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ON 3-DIMENSIONAL CONTACT SLANT SUBMANIFOLDS IN
SASAKIAN SPACE FORMS

IoN MIHAI AND YOSHIHIKO TAZAWA

Recently, B.-Y. Chen obtained an inequality for slant surfaces in complex space forms.
Further, B.-Y. Chen and one of the present authors proved the non-minimality of
proper slant surfaces in non-flat complex space forms. In the present paper, we
investigate 3-dimensional proper contact slant submanifolds in Sasakian space forms.
A sharp inequality is obtained between the scalar curvature (intrinsic invariant) and
the main extrinsic invariant, namely the squared mean curvature.

It is also shown that a 3-dimensional contact slant submanifold M of a Sasakian
space form M(c), with ¢ # 1, cannot be minimal.

1. INTRODUCTION.

In [3], Chen proved that the squared mean curvature ||H||?> and the Gauss curvature
K of a proper slant surface M in a complex space form M(c) satisfy the following basic
inequality:

(1.1) |H®)|? = 2K (p) — 2(1 + 3cos® ),

at each point p € M.

The equality sign of (1.1) holds at a point p € M if and only if with respect to some
suitable orthonormal basis {ey, e;, €3, €4} at p, the shape operators at p take the following
forms: 4

32 0 0 A
. (B0 an ()

The purpose of the present paper is to establish a sharp inequality for 3-dimensional
proper contact slant submanifolds in Sasakian space forms, involving the scalar curvature
7 and the squared mean curvature ||H||%.

More precisely, we prove that the following estimate holds.
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THEOREM 1. Let M be a 3-dimensional proper contact slant submanifold of a
5-dimensional Sasakian space form M(c). Then, we have

8 2
|H|Z > =7 5 —§[c+3+(3c+5)cos g].

The case in which equality holds is investigated.

In [4], B.-Y. Chen and one of the present authors proved that there do not exist
minimal proper slant surfaces in a non-flat complex space form. We show that there do
not exist 3-dimensional minimal proper contact slant submanifolds in a 5-dimensional
Sasakian space form M (c), with ¢ # 1.

Finally, we obtain another inequality between an intrinsic invariant (scalar curva-
ture) and extrinsic invariants (scalar normal curvature and squared mean curvature) of a
3-dimensional proper contact slant submanifold in a 5-dimensional Sasaklan space form,
and investigate the case in which equality holds.

2. SUBMANIFOLDS OF A SASAKIAN SPACE FORM.

Let (M ,9) be a (2m + 1)-dimensional Riemannian manifold endowed with an endo-
morphism ¢ of its tangent bundle TM, a vector field £ and a 1-form 7 such that

2 96X, 8Y) = 9(X,¥) = n(X)n(Y), n(X) = 9(X,8),

for all vector fields X,Y € [(TM).
If, in addition, dn(X,Y) = g(¢X,Y), then M is said to have a contact Riemannian
structure (¢, £,n, g). If, moreover, the structure is normal, that is, if

[6X,0Y] + ¢*(X, Y] - 6[X, ¢Y] — 96X, Y] = —2dn(X, V)¢,

then the contact Riemannian structure is called a Sasakian structure and M is called a
Sasakian manifold. On a Sasakian manifold one has

(2.2) (Vx9)Y = —g(X,Y)¢ + ()X,

where V is the Riemannian connection with respect to g. For more details and back-
ground, we refer to the standard references (1, 8].

A plane section o in T,M of a Sasakian manifold M is called a ¢-section if it is
spanned by X and ¢X, where X is a unit tangent vector orthogonal to £. The sectional
curvature K (o) with respect to a ¢-section o is called a ¢-sectional curvature. If a
Sasakian manifold M has constant ¢-sectional curvature c, then it is called a Sasakian
space form and is denoted by M (c)-

https://doi.org/10.1017/50004972700037655 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700037655
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The curvature tensor R of a Sasakian space form M(c) is given by ([1D:

(2.3) mxyw=c:%¢xmx—ﬁxzw)

+ 2 (02 =V )(2)X + g(X, Zn(¥)E
~9(Y, Z)n(X)€ + g(¢Y, Z)8X — g(¢X, Z)¢Y — 29(¢X,Y)Z),

for any tangent vector fields X,Y, Z to M(c).

