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ON THE TIME CONSTANT AND PATH LENGTH
OF FIRST-PASSAGE PERCOLATION

HARRY KESTEN,* Cornell University

Abstract

Let U be the distribution function of the passage time of an individual bond
of the square lattice, and let p be the critical probability above which the
expected size of the open component of the origin (in the usual bond
percolation) is infinite. It is shown that if (*)U(0—)=0, U(0) < pr, then there
exist constants 0<a, C; <o such that P{3 a self-avoiding path of at least n
steps starting at the origin and with passage time =an}=2exp (—C;n).

From this it follows that under (*) the time constant w(U) of first-passage
percolation is strictly positive and that for each ¢ >0lim sup (1/n)N, (c) <o,
where N, (c) is the maximal number of steps in the paths starting at the origin
with passage time at most cn.

FIRST-PASSAGE PERCOLATION; BERNOULLI PERCOLATION; TIME CONSTANT;
ROUTE LENGTH

1. Statement of results

First-passage percolation was first studied by Hammersley and Welsh [2].
More recent results can be found in the monograph [S] of Smythe and
Wierman. We generally follow the notation of [5]. The lattice L of integral
points in the plane is viewed as a graph with vertices the points v = (v', v") of
ZxZ, and edges or bonds the line segments between adjacent points. Here v
and w are called adjacent if v'=w’, [0"—w"|=1 or if [v'—w'|=1, v"=w". All
edges are undirected; e and f will denote generic edges. A path on L from v to
w is a sequence (v, €, Uy, * * *, €, U,) With each v; a vertex in L and such that
vo=1v, v,=w and v;,, is adjacent to v, and with e; the edge connecting v;_,
and v,. The path is called self-avoiding if v;# v; for i# j.

To each edge e is assigned a random variable X(e), called the passage time
of e. It is assumed that all X(e), e € L, are independent identically distributed
with distribution function U, satisfying

(1.1) U0-)=0.
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Thus all X(e) are non-negative w.p.1. The passage time of the path r=
(vg, €1, * +, v,) is defined as

(1.2) (=2 Xe),
i=1
and its length, I(r), as n. As in [5] we set
(1.3) a,,=inf{t(r): r is a self-avoiding path from (0, 0) to (n, 0)},
(1.4) b, =inf{t(r): r is a self-avoiding path from (0, 0) to (n, m) for some m}

(1.5) to,=inf{t(r): r=(vy, €5, - -, €, v,) is a self-avoiding path from (0, 0)
to (n,0) with 0<vi<n for 1=i=k—1},

(1.6) so,=inf{t(r): r=(vo, €5, ", €, 1) is a self-avoiding path from (0, 0)
to (n, m) for some m with 0<v/<n for 1=i=k—1}.

It is proved in [S], Chapter 5, that if (1.1) holds and
(1.7) j x dU(x) <oo,
[0,%)

then there exists a constant w(U) such that

. ag . b .1 . So
lim =22 = lim —2%= lim "= Jim 2"
(1.8) now N poe B poe B pose R

=u(U)w.p.landin L.

Recently Wierman [6] and Cox and Durrett [1] have shown that even without
any moment conditions on U there exists a constant w(U) such that
(I/n)ay ,— r(U) in probability. w(U) is called the time constant of U. Note
that under (1.1) all edges have non-negative passage times so that from any
path r we can ‘remove loops’ to obtain a self-avoiding path 7 with the same
initial and end point as r but #(f)=t(r). Thus under (1.1) the restriction to
self-avoiding r in (1.3)-(1.6) is superfluous. However, in Section 4 we shall also
need (1.8) for some distributions U which do not satisfy (1.1) and for such U
the proper definitions are as given in (1.3)—(1.6) (cf. [5], p. 64).

