3.7)) is bounded by

$$\exp\left\{an - N(C_4\nu_1 + \Gamma\rho_1)\right\} = \exp\left\{an - \frac{C_4N}{\gamma}(\gamma\nu_1 + 8\rho_1)\right\} \le \exp\left\{-\frac{C_4}{92\gamma}K\right\}$$
$$\le \left(\frac{1}{120}\right)^{\kappa}, \quad n \ge M.$$

As observed before there are at most 19^{κ} choices for D_1, \dots, D_K , and given D_1, \dots, D_K there are at most 3^{κ} choices for the subsets $D(i_1), \dots, D(i_{\nu_1})$ and $D(j_1), \dots, D(j_{\rho_1})$ so that (3.1), and hence the left-hand side of (1.13), is for $n \ge M$ bounded by

$$19^{K}3^{K}(120)^{-K} \leq 2^{-K} \leq 2.2^{-n/M}.$$

Obviously this bound also holds for $n \leq M$. Thus (1.13) will follow with

$$C_1 = \frac{1}{M} \log 2 = \{(2N+1)(3N+1)\}^{-1} \log 2$$

once we prove the following.

Lemma 2. If (1.1) and (1.12) hold, then for each fixed γ and Γ (3.6) holds for all large N.

Proof. Without loss of generality we take

$$D = \{v : 0 \leq v' \leq N, 0 \leq v'' \leq 3N\}.$$

Then

(3.10)
$$E\{e^{-Z(D)}\} \leq e^{-2\Gamma N} + P\{Z(D) \leq 2\Gamma N\}$$

 $\leq e^{-2\Gamma N} + P\left\{\exists \gamma N \text{ disjoint crossings } r_1, \cdots, r_{\gamma N} \text{ of } D \text{ with } \sum_{i=1}^{\gamma N} t(r_i) \leq 2\Gamma N\right\}.$

To estimate the probability in the last member of (3.10) we proceed in a manner very similar to the beginning of the proof of Theorem 1. For some integer Q, which will be determined later, we divide D into the $Q \times Q$ squares

$$D_{i,j} = \{v : iQ \le v' \le (i+1)Q, jQ \le v'' \le (j+1)Q\},\$$
$$0 \le i \le Q^{-1}N - 1, 0 \le j \le 3Q^{-1}N - 1.$$

For convenience let us take $Q^{-1}N$ an integer, so that D equals the union of the $D_{i,j}$. Now let $r_1, \dots, r_{\gamma N}$ be disjoint crossings of D. Since D contains only 3N(N+1) vertical edges, each of which can belong to at most one r_i , there are at least $\frac{1}{2}\gamma N$ of the r_i which contain $\leq 12\gamma^{-1}N$ vertical edges. Number the r_i so that $r_1, \dots, r_{(1/2)\gamma N}$ have at most $12\gamma^{-1}N$ vertical edges. Now consider any r_p , $p \leq \frac{1}{2}\gamma N$ and let $r_p = (w_0, e_1, w_1, \dots, e_l, w_l)$. For the sake of definiteness let $w_0(w_l)$ be on the left (respectively right) edge of D. Then r_p must cross each of the columns

$$C_{i} = \{v : iQ \leq v' \leq (i+1)Q, 0 \leq v'' \leq 3N\}$$
$$= \bigcup_{0 \leq j < 3NQ^{-1}} D_{i,j}, 0 \leq i < NQ^{-1}.$$

More precisely, for each such column *i* we can first find the minimal $b \leq l$ with $w'_b = (i+1)Q$ and then the maximal a < b with $w'_a = iQ$. Then $(w_a, e_{a+1}, \dots, e_b, w_b)$ is a self-avoiding path from the left edge of C_i to the right edge of C_i , and $w_j \in C_i$ for all $a \leq j \leq b$. We call it a proper crossing of C_i if there exists a $Q \times (24\gamma^{-1} + 1)Q$ rectangle

$$B_{i,j} = \{ w : iQ \le w' \le (i+1)Q, jQ \le w'' \le (j+1+24\gamma^{-1})Q \}$$

in C_i which contains $(w_a, e_{a+1}, \dots, e_b, w_b)$. Note that if (w_a, \dots, w_b) is not a proper crossing of C_i , then it must have more than $24\gamma^{-1}Q$ vertical edges, for if this is not true, then the highest and lowest values of w_a^r, \dots, w_b^r differ by at most $24\gamma^{-1}Q$ and (w_a, \dots, w_b) lies in some $B_{i,j}$. Now r_p must cross each of the NQ^{-1} columns $C_0, \dots, C_{NQ^{-1}-1}$, and for $p \leq \frac{1}{2}\gamma N r_p$ has at most $12\gamma^{-1}N$ vertical edges. Thus at least $\frac{1}{2}NQ^{-1}$ of the column crossings must be proper crossings. Altogether $r_1, \dots, r_{(\frac{1}{2})\gamma N}$ have at least $\frac{1}{4}\gamma N^2 Q^{-1}$ proper crossings all of which are disjoint. One $B_{i,j}$ can contain at most $(24\gamma^{-1}+2)Q$ disjoint proper crossings since each proper crossing must contain one of the $(24\gamma^{-1}+1)Q+1$ points on the left edge of $B_{i,j}$. Consequently at least

