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Abstract

We study the large time behaviour of the free boundary for a one-phase Stefan
problem with supercooling and a kinetic condition u = —e\s\ at the free boundary
x = s(t). The problem is posed on the semi-infinite strip [0,oo) with unit Stefan
number and bounded initial temperature q>(x) < 0, such that if —• - 1 - 8 as
x —» oo, where S is constant. Special solutions and the asymptotic behaviour of
the free boundary are considered for the cases e > 0 with S negative, positive and
zero, respectively. We show that, for e > 0, the free boundary is asymptotic to k\/t,
St/e if S < 0, S > 0 respectively, and that when 3 = 0 the large time behaviour
of the free boundary depends more sensitively on the initial temperature. We
also give a brief summary of the corresponding results for a radially symmetric
spherical crystal with kinetic undercooling and Gibbs-Thomson conditions at the
free boundary.

1. Introduction

We study the qualitative behaviour and special solutions of the Stefan prob-
lem with a kinetic condition at the free boundary [5], [6]. Several authors
have considered this problem and the existence, uniqueness and regularity of
the solution have been obtained (e.g. [14], [15]).

We consider here the one-phase Stefan problem on a semi-infinite strip
[0,oo), with a kinetic condition at the free boundary, unit Stefan number
and bounded initial temperature <p{x) < 0, so that the liquid is supercooled.
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82 J. N. Dewynne el al [2]

That is, we study the following dimensionless problem which corresponds to
the limit of a two phase Stefan problem when the thermal diffusivity in the
solid is vanishingly small:

Ui-uxx = 0, s(t) <x <oo, t>0 (1.1)

u(x,0) = <p{x) < 0 , 0<x<oo (1.2)

u(s{t),t) = -ei(t), t>0 (1.3)

ux(s(t),t) = -s(t), t>0 (1.4)

where e > 0 is a constant, and where <p(x) € C^O.oo) is a given function,
which is bounded together with its first derivative. The negativity of <p ensures
that s > 0.

The problem (1.1)-(1.4) reduces to the standard supercooled Stefan prob-
lem when e = 0. It is known that when e = 0 the solution of (1.1)—(1.4) can
blow up with s -* oo in finite time for certain initial data <p(x), in particular
when (but not only when) <p(oo) < - 1 [7, 9, 11], and also that the kinetic
term with e > 0 prevents blow-up for any initial data <p{x), at least for the
analogous problem posed on a finite spatial domain (see [15]).

In this paper we give some special solutions and discuss the asymptotic
behaviour corresponding to initial data <p{x) with

(p(x)^-l-d as x —• oo, (1.5)

where 5 is a constant. The plan of the paper is as follows. In Section 2 we
review known results on similarity solutions and asymptotic behaviour when
e = 0. In Section 3 we present analogous exact solutions for e > 0 and in
Section 4, using an integral equation derived from the Laplace transform of
(1.1)-(1.4), we analyse the asymptotic behaviour of s(t) as t —> oo in the case
that the initial data is not compatible with one of the similarity solutions
previously noted. In Section 5 we summarise the results of Sections 2-4.
Lastly, in Section 6 we give a brief review of the corresponding results for
a spherical crystal growing in three dimensions, with surface energy effects
incorporated via a Gibbs-Thomson condition on the free boundary. These
are qualitatively the same as the one-dimensional results of Sections 2-5. Our
analysis here complements the numerical work of Schaefer and Glicksman
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[13]; they pointed out that values of 5 as high as 0.8 are obtainable using
certain materials.

2. Known results and exact solutions when e = 0

We first review some results for the standard supercooled Stefan problem.
Firstly, as a consequence of the finite time blow-up for the initial-value prob-
lem with initial data <p(x) having tp(x) < - 1 (see [7, 9, 11]), we know that
there is no solution of (1.1)—(1.4) for large time if S is a positive constant.
Secondly, when 6 < 0, there is a similarity solution of the form2

u(x,t) = f(x/Vi), s(t) = fiy/t (2.1)

where

2 (2.2)

and fi is to be determined from

f°°exp(-y2)dy=\+5, (2.3)f
Jfifi/2

which has real positive solutions only if - 1 < S < 0 [1]. The initial data for
this solution is the step function (p{x) = - 1 -5, x > 0 .