To formulate our results we also need the critical probability p; which is
defined in terms of Bernoulli percolation as follows. For our purposes, a
Bernoulli percolation is a family of independent identically distributed random
variables {X(e):ee€ L} as above with U a Bernoulli distribution:

(1.9) U{0}) = p, U{lh=q=1-p

(U(A) is the mass assigned by U to the set A). It is customary to call e open
(closed) if X(e)=0 (respectively X(e)=1). A path r=(vgy, e, ", e, ) is
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open if each e; in r is open. Set

V(p) = E{number of edges in L which belong to an open path starting at the
origin}
= )" P{3 open path starting at the origin and containing e}.
el

Note that in terms of passage times governed by the distribution (1.9) we can
also write

(1.10) V(p)= Y, P{3 path r starting at the origin and containing e with

eeLl

t(r)=0}.
Now ‘
(1.11) pr=inf{p: V(p) = »}.
Our principal result is the following.
Theorem 1. If (1.1) holds and
(1.12) U0)<pr,
then there exist constants 0<a, C, <o such that

(1.13) P{3 self-avoiding path r starting at the origin with I(r)=n and
t(r)=an}=2e <",

Remark 1. Under (1.1), U(0) is the atom of U at 0. Russo [3], Theorem 2
(see also Seymour and Welsh [4] and Smythe and Wierman [5], Section
3.4-3.6) states that for the Bernoulli percolation with U as in (1.9) and p<pr
one has for each £ >0

(1.14) P{3 path r= (v, e, * -, €, V) starting at vy(0, 0) and ending at some
v, with |v4|=3" or |v}|=3"}=e"

for n sufficiently large. (1.14) corresponds to the estimate n®&»''°8¢ for the
left-hand side of (1.13) when a =0. Clearly (1.13) is a considerable improve-
ment of (1.14).

We also prove the following.

Theorem 2. If (1.1) and (1.12) hold, then for 6 =a, b, s or t

o:’l'"g b>0 w.p. 1, for some b= b(U)>0.

(1.15) lim inf

In particular, u(U)=b.
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Of course Theorem 2 is immediate from Theorem 1, with b = a. However,
our method of proof forces us to prove Theorem 2 first.

Remark 2. Theorem 2 extends the known result (cf. [5], Proposition 7.1)
that w(U)>0 if U(0)<A™', where A is the so-called connectivity constant
(Section [5], p. 24). Wierman and Reh [7] (also [5], Theorem 7.3) showed that
p(U)=0 if U(0)>py or if U(0)=3. It seems to be generally believed that
pr =3. If this is correct, then we have for any distribution U with finite mean
that w(U) =0 if and only if U(0)=3. (See note on p. 863.)

Another immediate consequence of Theorem 1 concerns

(1.16) N,(c)=sup{l(r): r a self-avoiding path starting at the origin with
t(r)=cn}.

Theorem 3. If (1.1) and (1.12) hold, then
(1.17) p{ N0z n} <2¢-Ciaten

where a and C,; are as in (1.13) and ¢ =0 arbitrary.
Remark 3. Smythe and Wierman [5] define
(1.18) NZ=min{l(r): r is a self-avoiding path starting at the origin with
t(r) = 6o},
0=a,b,s or t, and show that

1
(1.19) lim sup;Nf,<oo

for U(0)<A~! or U(0)> pyy (see [5], Chapter 8; py is defined on p. 29 of [5]).
They raise the question ([5], Section 10.5) whether (1.19) remains valid for
A"'=U(0) = py. Theorem 3 answers this question affirmatively for U(0) < p.
Again, one believes that p; = py. If this is true only the case U(0)= py is left

open. (See note on p. 863.)
For U(0)<A™' Smythe and Wierman [5], Theorem 8.2, actually prove

(1.20) 1 (0)=lim inf% N?=lim sup—l- Ni=p (0)<cow.p.1,
n

n—oo

where u*(0) (n™(0)) is the right (respectively left) derivative at 0 of the
function y— u(U®y) and

UBy(x)=U(x~-y)

(U@y is the distribution U shifted y units to the right). From Theorem 3 one
obtains the following corollary.

https://doi.org/10.2307/1426744 Published online by Cambridge University Press


https://doi.org/10.2307/1426744

852 HARRY KESTEN

Corollary. If (1.1), (1.7) and (1.12) hold then (1.20) remains valid for 6 = a,
b, s, or t. Moreover

(1.21) B (0)=1 w(U).