An n-dimensional submanifold M of a Sasakian space form M (c) is called a contact
8-slant submanifold if the structure vector field £ is tangent to M and for each non-zero
vector X tangent to M at p € M and orthogonal to £, the angle §(X) between ¢X and
T,M is independent of the choice of X and p (see, for instance, [3] and [2]). Moreover,
M is a proper contact slant submanifold if 0 < 8 < w/2, that is, M is neither invariant
nor anti-invariant submanifold.

It is easily seen that the minimum codimension of an n-dimensional proper contact
slant submanifold is n — 1. The anti-invariant submanifolds have the same property (see

[7])-

3. MAIN RESULTS.

Let M be an n-dimensional Riemannian manifold. Denote by K(n) the sectional
curvature of the plane section 7 C T,M , p € M. For any orthonormal basis {ey,...,e,}
of the tangent space T, M, the scalar curvature 7 at p is defined by

T(p) = Z K(e,-/\e,-) .
1Ki<ign
We consider a 3-dimensional proper contact #-slant submanifold M in a 5-dimensional
Sasakian space form M(c). For any vector X tangent to M, we put

¢X = PX + FX,

where PX and FX denote the tangential and normal components of ¢.X, respectively.
Let e; be a unit vector tangent to M and orthogonal to £&. We construct a canonical
orthonormal basis {e;, ez, €3, 4, €5} defined by

1

= ——-P =¢,
e2=_—Pe, e 3
1 1
= F = ——Fe,.
€4 = Ging 0 = Gnd €2

We call such a basis an adapted slant orthonormal basis.
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THEOREM 1. Let M be a 3-dimensional proper contact slant submanifold of a
5-dimensional Sasakian space form M(c). Then, we have

2
(3.1) IH|? > 8r — 2le+ 3+ (3c+5) cos?].

Moreover, the equality sign of (3.1) holds at a point p € M if and only if with
respect to some suitable adapted slant orthonormal basis {e;, ez, €3, €4, €5} at p, the shape
operators at p take the following forms:

3X 0 siné 0 A 0
(3.2) A, = o X O , A, =|A 0 sind
sind 0 O 0 sinf O

PROOF: Let p € M and {ey, e, €3, €4,€5} an adapted slant orthonormal basis. We
have .
7(p) = K(e1 Ae2) + K(ey Aes) + K(ez Aes).

We recall the Gauss equation for the submanifold M in the Sasakian space form
M(c):

R(X,Y,2,W) = R(X,Y, Z,W) + g(h(X,W), (Y, 2)) — g (h(X, Z), (Y, W),

for all vector fields X,Y, Z, W tangent to M, where h denotes the second fundamental
form and R the curvature tensor of M. Then, by using (2.3) and Gauss equation, it
follows that

c+3 3
K(e1 Aex) = R(ey,eq,€1,€2) = — + 4(

+ g(h(el, e1), h(ez, e2)) - g(h(el; e2), h(ex, 62)),

c—1)cos’8

or equivalently,

c+3
4

where h}; = g(h(e;, €;), er), 4,5 € {1,2,3},r € {4,5}.
It is easily seen that

(3.3) K(eyANep) =

3
+ Z(c — 1) cos® @ + hi  hgy + B3, h3, — (R12)? — (h3,)?,

AFe €2 = Ape, €1,

which implies h$, = hi,.
We choose the unit normal vector e4 € Tle parallel to the mean curvature vector
H(p) of M in p. Then one has H(p) = ||H(p)||es, which leads to

”H( )” h‘:l +h5,)?,  hi+h3 =0.
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The relation (3.3) becomes

c+3 3
+ =(c— 1) cos’ 0 + ki h3, — (RS))? — (h35)* — (h3y)*.

(3.4) K(eyAey) = 1 y

The trivial inequality (z— 3X)% > 0 is equivalent to (+ )2 > 8(Au — A?). If we put
u= h%lr A= h’§21

the above inequality and the equation (3.4) imply

(3.5) |5 (p) || { (e Aex) — 01-3 - %(c— 1) cos20].