The asymptotic behaviour

s{t) ~ P\ft, as t -> oo (2.4)

was obtained by [3] for any initial data <p(x) with <p" > 0 and ^(oo) > -1 /4 . It
is a reasonable conjecture that (2.4) is true for any <p(x) with <p(oo) > -1 and
for which finite-time blow-up does not occur; we shall support this conjecture
with asymptotic results in Section 4.

Lastly when 8 = 0, we can find a travelling wave solution in the form

u(x,t) = exp(-V(x-Vt))-l, s(t) = Vt (2.5)

where V is any positive constant. We remark here that there is no similarity
solution of the form (2.1) for 5 = 0 and no travelling wave solution of the

2 In using fi here, we are following the notation of Lame & Clapeyron (1831) [12] who first
considered the one-phase Stefan (sic) problem.
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form (2.5) if 8 < 0. We also note that V in (2.5) is arbitrary, whereas p in
(2.1) is determined by p(oo).

3. Exact solutions for e > 0

We begin our analysis of the case e > 0 by noting two exact solutions
analogous to the solutions given in Section 2.

(a) e > 0, S < 0: similarity solution with s{t) = fiy/i
We begin with the case 5 < 0. We know that there are similarity solutions

of the form (2.1) if e = 0. When e > 0, we incorporate the kinetic condition
(1.3) by seeking similarity solutions of the form

(3.1)

s(t) = pV~t, P> 0. (3.2)

We find that / (£) and g{£) satisfy the ordinary differential equations / " +
( f /2) / ' = 0, g" + (l/2)(£g)' = 0 where primes denote differentiation with
respect to ^. Further, from the kinetic and Stefan conditions, (1.3)—(1.4) we
find that

g'(P) =

and so

Since £(£) —» 0 as £ —> oo, P is determined by (2.3) which, as already noted,
has real positive solutions only when - 1 < 3 < 0.

We observe that P is independent of e. This surprising result is reminiscent
of the fact that, without kinetic undercooling, the corresponding similarity
solution for the growth of a spherical solid region expanding into supercooled
liquid has a rate of growth unaffected by the inclusion of a Gibbs-Thomson
condition at the free boundary [10] (see also Section 6). It is to be contrasted
with the results of the next part of this section, where we find a travelling
wave solution whose speed does depend on e.

Finally, we note that u(x,0+) ~ 0(1/x) as x —•• 0, but that finite initial
data can be obtained by shifting the origin of t.
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(b) e > 0, 8 > 0: travelling-wave solutions
When 8 > 0, a travelling-wave solution analogous to (2.5) can be found.

We seek a solution

u(x,t) = f(z), z = x-Vt (3.3)

s(t) = Vt, V> 0. (3.4)

By direct calculation we establish that

u(x,t) = exp[-V(x-Vt)]-(l+8) (3.5)

s(t) = Vt = St/e. (3.6)

Here the wave speed V is uniquely determined.
We now investigate how the possible travelling-wave solutions of (1.1)-

(1.4) behave as the parameters e and 8 approach zero. Suppose first that
e = o{6) as e —> 0, d -* 0. In this case <p(x) tends to a step function and
the velocity V becomes infinite as 8 and e —> 0+, suggesting that there is no
solution for the problem with e = 0, 8 = 0 when the initial data is a step
function. In the case where 8 = o{e), we observe that V —* 0+ as e, 8 { 0,
the corresponding initial function goes to zero and we retrieve the trivial
solution, although the limit is not uniform as x —> oo.

Finally, in the case 8 = O{e), we notice that V — 8/e is bounded as e, 8
go to zero. This gives the solution (2.5), and underlines the fact that V is
indeterminate in the limit 8, e | 0. Note that there is no bounded travelling
wave solution of the form (3.5), (3.6) if 8 is negative.

4. Asymptotic behaviour of s(t) as t —* oo

In this section, we discuss the large-time behaviour of the free boundary
s{t) by considering an integral equation formulation of problem (1.1)-(1.4).
We begin with the assumption that there is indeed a unique classical solution
for all t > 0. This is the case for e > 0, provided the initial data ^(JC) satisfies
some mild conditions, for example cp € C'[0,oo) and (p, <p' are bounded (see
[14], [15]).