We have been unable to prove that lim (1/n)N? exists w.p. 1.

2. Proof of Theorem 2

Theorem 2 will follow from our next proposition.

Proposition 1. If (1.1) and (1.12) hold, then there exist constants 0<b, C,,
C; <% such that

(2.1) P{3 self-avoiding path r from the origin to (n, m) for some m with
t(r)=bn}=C,e "

(2.1) implies (1.15) because 6,, <bn implies the existence of a path from
(0, 0) to (n, m) for some m with t(r) < bn. We need some additional notation:

H ={v=("v")eZXZ:v'=Zn},
A(v, n, x) ={3 self-avoiding path r from v to some point in H, with #(r) = x},
(Note that the left-hand side of (2.1) is just P{A((0, 0), n, bn)}.) For a fixed
integer N
S(v)=S(v, N)={w=(w', w")eZXZ:|w'—v'|=N and
|[w"—v"|=Nor |w'—v|=N and |[w"—v"|= N}.

S(v) is the circumference of a square of edge length 2N centered at v. We
denote its interior by §(u, N). For fixed N and A>0 we set

(2.2) f(N, A)= P{3 self-avoiding path r from v to some point of S(v, N) with
t(r)=A and such that all vertices of r except the final one
belong to S(v, N)}.

The principal estimate is given by the following.
Lemma 1. If v'<n—N, then for all A>0

(23) P{A(o,mx)}= Y  P{A(w,nx—A}+f(N,A) Y  P{A(w,n x)}.

weS(v,N) weS(v, N)
Proof. Let
E= U A(w,nx—A4).

weS(v)
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Clearly the first term in the right-hand side of (2.3) is an upper bound for P{E},
so that we only have to estimate P{A \ E}. Assume that A(v, n, x)\ E occurs
and that r=(v, e, v4,° - *, €, v,) is a self-avoiding path from v to v, € H, with
t(r)=x. Since v'<n—N, S(v, NNNH, = and the endpoint v, of r must lie
outside S=S(v, N). Let a be the smallest index with v, €S and b the largest
index with v, € S. Also let ro= (v, e, vy, - * -, €, v,) (the initial piece of r) and
ry=(Up €41, " ", €,0) (the final piece of r), and finally r;=
(Vas €241, " "> €, U ). Then v, €S and since E does not occur neither does
A(v,, n, x—A) and necessarily t(r;) > x —A. Together with t(r) = x this implies

2.4) t(ro) = t(r)—t(r)) =A.

Thus r, is a path from v to a point of S with t(r;) =A and all vertices but the
last one in S. Furthermore, r, is a path from v, to H, with t(r,) =t(r)=x, and
by definition of b, r, has no vertex other than v, in SUS. Thus we proved

(2.5) P{A(v,n,x)\E}=Y,.s P{3 a self-avoiding path r, from v to S with
t(r,) =A and all vertices but the last one in S, and 3 a path r, from w to
H, with t(r,)=x and no vertex of r, besides w lies in SU $}
=f(N, A) Y, s P{3 a path r, from w to H, with t(r,) =x and no vertex
of r, besides w lies in SU S}
=f(N,4) Yues P{A(w, n, x)}.

The first equality in (2.5) follows from the fact that passage times of paths with
all edges in S and of paths with all edges in the exterior of S are independent.
(2.3) is now immediate from (2.5).