$$\frac{1}{4}\gamma(24\gamma^{-1}+2)^{-1}Q^{-2}N^{2}$$

of the $B_{i,j}$ contain a proper crossing by one of the $r_1, \dots, r_{\frac{1}{2}\gamma N}$. Also each $B_{i,j}$ intersects fewer than $3(48\gamma^{-1}+3)$ other $B_{k,l}$, so that there must at least be

$$\nu_0 \equiv \frac{1}{24} \gamma (24 \gamma^{-1} + 2)^{-2} Q^{-2} N^2$$

disjoint $B_{i,j}$ which contain at least one proper crossing. There are fewer than $NQ^{-1}3NQ^{-1} = 3Q^{-2}N^2$ rectangles $B_{i,j}$ in D, and thus at most

$$\binom{3Q^{-2}N^2}{\nu_0}$$

ways to select ν_0 disjoint $B_{i,i}$'s.

As in the proof of Theorem 1 the above ends the deterministic part of the analysis. For given *i*,*j*, let U = U(i, j) be the minimal passage time of any self-avoiding path in $B_{i,j}$ which starts on the left edge and ends on the right edge. Exactly as in (3.4)

(3.11)
$$E\{e^{-U}\} \leq e^{-bQ} + (24\gamma^{-1}Q + 2)C_2e^{-C_3Q} \leq e^{-C_4Q},$$

again with $C_4 = \frac{1}{2} \min(b, C_3)$ and $Q \ge Q_0$, where Q_0 depends on b, γ, C_2 and C_3 only. Thus, by the independence of the $U(i_p, j_p)$ for disjoint B_{i_p,j_p} .

 $P\left\{\exists \gamma N \text{ disjoint crossing } r_1, \cdots, r_{\gamma N} \text{ of } D \text{ with } \sum_{i=1}^{\gamma N} t(r_i) \leq 2\Gamma N\right\}$

(3.12)
$$\leq \sum_{\nu_0}^{\nu_0} P\{\exists \text{ proper crossings of } B_{i_1,j_1}, \cdots, B_{i_{\nu_0},j_{\nu_0}} \text{ whose total passage time is } \leq 2\Gamma N\}$$

$$\leq \sum_{\nu_{0}}^{\nu_{0}} P\left\{\sum_{1}^{\nu_{0}} U(i_{p}, j_{p}) \leq 2\Gamma N\right\}$$
$$\leq \binom{3Q^{-2}N^{2}}{\nu_{0}} e^{2\Gamma N} e^{-C_{4}Q\nu_{0}}$$

(compare (3.7)). Here $\sum_{\nu_0}^{\nu_0}$ is the sum over all sets of ν_0 pairs (i, j), $0 \le i < NQ^{-1}$, $0 \le j < 3NQ^{-1}$ for which the B_{i_p,j_p} , $1 \le p \le \nu_0$ are disjoint. The last member of (3.12) is at most

(3.13)
$$2^{3Q^{-2}N^2}e^{2\Gamma N}e^{-C_4Q\nu_0} \leq e^{-2\Gamma N}e^{-C_4Q\nu_0}$$

as soon as

$$C_4 Q \nu_0 \geq 4\Gamma N + 3Q^{-2} N^2,$$

or

(3.14)
$$\frac{1}{24}C_4\gamma(24\gamma^{-1}+2)^{-2} \ge 4\Gamma Q N^{-1} + 3Q^{-1}.$$

Clearly (3.14) holds for

$$Q \ge Q_1 \equiv 4.24 C_4^{-1} \gamma^{-1} (24 \gamma^{-1} + 2)^2$$

and $N \ge 4\Gamma Q^2$. Now fix $Q \ge \max(Q_0, Q_1)$. Then (3.6) follows for $N \ge 4\Gamma Q^2$ from (3.10), (3.12) and (3.13).

4. Proof of Theorem 3 and corollary

Theorem 3 is immediate from (1.13) since $N_n(c) \ge (c/a)n$ implies that there exists a self-avoiding path r of length at least (c/a)n with passage time $t(r) \le cn = a \cdot (c/a)n$.

As for the corollary, let $\theta_{0,n}^y$. $\theta = a, b, t$ or s, denote the respective infima in (1.3)–(1.6) when X(e) is replaced by X(e) + y. Then (1.20) follows in exactly the same way as in Theorem 8.2 of [5] once it is established that

(4.1)
$$\sup_{n\geq 1} E\left\{\frac{1}{n}N_n^\theta\right\} < \infty$$

and

(4.2)
$$\lim \frac{1}{n} \theta_{0,n}^{y} = \mu(U \oplus y) > -\infty, -y_0 \leq y < 0,$$

for some $y_0 > 0$ (see (1.18) for N_n^{θ}).