On the other hand, using Gauss equation we find

(3.6) K(ei Nes3) = K(ea Aeg) = 1 —sin® 8 = cos® 6.

Combining (3.5) and (3.6), we obtain the inequality (3.1) to prove.
Moreover, equality holds in (3.1) at a point p € M if and only if

h41 = 3h22, h%z = 0, h?l - 0-

Then the shape opefators take the desired forms. 0
Next, we shall prove the non-minimality of 3-dimensional proper contact slant sub-
manifolds in 5-dimensional Sasakian space forms M (c), with ¢ # 1.

THEOREM 2. Let M be a 3-dimensional proper contact slant subnmanifold in a
5-dimensional Sasakian space form M(c), with ¢ # 1. Then M is not minimal.

PROOF: We assume that M is a 3-dimensional minimal proper contact slant sub-
manifold in a 5-dimensional Sasakian space form M (c), with ¢ # 1. Let {e1, e, €3, €4,€5}
be an adapted slant orthonormal local frame.

For any normal vector U, we put ¢U = tU + fU, where tU and fU denote the
tangential and normal components of ¢U, respectively. Clearly one has

teqg = —(sinB)e;, tes = —(sinf)e,,

fes = —(cosB)es, fes = (cosB)e,.
Taking the normal part of the relation (2.2), we get
VxFY — FVxY = fh(X,Y) — h(X, PY),

where V1 is the normal connection of M.
In particular, one has

1
Vele.;

{wl (e1)Fez + hi  feq + h3) fes — cos O(hiyeq + hges)},
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where {wZ} denote the connection 1-forms on M (o).
The last equation implies

wi(er) = wi(er) — (cot B)(hy; + ha,).

Since M is minimal, it follows that w3(e;) = w?(e;).
Similarly w§(e2) = w?(e2). Then, one finds

wj = wl.
Let p € M be a non-totally geodesic point. Consider the function
Y : Ty M — R, %) = g(h(v,v), Fv),

where T)M = {v € T,M | g(v,v) = 1}. Since T}M is a compact set, there exists a
vector v € T, M such that y,(v) = infy,(TyM) = —p < 0, 4 € R. It is easily seen that v
is an eigenvector of the shape operator Ar,. Then we can choose an orthonormal basis
{e1,e2,€e3} of T,M, with e; = v and e3 = £, such that

h(ei,e1) = —pes, h(er,e2) = pes, h(ez, e2) = pes.

Consequently, there exists a local adapted slant orthonormal frame {e,, ey, €3, €4, €5}
such that the second fundamental form h satisfies

h(ei,e1) = —Xes, h(er,e2) = Aes, h(ez,e3) = Aey,

for a certain smooth function A on M.
Using (2.3), a straightforward calculation leads to

(R(ez, e1)e1)* = %(c — 1)(sin 6 cos 8)ey,
(R(e1, e2)ex)* = —%(c — 1)(sin 6 cos B)es.
Therefore the Codazzi equation gives
ex) = 3wi(e;) — %(c —1)sin#cos b,
e = 3wi(e;) + %(c —1)sinfcos¥.

- Thus, we obtain (c — 1) sinfcos 8§ = 0, which is a contradiction. 0
It is known that any invariant submanifold of a Sasakian manifold is minimal. Com-
bining this result with Theorem 2, we find the following.
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COROLLARY 3. Let M be a 3-dimensional minimal contact slant submanifold of
a 5-dimensional Sasakian space form M(c). Then either c = 1, or M is invariant, or M
is anti-invariant.
A Sasakian space form M (1) is locally isometric to a sphere.

We characterise the 3-dimensional minimal proper contact slant submanifold in S°.