The rest of the proof of Proposition 1 is now routine. Now set S=
S((0,0), N) and let u be the measure on S Xx{0, A} given by

pw,A)=1 if wes,
nw(w,0)=f(N,A) if wesS.

Then (2.3) can be rewritten as

(2.6) P{A(v,n, x)}= Z w(w, yP{A(v+w,n,x—y), v'<n-N.

(w,y)eSx{0,A}

But clearly
P{A(v,n,x)}=0 for x<O

and

P{A(v,n, x)}=1 always.
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Thus, by iteration of (2.6) we obtain for any k=1, and v=(0,0), n> N,

P{A((0,0), n, x)}= Y. u(wy, y)P{A(wy, n,x—y,)}

Wwi,y1

= Z “‘(wl, )’1)
wiZn—N
y1Sx

2.7) + Z p(wy, y)P{A(wy, n, x—y,)}

wi<n—N
V1i=x

n I"‘(wi) yl)

i=1

+ Z n w(w, ).

wi+: - +we<n—-Ni=1
yi¥e o tySx

-.
1

—
Il

Here Y is the sum over wy,* ", W, y;, ",y Wwith wi+---+w/_,<n—N,
wi+---+w/Zn—N and y, +- - -+y;=x. Of course all sums in (2.7) are also
restricted to (w,, y;) € S x{0, A}.

Next we show that N and A can be chosen such that

2.8) Y uw, 0)§§.

weS((0,0),N)

To prove this, note that if there exists a path r=((0,0), e,, - - -, €, v,) from the
origin to S=S((0,0), N) which has all vertices but the last one in $=
$((0, 0), N) and t(r)=0, then necessarily e, is an edge between a point in S
and a point in S, and e, is contained in the path r with t(r)=0. Thus

f(N,0)= Y P{3 path r starting at the

e connects a point

of § witha poiatof s OTigin and containing e

with t(r) = 0}.
Consequently, by (1.10) and (1.11), if U(0) < py, then

o> V(U(0)) = Z P{3 path r starting at the origin and
¢k containing e with t(r) = 0}

= Y f(N,0).
N=0

In particular, we can fix N>0 such that

8Nf(N,0)= ) f(N,0)=3.

weS((0,0),N)
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Since
fIN,A) | f(N,0) as A} O
we can next choose A >0 such that

Y f(N,8)=3,

weS

which is just (2.8).
Now

e(\)= Y p(w, y)e ™ =3+ ) u(w,A)e **=2+4Ne 4,

(w,y)eSx{0,A} weS
and we can fix A >0 such that
e(N)=%.

With these choices of N, A and A
; )
Z l-l r(w, y) =e Z IL[ {n(w, )’i)e—)‘y‘}
w;eS i=1 (wi,yi)eSx{0,A} i=1
yi+e ooty Sx 1=isj

e\ =e™@).

If we also take into account that w; € S implies w/=N so that wi+---+w/=
n— N can occur only for j=N~'n—1, we obtain from (2.7)

PLA(O,0),m,x)}=lim | T @ +@r)

—c0 (nIN)-1sjsk
=10e™*@™N, n>N.

If we take x = bn with b so small that

C,

eAb (%)I/N 3

= e_

for some C;>0, then we obtain (2.1).
Remark 4. We proved above that (1.12) implies

(2.9) 8Nf(N,0)<1 forsome N=>0.

Conversely, the proof of Proposition 1 goes through with the hypothesis (1.12)
replaced by (2.9), and then the conclusion (2.1) of Proposition 1 directly
implies V(U(0)) <o and hence U(0)=pr. If (2.9) holds then it continues to
hold even when U(0) is slightly increased because for each fixed N, f(N, 0) is a
continuous function of U(0). Thus (2.9) actually implies U(0)<p; and (1.12)
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and (2.9) are equivalent. The above argument also shows that the interval of
p’s with V(p) < is open on the right, so that V(p;)= .