To prove (4.1) observe that on the set $\{\theta_{0,n} < axn\}$ any self-avoiding path r with $t(r) = \theta_{0,n}$ has length $\leq N_n(ax)$ (see (1.16)). Thus, by (1.17)

(4.3)
$$P\{N_n^{\theta} \ge xn\} \le P\{\theta_{0,n} \ge axn\} + P\{N_n(ax) \ge xn\}$$
$$\le P\{\theta_{0,n} \ge axn\} + 2e^{-C_1xn}.$$

Consequently

$$E\left\{\frac{1}{n}N_{n}^{\theta}\right\} \leq \frac{1}{a}E\left\{\frac{1}{n}\theta_{0,n}\right\} + 2C_{1}^{-1} \leq \frac{1}{a}\int_{0}^{\infty}x\,dU(x) + 2C_{1}^{-1}.$$

(The last inequality follows from the fact that $\theta_{0,n} \leq t(r_n)$, where r_n is the path along the x-axis from (0, 0) to (n, 0); compare [5], Theorem 7.4.) This proves (4.1).

As for (4.2), this follows as in [5], Chapter 5.4 with the following replacement of Lemma 5.14. Let

 $A^{y} = \sup \{(t(r) + yl(r))^{-}: r \text{ a self-avoiding path starting at } (0, 0)\}.$

Then if (1.1) and (1.12) hold, and $-a \le y < 0$,

(4.4)
$$P\{A^{y} \ge x\} \le 2\{1 - e^{-C_{1}}\}^{-1} e^{-C_{1}x|y|^{-1}}$$

and A^{y} has all moments. To obtain (4.4) observe that $t(r) \ge 0$ so that

$$\{A^{y} \ge x\} \subset \left\{ \exists \text{ self-avoiding path } r \text{ starting at } (0,0) \text{ with } l(r) \ge \frac{x}{|y|} \\ \text{and } t(r) \le -x + |y| \ l(r) \right\}$$

 $\subset \bigcup_{n \ge c |y|^{-1}} \{ \exists \text{ self-avoiding path } r \text{ starting at } (0,0) \text{ with } l(r) = n \text{ and } t(r) \le an \}.$ Thus (4.4) follows from (1.13). then

$$t(r) > \max \{\mu(U)(1 + \varepsilon^2 y)n, al(r)\}$$
 and $t(r) + yl(r) \le \mu(U) \left(1 + \frac{y}{a - \varepsilon}\right) n$

cannot occur simultaneously. Therefore, if (4.5) holds

$$(4.6) \quad P\left\{\theta_{0,n}^{y} \leq \mu(U)\left(1 + \frac{y}{a - \varepsilon}\right)n\right\}$$

$$\leq P\left\{\exists \text{ self-avoiding path } r \text{ from } (0,0) \text{ to } (n,m) \text{ with } l(r) \geq n \text{ and}$$

$$t(r) + yl(r) \leq \mu(U)\left(1 + \frac{y}{a - \varepsilon}\right)\right\}$$

$$\leq P\{\exists \text{ self-avoiding path } r \text{ from } (0,0) \text{ to}(n,m) \text{ for some } m, \text{ with}$$

$$t(r) \leq \mu(U)(1 + \varepsilon^{2}y)n\}$$

$$+ \sum_{l=n}^{\infty} P\{\exists \text{ self-avoiding path } r \text{ with } l(r) = l \text{ and } t(r) \leq al\}$$

$$\leq P\left\{\frac{1}{n} b_{0,n} \leq \mu(U)(1 - \varepsilon^{2} |y|)\right\} + 2\{1 - e^{-C_{1}}\}^{-1}e^{-C_{1}n} \text{ (by (1.13))}.$$

By virtue of (1.8) the last member of (4.6) tends to 0, so that

(4.7)
$$\mu(U \oplus y) = \lim_{n \to \infty} \frac{1}{n} \theta_{0,n}^{y} \ge \mu(U) \left(1 + \frac{y}{a - \varepsilon} \right)$$

whenever (4.5) holds. (1.21) is immediate from (4.7).

Note added in proof. It has now been proved that indeed $P_T = P_H = \frac{1}{2}$. See KESTEN, H. (1980) Commun. Math. Phys. 24, 41-59.

References

[1] Cox, J. T. AND DURRETT, T. (1980). Some limit theorems for percolation processes with necessary and sufficient conditions. *Ann. Prob.* To appear.

[2] HAMMERSLEY, J. M. AND WELSH, D. J. A. (1965) First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In *Bernoulli, Bayes, Laplace Anniversary Volume*, ed. J. Neyman and L. M. LeCam, Springer-Verlag, Berlin.

[3] RUSSO, L. (1978) A note on percolation. Z. Wahrscheinlichkeitsth. 43, 39-48.

[4] SEYMOUR, P. D. AND WELSH, D. J. A. (1978) Percolation probabilities on the square lattice. Ann. Discrete Math. 3, 227-245.

[5] SMYTHE, R. T. AND WIERMAN, J. C. (1978) First passage percolation on the square lattice. Lecture Notes in Mathematics **671**, Springer-Verlag, Berlin.

[6] WIERMAN, J. C. (1980) Weak moment conditions for time coordinates in first-passage percolation models. J. Appl. Prob. 17,

[7] WIERMAN, J. C. AND REH, E. (1978) On conjectures in first-passage percolation theory. Ann. Prob. 6, 388-397.