We now investigate the large-time behaviour of solutions with arbitrary
bounded smooth initial data satisfying (1.5).

The first step is to reduce (1.1)—(1.4) to an integral equation by applying
a Laplace transform in x [8]. We define the transform ii(p,t) of u{x,i) by

u(p,t)= f e-pxu(x,t)dx; (4.1)
•(0
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by a direct calculation using (1.1)—(1.4) we find that

du/dt -p2u = [l + e/7 + es]se~ps, ii{p,O) = 0{p) (4.2)

where <p{p) = /0°° e~px<p{x)dx. Thus we have, from (4.2),

u(p,t) = ep2'[<p(p)+ f J(T)(1 + ep + es)e-ps^-p2zdi\. (4.3)
h

Since u(x, t) exists and is bounded for all /, it follows that u{p,t) exists and is
bounded for all t and Rep > 0. Thus taking | arg/?| < n/4 and letting t -> oo,
the quantity in square brackets in (4.3) must vanish identically, yielding

[ ep + es(T)}e-ps^-p2xdr. (4.4)
o

Integrating by parts, we obtain another more convenient form of (4.4):

<p(p) = - - - e + p( 1 + ep) f°° e-ps-»2' dt
P Jo

- e f°° s2e-ps-p2'dt. (4.5)
Jo

The behaviour of s(t) depends on the balance between the terms on the right-
hand side of (4.5).

In order to obtain the asymptotic behaviour of s(t) as t —* oo, we must in-
vestigate (4.5) as p —y 0, in particular the behaviour of the integrals
/0°° e-ps-p2' dt and /0°° s2e-ps-"2' dt. We first note that, by a direct calcu-
lation, if we take s(t) = /?%/? with /? a positive constant, then

p f°°s:
s2e-ps-p2tdt~\ogpy/ri, as/7-0,

and, if we take s(t) = Vt with V a positive constant, then

n c _ n * I t . *•

f
Jo

•i;
1/2

( 4 6 )

JO \P '

Comparing these forms for s(t), when the initial data is such that <p —
- (1 + 8)/p + 0\, where 0\ = o{\/p) asp — 0 (for example, if q>\(x) is
bounded and vanishes at oo, or if q>\{x) ~ sin<w;c), we conclude that the
asymptotic behaviour of s(t) is fiy/t if 8 < 0, e > 0, and Vt if 8 > 0, e > 0;
P and V are determined as in Sections 2 and 3 respectively. This analysis
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further suggests that in the marginal case 8 = 0, e > 0, the free boundary is in
general asymptotic neither to Vt nor to ftyft as t -» oo. We therefore inves-
tigate in more detail the remaining case 8 = 0, e > 0, where the asymptotic
form of s(t) depends more sensitively on q>{p).

(la) We start with 8 = e = 0 and choose initial data <p{x) with the form
tp(x) = - 1 + q>\{x) where f\(p) is finite (that is, (p\{x) is integrable over
[0,oo)) and nonzero at p = 0. Then we find the asymptotic behaviour of the
free boundary to be s(t) ~ Vt as t -> oo, with V - l/^i(0). We see from
(4.5)-(4.7) that no similar result is valid if e > 0.

(lb) We next discuss the case (still with 8 — e — 0) where the initial data
satisfies <p{x) 1 + cx~(x+y) + o{x~(x+y)) as x -> oo, so that

0{p) P~x + apy + o(py) asp — 0 (4.8)

where - 1 < y < 0 and a = cT(-y). If, in the first integral of (4.5), we
take s(t) ~ kta , | < o < 1, then, by rescaling time so that s(t) ~ pt (i.e.
putting t = (/C/P)1/ (1~O)T) and applying Laplace's method [4] to estimate the
behaviour of the integral as p —• 0, we find that

a

(l-l/a) + 0(p(l-l/a)) (4.9)

as p —> 0. This gives an estimate of the order of singularity (with respect to p)
of this integral as p —* 0. The relation between the order y of this singularity
and a is depicted in Figure 1.