PROPOSITION 4. A 3-dimensional proper contact slant submanifold in the 5-

dimensional sphere S° is minimal if and only if with respect to some suitable local adapted
slant orthonormal frame {e;, s, €3, €4, €5}, the shape operators take the following forms:

—X 0 sind 0 X 0
A,=| 0 » 0|, A,=|)r 0 sind
sinf 0 0 0 sind 0

PROOF: Let M be a 3-dimensional minimal proper contact slant submanifold in S°.
Then, as in the proof of Theorem 2, we can construct a local adapted slant orthonormal
frame {e,, e, €3, €4, €5} such that the second fundamental form h satisfies

h(ei,e1) = —Aes, h(er,e2) = Aes, h(ez, €2) = Aey,

for a certain smooth function A on M. Then the shape operators take the desired forms.
The converse statement is obvious. 0

4. ANOTHER INEQUALITY.

In this section, we prove another inequality between an intrinsic invariant, namely
the scalar curvature 7, and extrinsic invariants, namely the scalar normal curvature 7+
and squared mean curvature ||H||2, for a 3-dimensional proper contact slant submanifold
M in a 5-dimensional Sasakian space form M (c).

Let p € M and {e;, ez, €3,€4,€5} an adapted slant orthonormal basis of T,M. We

define the scalar normal curvature T+ at p by
Tl(p) = g(R-L(eli 62)64, 65)1

where R denotes the curvature tensor of VL.
This definition is formally similar to the definition of the normal curvature of a sur-
face in a 4-dimensional space form (see [6]). Also, since, in the case under consideration,

g(R*(e1,€)es, e5) = g(R*(e2,)es, €5) =0,

it follows that the above definition agrees, up to a constant factor, to the definition
introduced in [5].

We observe that the normal connection of M is flat if and only if 7+ = 0, which is
equivalent to the simultaneous diagonalisability of all shape operators (see, for instance,

[51)-
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THEOREM b. Let M be a 3-dimensional proper contact slant submanifold of a
5-dimensional Sasakian space form M(c). Then, we have

4 2 8
(4.1) H|? > =(t + 1) = =(c + 1) — = cos? 8.
9 9 9
Moreover, the equality sign of (4.1) holds at a point p € M if and only if with
respect to some suitable adapted slant orthonormal basis {e;, e, €3, €4, €5} at p, the shape
operators at p take the following forms:

—A 4 siné [TRED 0
(4.2) A, =1 o X 0 Ag,=| A —p siné
sind 0 0 0 sind O

PROOF: Let p € M and {ey, e, €3,€4,65} an adapted slant orthonormal basis. By
the definition of the mean curvature vector, one has '

(4.3) 9 HI? = (A, + h32)® + (A3, + h3,)?
= (hi; — h3y)? + (B3) — h3,)? + 4(hi, b3, + B31R3,).

By using equation (3.3), (4.3) becomes

(4.4) ONHI? = (hl) — h2a)> + (A}, — h3,)? + 4(7 — 2 cos?6)
—(c+3) = 3(c — 1) cos® 8 + 4(hi,)? + 4(h3,)2

We choose e, in the direction of the mean curvature vector. Then tr A,, = 0, and
thus the shape operators have the following forms:

a u sinf LA 0
A= o X 0 |, A= | A —u sind
sind 0 O 0 sinfd 0

It follows that (4.4) is equivalent to
(4.5) O|H||2 — 47 + (c+ 3) + (3c+5) cos? 0 = 8u? + (o — )2 + 4)\2.

On the other hand, by the definition of the scalar normal curvature and Ricci equa-
tion, we get

7L = g(R(e1, 2)es, €5) = g(Rle, €2)eq, €5) + 9([Aes, Acsler, €2)
c —

1
=7 (1 — 3cos?8) + h}, A, + hiyhs, — hi hS, — hiyhd,

= c;l(l —3cos?8) +24° + A(A — @).
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Using (4.5) and the trivial inequality 4A\(A — a) < 4A%+ (A — @)?, the above equation
implies
47t < 9| H|> — 47 + 2(c + 1) + 8cos? 4,

which is equivalent to (4.1).
Equality holds in (4.1) at a point p € M if and only if & = —), that is, the shape
operators take the forms (4.2). 0

COROLLARY 6. Each 3-dimensional proper contact slant submanifold M of a 5-
dimensional Sasakian space form M (c) which satisfies the equality case of (4.1) at every
point p € M is a minimal submanifold.

The proof follows from (4.2).
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