3. Proof of Theorem 1
To estimate (1.13) we divide L into the N X N squares
Sij={veL:iIN=v'=(i+1)N,N=v"=(j+ 1)N}.

N will be chosen later. Now consider a vertex v on the left boundary segment
of S, i.e,, v'=iN, [JN=0"=(j+1)N, and let s=(v,e;, vy, ", €, 1) be a
self-avoiding path starting at v with length

I(s)=kz=z(2N+1)(3N+1).

Since there are only (2N+1)(3N+ 1) distinct vertices in the set

gi,j = U S USy)
li-jl=1

(which is a union of six of the §;;), there must be some b=k with v, on the
circumference of §i,,~. Let b be the smallest index with this property, and for the
sake of definiteness let v, lie on the right edge of §i'f, ie. v,=(+1)N,
(j—1)N=vp=(j+1)N. Next let a be the largest index less than b with v, =iN.
Then §= (v, €,41," **, V) is a self-avoiding path (it is part of s) which lies
entirely in

R, ={veL:iNSv'=(i+1)N,(j—1)N=v"=(j+ 1)N}.

Moreover, only its initial and final vertex lie on dR,;, the circumference of R;,
and these points lie on the opposite long sides of dR;; (R;; is an NX3N
rectangle). We call such a path § a ‘crossing of R;;’. Had v, been on the left
edge of §i,,-, ie. vy=({—1)N, j—1)N=vp=(j+1)N, then § would have been a
crossing of R;_, ;. Similarly, if v, is in the top (bottom) edge of §;; then we find
that part of s is a crossing of the rectangle

T, ={veL:(i—-1)N=v'=(>i+ )N, (j+ )N=v"=(j+2)N}

(respectively T;;_,).

Now set M=(2N+1)(3N+1) and let r=((0,0),e,,v,," -, e, v,) be a
self-avoiding path of length I(r)=n with n=M, starting at the origin. Then
some piece F= (v, €q11,° ", €, V) With a<<b=M is a crossing of one of the
rectangles Ry o, R_; 0, To 1, Ty -,- Applying the above reasoning to the remain-
ing part (v,, €51, * * , €n, U,) Of 1 wWe see that some piece 7= (v, €.+, " *, V)
with b=c<d=b+M is the next crossing of some rectangle R; or T,
Moreover given which rectangle was crossed by 7, there are at most 19
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possibilities for the rectangle which is crossed by 7. In this way we find that
there is a string of [nM™'] rectangles D,, D,, - - -, D, K=[nM™"], each D,
equal to some R; or T, such that r successively crosses each one of the D,
Also given D, there are no more than 19 possibilities for D, so that there are
at most 19% such strings. It follows that the left-hand side of (1.13) is bounded
by

(3.1) ), P{3 self-avoiding path r=((0,0), e;, v;, " - -, €,, v,) Which cros-
Dli...7DK
ses D,, - -+, Dx and with t(r)=an},

and the sum in (3.1) runs over at most 19% possible strings. We now fix
D,, -+, Dg and estimate the corresponding terms in (3.1). There are only
2(3N+1) possible initial points for a crossing of any given D,. Moreover, since
r is self-avoiding, all its crossings of a given D, must be disjoint (i.e. pass
through disjoint sets of vertices). Thus the same D, can be crossed at most
(6N +2) times by r. In other words, any given rectangle D can occur at most
(6N +2) times among the D, Let y>0 (its precise value will be determined
below) and let

v =number of distinct D, which occur at most yN times
among the Dy, - - -, D,

p = number of distinct D, which occur more than yN times
among the Dy, - - -, Dy.

Then, by the above
(3.2) vyN+p(6N+2)=K.