Comparing (4.9) to (4.8), we see from (4.5) with e = 0 that s{t) ~ kta

where

a = 1 - y \ aa

The inequality - 1 < y < 0 implies that j < a < 1. Note that in general k
will be real and positive only if a > 0; that is, there will be a solution only
if (p(x) > - 1 in the far field. Indeed, it is likely that finite-time blow-up will
occur if a < 0.

This method can clearly be extended to more complicated behaviour of

Note that if we take <p(x) = - 1 , 0 < x < oo (i.e. the initial data is a unit
step function) then 0{p) = - £ . Then in (4.5) with e = 0, all the terms cancel

except for p /0°° e~ps^~p2' dt, which is strictly positive. Thus the supercooled
Stefan problem with unit step function initial data <p{x) has no solution that
has a Laplace transform (4.1).

(lc) If we consider initial data of the form <p(x) = - 1 + <p\(x) where <p\{p)
vanishes at p = 0, then from parts (la, b) of this section, it is apparent that
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FIGURE 1. Relation between y and a for S = 0, e = 0.

it is impossible to have s(t) ~ fc/a for any \ < a < 1. We thus look for
solutions which have s(f) ~ kta for a > 1, as t -* oo. The estimate (4.9)
remains valid for a > 1 (although a different scaling T = p2t is necessary
to obtain it). Thus if we assume that <P\{p) ~ apy as p —>• 0 for y > 0, we
recover (4.10). Clearly, however, this is valid only for 0 < y < 1.

The condition that pi(0) = 0 is simply the condition that /o°° <pi(x)dx =
0, and since the assumption that 0\{p) ~ apy excludes the possibility that
^ i = 0 , this implies that q>\(x) must change sign. In particular, it implies
that there must be regions where <p(x) < - 1 .

By analogy with the finite-time blow-up case (where s(t) becomes infinite
in a finite time) we can regard these cases as infinite-time blow up (since s{t)
is unbounded at t —* oo). Evidently such infinite time blow up cannot occur
if e > 0, for the maximum principle implies that \s\ < sup \<p{x)\/e (see [15]).

(Id) Now we consider the case e > 0 and 0{p) of the form (4.8). Suppose
we take s(t) = kta, a e ( | , l ) ; then we can obtain an estimate for the second
integral in (4.5) in the same manner as for the first integral in (4.5), namely

e f s2e-ps-P2' dt ~ eakl'arH pC/a-2) + O as p - 0.

(4.11)
The orders of magnitude of these two integrals as p —* 0 (as determined
by (4.9) and (4.11)) are shown as functions of a in Figure 2. According to
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-1/2--

FIGURE 2. Relations between y and a for S = 0, e > 0.

Figure 2 we see, from (4.5), (4.8)—(4.11), that the following cases must be
considered:

(i) - 1 < y < -j-. There are two possible choices for y (see Figure 2). The
choice we make depends on the sign of a in (4.8). If a > 0, the first integral
in (4.5) must balance apy, so we choose

a

If on the other hand a < 0, the second integral balances apy and thus

7=a~2' k = \eaT(2-l/a)) '

(ii) y = -j: Now a = | and k is determined as the unique positive root
of

that is

?±k2 + —k3'2 - - - 0-
3 K + y/nK 4 " U'

k =

Note that as e -» 0, k -• 3y/n/(4a).
(iii) - j < y < 0: No matter which integral we choose in (4.5) to balance

apy, the other integral will be more singular than py (see Figure 2). The only
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way to produce a term to balance apy is to choose a = \ and k - \{\)'/3

(thereby causing the terms of 0{p~{l2) to cancel) and to then consider higher
order terms in the expansion of s{t) as t —> oo.

We must therefore look at asymptotic behaviours of s{t) of the form

s(t) ~ kt2/* + kita> +o(t°") asf->oo

where

-K!)1 2
and 0 < ai < - .

The parameters k\ and a\ are to be found in terms of a and y.
To investigate the behaviour of the integrals in (4.5), we first set t

kix/pi, where k = j ( f ) 1 / 3 ; the first integral, for example, becomes

/•OO

pi exp(-pkt2/i-p2t-pkitai)dt
Jo

where r\ = k3p~K Provided 0 < a t < | , (which is just the condition that
ta> = o(t2/i) as / —• oo), the term e~ix2'} controls the asymptotic behaviour
as p -> 0. In this case a straightforward application of Laplace's method [4]
gives the estimate

/•oo

p exp(-pkt2/3 -p2t-pkitai)dt
Jo

3V/^--l/2 3̂ 1

A similar calculation can be made for the second integral in (4.5); in this
case, however, some care must be taken in dealing with the lower limit of
integration, as the integrand will not be integrable at / = 0 if ai e (0,1/3]. As
we are concerned with the asymptotic behaviour of s(t) as / —> oo, however,
the lower limit can be replaced by any finite nonzero constant if necessary.

After a lengthy calculation, we find the following estimate:

[°° e-
ps-p1' dt - e r s2e-ps-p2'dt

Jo Jo
i - l)/2)a,(3a,
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FIGURE 3. Relation between y and at for 5 = 0, e > 0.

where

" (/>) =

-(6a,-3)/2

O(logp),

0<a, < £
i < « l < 3

0<ai < i.

As previously, this allows us to choose c*i in terms of y (Figure 3). We
< 0, where

< ai < | and fci is determined by
therefore have s(t) ~ ki1^ + k\ta> as t —> oo if -\ < y < 0, where fc =
5(f)1/3> Qi = (1 - 2y)/3, and where
-ekik-X^-WanQon + l)r((3a, - = a.

5. Summary for the planar problem

We have discussed the asymptotic behaviour of a one-dimensional Stefan
problem with the kinetic condition u = -es(t) at the free boundary, and
initial data y{x) —* -1 - S as x —> oo. We have investigated the cases e
nonnegative, d negative, zero and positive respectively. To summarise, we
display our results in Figure 4.

(I) e = 0, d > 0: finite time blow-up.
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YI

I m

FIGURE 4. Regions of existence of classes of solution in the e - 3 plane.

(II) e = 0, 5 < 0: similarity solutions exist with s(t) = P\ft and <p(x) =
- 1 - S. For other cp{x) with (p{oo) = - 1 - S, s(t) ~ fl\ft as t -> oo
provided that no blow-up occurs.

(III) e > 0, d < 0: similarity solutions (but no travelling wave solution)
exist with s(t) = pyft; for other initial data the free boundary is
asymptotic to P\/i as t —> oo.

(IV) £ > 0, S > 0: travelling wave solutions (but no similarity solution)
exist with s(t) = St/e; for other initial data the free boundary is
asymptotic to dt/e as / —> oo.

(V) £ > 0, d = 0: s(t) ~ kta with i < a < 1, as f -+ oo. Furthermore, if
<p(p), the Laplace transform of (p{x), has the form

= -p as p -* 0 (5.1)

(i) If -1 <y < -\, a > 0, then a = 1/(1 - y), k = (r(l/a)/aa)Q

(ii) If -1 < y < - ^ a < 0 , t h e n a = 1/(2 + y),
k = {-a/eaY{2 - l/a))a.

(iii) If y = -\, then a = \,k = (3/4ey/n)[\/a2 + 2ne - a].
(iv) If - £ < y < 0, 5(f) ~ A:/2/3 + kita', as r -• oo, where

https://doi.org/10.1017/S0334270000006494 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006494


[13] Stefan problem with kinetic condition 93

( V I ) e=d = 0:
(i) If (p{x) - - 1 + q>o(x) with 0o(p) finite and nonzero at p = 0

then s{t) ~Vtast^xx>, where V = l/0i(O). This includes the
travelling wave solution (2.5) as a special case.

(ii) If q>{p) has the same form as (5.1), - 1 < y < 0, then s(t) ~
kta with j < a < 1, as t —> <x>, where a = 1/(1 — y), Ac: =

(iii) No solution exists for unit step function initial data.
(iv) If 0{p) has the form (5.1) for 0 < y < 1 then s(t) ~ kta with /:

and a > 1 determined as in (ii). In this case s(t) is unbounded
as / —• oo and we have "infinite-time" blow-up.