In addition each D, intersects exactly 45 other rectangles R; or T;;. Thus we
can find at least v, =v/46 (p,= p/46) disjoint D, which occur at most yN
(respectively more than yN) times among the D,, - - -, Dx. We now also fix
subsets {D(i,), - - -, D(i,)} and {D(j,), - -, D(j,)} of disjoint rectangles from
the D,, - - -, Dg with

(3.3) v, +8p, = K,

1
46N
and only consider those self-avoiding paths r which cross each D(i,) at most
yN times and each D(j,) more than yN times. There are at most 3% choices for
these subsets, {i;,* - -, i,} and {j,, - - -, j,,}, since we already fixed D,, - - -, Dg
before.

So far the analysis has been purely deterministicc. We now bring in the
random passage times. For any rectangle R;; or T;, D say, let Y= Y(D) be the
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minimal passage time of any crossing of D. Then by Proposition 1

(3.4) E{e Y}=e®™+) P{3 crossing s of D which starts at v and with

*  t(s)=bN}
=e "™ +(6N+2)C,e SN,

Indeed, as observed above there are at most (6N +2) possible starting points v
for crossings of D, and if for instance D =R,; and v is on its left edge then a
crossing of D starting at v is a self-avoiding path from v to some w with
w'=0v'+N. (3.4) will suffice for all the rectangles D(i,). For the rectangles
D(j,) we need a stronger estimate. Let D be a rectangle as above and denote
by Z = Z(D) the minimum over all sets of yN disjoint crossings of D of the
sum of the passage times of the yN crossings.
Formally

YN

3.5) Z(D)= min 2 ().

T, "5 TyN j=1
disjoint crossings of D

We shall prove below that for each fixed y and I' we have for all large N
(3.6) E{e #®} =™,

Before proving (3.6) we show that Theorem 1 follows from (3.4) and (3.6).
Indeed for each choice of D(i,), - - -, D(i,,) and D(j,), - - -, D(j,,) we have

(3.7) P{3 self-avoiding path r which crosses each D(i,) and crosses each

D(j,) at least yN times and has #(r) = an}

=eE{exp- L YDG)- % Z(DG,)}

p=

because
(M2 3 YDG)+ Y Z(DG,)

for any r which crosses each D(i,) at least once and each D(j,) at least yN
times. Since all D(i,) and all D(j,) are disjoint, all the

Y(D(i,)), 1=p=v,, and Z(D(j,)), 1=q=p,,
are independent. Thus, by (3.4) and (3.6) the right-hand side of (3.7) is at most

(38) ean[e—bN+(6N+ Z)CZC_C’N]vle_p’FN.
Now set C,=2min (b, C;) and choose vy, I, N and a such that
G _1 8C,
: - —t=o T=2
(3.9 60 exp 92y-2 Y
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N so large that (3.6) holds as well as
e PN +(6N+2)Coe SN =e N,
and lastly
a =% {CN+1)3N+ 1} %é% C‘,—nIS (for n= M).
With these choices we see for any v, and p, satisfying (3.3) that (3.8) (and
hence (3.7)) is bounded by

exp {an—N(Cyv, +Tpy)} = exp {“" - SN+ 8px)} Sex —9_24; K
Y

= (L>K, n=M.

120
As observed before there are at most 19% choices for D, - - -, Dy, and given
Dy, - -+, Dk there are at most 3% choices for the subsets D(i,), - - -, D(i,,) and

D(j,), - - -, D(j,) so that (3.1), and hence the left-hand side of (1.13), is for
n=M bounded by

19%3K(120) K=2"¥ =2.27"M,
Obviously this bound also holds for n =M. Thus (1.13) will follow with

C = % log2={2N+1)3N+1)}'log2

once we prove the following.

Lemma 2. If (1.1) and (1.12) hold, then for each fixed y and T (3.6) holds
for all large N.