6. Three-dimensional solutions with radial symmetry

We briefly describe the extension of our previous results to a radially sym-
metric three-dimensional problem with an extra term incorporating surface
tension effects at the free surface via a Gibbs-Thomson condition. The spher-
ical version of the problem (1.1)—(1.4) is

u, = r-2(r2ur)r, s(t) < r < oo

u = -es - 2a/s, r = s(t)

ur = -s, r = s(t)

u(r,0) = <p(r), s(0)<r<oo,

where a > 0 is the dimensionless surface tension. If we introduce a new
variable

v{r,t) = ru{r,t)

then v(r,t) satisfies

v, = vrr, s(t)<r < o o (6.1)

v = -ess - 2a, r — s(t) (6.2)

vr = -(e + s)s -2a/s, r — s{t) (6.3)

with initial data

v{r,0) = r<p{r) = v{r), (6.4)

say, where <p(r) has the same form as (1.5).
We first mention that the problem (6.1)—(6.4) can blow up in finite time

if e = 0 and <5 > 0 (even with surface tension), and that when 5 < 0 there is
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a similarity solution with s(t) = P\fi, where fi is to be determined from

(6.5)

(for details, see [2] and references therein). This similarity solution includes
both surface tension and kinetic undercooling.

When d > 0 there is a pseudo-travelling-wave solution3

v{r,t)= - (I + eV)r + 2(l/V - a) + [2(Vt - l/V) - r\e~V{-r-Vl)

¥ e dy>
JS(t) = Vt,

where V = S/e. For e = d = 0, this is also a solution, for arbitrary V > 0. It
is singular with v = O(l/r2) at the origin as < —>• 0+, but this can be overcome
by changing the time origin.

We now investigate the large-time behaviour of the free boundary s(t)
for problem (6.1)—(6.4). As previously, we define the Laplace transform by
(4.1). This reduces (6.1)—(6.4) to an integral equation formulation. By a
straightforward calculation, we get the integral equation

V{p) = - dip I dp = -e-ps^[p~2 + {la + 2e + (1 + ep)s(0))P~l]

+ f°° [l + 2ep + (1 + ep)ps(t) - - ^ - «(0*(02l e-ps-p2' dt.
Jo L s\t) 1

(6.6)
Repeating the method used in Section 4 we can find similar asymptotic
results. Our results here confirm the numerical solutions of Schaefer and
Glicksman [13].

For brevity, we state the main results only.
(1) e > 0, d > 0: the asymptotic behaviour of s(t) is Vt and V — d/e.
(2) e > 0, d < 0: the asymptotic behaviour of s(t) is fl\/t and /? is deter-

mined by (6.5). Note that this is independent of both e and a.
(3) e > 0, S = 0: the asymptotic behaviour of s(t) is kta with \ < a < 1.

In particular, if

<fi(j)) = -e-ps(0)p-2 + apy-i+o(j)y-i)j as/7^0 (6.7)

where - 1 < y < 0, then
(a) if - 1 < y < -\, a > 0, then a = 1/(1 -y),k = ((1 + a ) r ( l / a ) / a 2 a ) a ;
( b ) i f - l <y< -\, a<0, then a = 1/(2 + y), k = (-a/eaT{3 - l /a))a ;

3 This solution does not appear to have been noted previously.
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(c) if y = - j then a = 5, k is to be determined from

8 ~ U >

(d) if - 5 < y < 0, then a = \, k = f(^)1^3, and we proceed to higher
order terms as above.

(4) e = S = 0.
(a) If y/{p) has the form (6.7) and - 1 < y < 0 then

provided fc is real and positive.
(b) If y/{p) has the form (6.7) with y - 0 then 5(0 ~ 2t/(a + 2a) as f -• 00,

provided a + 2a > 0.
(c) If y/(p) has the form (6.7) for y > 0 and <r > 0 then 5(0 ~ t/a +

o(/) as t —> 00. The precise form of the o{t) term is determined by the higher
order terms in ij/(p).

(d) If \j/{p) has the form (6.7) for 0 < y < 1 and a = 0 then 5(0 ~ kta,
where

„
1 -y

and we have "infinite-time" blow-up.
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