Proof. Without loss of generality we take
D={v:0=0v'=N,0=v"=3N}
Then
(3.10) E{e %?P}=e 2™+ P{Z(D)=2I'N}

YN
=e?™N +P{3 yN disjoint crossings ry, - - -, r,n of D with Y t(ri)§2FN}.
1

To estimate the probability in the last member of (3.10) we proceed in a
manner very similar to the beginning of the proof of Theorem 1. For some
integer Q, which will be determined later, we divide D into the Q X Q squares

D,;={v:iQ=v'=(i+1)Q,jO=v"=(j+1)Q},
0=i=Q'N-1,0=j=3Q'N-1.
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For convenience let us take Q™' N an integer, so that D equals the union of the
D,;. Now let ry, -, r, be disjoint crossings of D. Since D contains only
3N(N+1) vertical edges, each of which can belong to at most one r, there are
at least 2yN of the r, which contain =12y~ !N vertical edges. Number the r; so
that ry, - - -, rq2,~ have at most 12y~'N vertical edges. Now consider any r,
p=3yN and let r,=(wo, e;, wy," -, e, w;). For the sake of definiteness let
wo(w;) be on the left (respectively right) edge of D. Then r, must cross each of
the columns

C={v:iI0=0v"=(i+1)Q,0=0v"=3N}

= U D,0=i<NQ™.
0=j<3NQ™!
More precisely, for each such column i we can first find the minimal b =1 with
wi=(i+1)Q and then the maximal a<b with w/,=iQ. Then
(Wa, €441, ", €5, W) 1s a self-avoiding path from the left edge of C to the
right edge of G, and w; e C, for all a =j=b. We call it a proper crossing of C,
if there exists a QX (24y '+1)Q rectangle

B, ={w:iQ=w'=(i+1)Q,jO=w"=(j+1+24y" )0}

in C; which contains (w,, e,,q, " *, €, w,). Note that if (w,, - -+, w,) is not a
proper crossing of C, then it must have more than 24y~'Q vertical edges, for
if this is not true, then the highest and lowest values of wy, - - - , w}, differ by at
most 24y7'Q and (w,, - - -, w,) lies in some B; ;. Now r, must cross each of the
NQ™' columns Gy, -, Cyo-i-1, and for p=3yN r, has at most 12y 'N
vertical edges. Thus at least ;NQ™' of the column crossings must be proper
crossings. Altogether ry, - - -, rg),~ have at least 7yN>Q™" proper crossings all
of which are disjoint. One B,; can contain at most (24y~'+2)Q disjoint proper
crossings since each proper crossing must contain one of the 24y '+1)Q+1
points on the left edge of B;;. Consequently at least

Y4y +2)7'Q7N?

of the B;; contain a proper crossing by one of the ry, - - -, ryn. Also each B;;
intersects fewer than 3(48y~'+3) other B, so that there must at least be

vo=2s¥(24y"'+2)Q°N?

disjoint B;; which contain at least one proper crossing. There are fewer than
NQ™'3NQ™'=3Q7>N? rectangles B,; in D, and thus at most

(30‘2N2)

Vo

ways to select v, disjoint B, ;’s.
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As in the proof of Theorem 1 the above ends the deterministic part of the
analysis. For given ij, let U= UC(i, j) be the minimal passage time of any
self-avoiding path in B;; which starts on the left edge and ends on the right
edge. Exactly as in (3.4)

E{e Y}=e™ "+ (2477 1Q+2)Ce”S°
(3.11) {e"}=e (24y77Q+2)Che
e %9
again with C, =3 min (b, C;) and Q = Q,, where Q, depends on b, y, C, and C,

only. Thus, by the independence of the U(i, j,) for disjoint B, ;.

YN

P{ 3 yN disjoint crossing ry, - - -, r,n of D with ), t(ri)§2l"N}
i=1

(3.12) =) o P{3 proper crossings of B, ;," " -, B, ;.

whose total passage time is =2I'N}

IA

X" P{Z U, j,,)éZFN}

lIA

(3Q_ZN2) £2TN,—C,Qv,

Vo

(compare (3.7)). Here Y ™ is the sum over all sets of v, pairs (i, j), 0=i<NQ™!,
=j<3NQ! for which the B; ;. 1=p=v, are disjoint. The last member of
(3.12) is at most

(3.13) 23Q7N2,2IN ,~C,Qu, < ,—2TN

as soon as
C,Qvy=4I'N+3Q72N?,
or
(3.14) 2:C,y(24y714+2)>Z4ION'+3Q7 .
Clearly (3.14) holds for
QzQ,=4.24C,"y '(24y71+2)?

and N=4I'Q?. Now fix Q=max (Q,, Q,). Then (3.6) follows for N=4I'Q?
from (3.10), (3.12) and (3.13).
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4. Proof of Theorem 3 and corollary

Theorem 3 is immediate from (1.13) since N,(c)=(c/a)n implies that there
exists a self-avoiding path r of length at least (c/a)n with passage time
tirn=cn=a.(c/a)n.

As for the corollary, let 63 ,.0=a, b, t or s, denote the respective infima in
(1.3)-(1.6) when X(e) is replaced by X(e)+y. Then (1.20) follows in exactly
the same way as in Theorem 8.2 of [5] once it is established that

4.1) supE{% Ng}<oo
n=1
and
1
(4.2) lim— 63, = n(UBy)>—=, =y, =y <0,

for some y,>0 (see (1.18) for N?).
To prove (4.1) observe that on the set {6,, <axn} any self-avoiding path r
with t(r)= 6, , has length= N, (ax) (see (1.16)). Thus, by (1.17)

P{N?=xn}=P{6, , = axn}+ P{N,(ax) = xn}

4.3) e
=P{6,, = axn}+2e "

Consequently
1 (=
B[l ngl=t e Lo, ] s2c =t [Ceavimeaci
n a |n a

0

(The last inequality follows from the fact that 6,, =t(r,), where r, is the path
along the x-axis from (0, 0) to (n, 0); compare [5], Theorem 7.4.) This proves
4.1).

As for (4.2), this follows as in [5], Chapter 5.4 with the following replace-
ment of Leml_‘na 5.14. Let

A?Y =sup {(t(r)+yl(r))": r a self-avoiding path starting at (0, 0)}.
Then if (1.1) and (1.12) hold, and —a =y <0,
(4.4) P{A’ Zzx}=2{1—e O} e =P,
and A” has all moments. To obtain (4.4) observe that #(r)=0 so that

{AY=x}c { I self-avoiding path r starting at (0, 0) with I(r) éii

and t(r)=—x+|y| l(r)}
< U {3self-avoiding path r starting at (0,0) with [(r)=n and t(r) < an}.

nzcly[™?

Thus (4.4) follows from (1.13).
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We omit further details of (1.20). Finally we prove (1.21). Observe that if

4.5) —78-_— y<0 and &<min{a,a %}
then
t(r)>max {u(U)(1+&%y)n, al(r)} and t(r)+ yl(r) = p(U) (1 + " Z 8) n

cannot occur simultaneously. Therefore, if (4.5) holds

(4.6) P{e{,,"gp(U)(Hafe)n}

éP{ 3 self-avoiding path r from (0, 0) to (n, m) with I(r)=n and
0 +yi=p)(1+-2)]

= P{3 self-avoiding path r from (0, 0) to(n, m) for some m, with
t(r)=u(U)(1+€%y)n}

+ Y. P{3 self-avoiding path r with I(r)=1 and t(r) = al}

l=n

1
éP{; by, =p(U)(1-¢> |y|)} +2{1-e S} e G (by (1.13)).

By virtue of (1.8) the last member of (4.6) tends to 0, so that

—tim Loy = Y
@.7) pUBY)= lim 03,2 w(U)( 1+

whenever (4.5) holds. (1.21) is immediate from (4.7).

Note added in proof. It has now been proved that indeed Pr=Py,=3. See
KesteN, H. (1980) Commun. Math. Phys. 24, 41-59.
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