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The Lamb-Oseen vortex is a model for practical vortical flows with a finite vortex
core. Vortices with a Lamb—Oseen vortex velocity profile are stable according to the
Rayleigh criterion in an infinite domain. Practical situations introduce boundary conditions
over finite domains. Direct numerical simulations are performed on the evolution of
perturbations to a viscous Lamb—Oseen vortex with uniform inlet axial velocity in a pipe of
finite length. Linear stability boundaries are determined in the (Re, w) plane. For a given
swirl ratio w, the flow is found to become linearly unstable when the Reynolds number
Re is above a critical value. The complete evolution history of the flow is followed until
it reaches its final state. For small swirl ratios, the axisymmetric mode is linearly unstable
and evolves to a final steady axisymmetric but non-columnar accelerated flow state after
nonlinear saturation. For large swirl ratios, the spiral mode is linearly unstable. The spiral
mode is found to force growth of an axisymmetric component due to nonlinear interaction.
The flow evolves to a final unsteady spiral vortex breakdown state after it undergoes non-
linear saturation. The energy transfer between the mean flow and perturbations is studied
by the Reynolds—Orr equation. The pressure work at the exit of the finite pipe is a major
source of energy production. Finite-domain boundary conditions also modify the pertur-
bation mode shapes, which can render the vortex core from absorbing energy to producing
energy, and thus lead to instabilities. As the pipe length increases, the stability behaviour
of the flow is found to approach that predicted by the classical Rayleigh criterion.
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1. Introduction

Swirling flows are employed in a wide range of engineering applications such as
hydraulic turbines (Zhang et al. 2009), jet engines (Musa et al. 2018), chemical reactors
(Yang et al. 2023), mixing devices (Keeton et al. 2023) and other applications. It is impor-
tant to understand the dynamics of unstable swirling flows and the complicated evolution
to vortex breakdown. Reviews of the vortex breakdown phenomena by Leibovich (1984),
Escudier (1988), Rusak & Wang (1996) and Rusak (2000) show various types of vortex
breakdown such as bubble, spiral type and the temporal transition between them. Cary,
Darmofal & Powell (1997), Tromp & Beran (1997), Billant, Chomaz & Huerre (1998),
Dennis, Seraudie & Poole (2014), Meng, Liu & Luo (2018) and Vanierschot et al. (2020)
presented numerical simulations and experimental results of vortex breakdown states.

The study of the instability of swirling flow has a long history. Previous stability
theories of vortex flow (Kelvin 1880; Rayleigh 1917; Synge 1938; Howard & Gupta 1962;
Leibovich & Stewartson 1983) focus on the tendency of a small perturbation imposed on
a base swirling flow in an infinitely long pipe. The perturbation is in the form of Fourier
modes both in the azimuthal and axial directions which can be analysed using the normal
mode method. Rayleigh (1917) stated a linear stability criterion that an axisymmetric base
rotating flow in an infinitely long pipe is neutrally stable with respect to axisymmetric
perturbations if the base flow circulation function K satisfies (1 /r3)(dK 2 /dr) > 0. This
criterion is also valid for a rotating flow with a uniform axial velocity. Synge (1938)
pointed out that Rayleigh’s criterion, which was initially developed for inviscid flow, can
also apply to viscous flow. Later Howard & Gupta (1962) studied a more general base
flow with axial velocity profile W (r) and showed that it was stable to small axisymmetric
perturbations if (1/r3)(dK2/dr) —(1/4)( W/8r)2 > (0. Howeyver, these criteria are valid
only when a swirling flow is in an infinitely long pipe or a finite-length pipe with
periodic boundary conditions at the inlet and outlet. Experimental results, for example by
Harvey (1962) showed instability and bubble breakdown phenomena under approximately
axisymmetric conditions, contrary to classical stability theory according to which the
base flow is stable to axisymmetric perturbations. Although there are many phenomena
in swirling flows that are inconsistent with the classical stability theory, the limitations of
the classical stability theory have often been overlooked.

Wang & Rusak (1996a) developed an inviscid flow stability theory, which eliminated the
crucial limitation of the classical stability theory. They found that inlet and outlet boundary
conditions dramatically altered the stability of the base swirling flow in a finite-length pipe.
By considering solid body rotation as the base flow and solving the linearized perturbation
equations under a set of non-periodic inlet and outlet conditions, Wang & Rusak (1996a)
obtained an axisymmetric non-Fourier mode of perturbation that became unstable when
the swirl ratio of the base flow was above a critical level. Wang & Rusak (1996b) pointed
out that this kind of instability was directly related to the physical mechanism leading to
the axisymmetric breakdown state. The intrinsic assumption of an infinitely long pipe or
periodic boundary condition is the reason for Rayleigh’s criterion and classical works of a
similar type to fail to predict the instability that has been observed in practice.

Recently, Wang et al. (2016) and Gong (2017) extended the inviscid stability analysis
of the axisymmetric (mz =0) modes to viscous three-dimensional instability modes for
a general swirling flow in a finite-length pipe. Their work showed that a series of
both axisymmetric and spiral instability modes appears in sequence as the swirl ratio
increases above certain critical levels. The stability results of Wang ef al. (2016) predict
a stability boundary in the Reynolds number versus swirl ratio diagram. The diagram
indicates that with the imposed inlet and outlet boundary conditions, the spiral type of
perturbation becomes unstable at swirl levels below the critical switl ratio for the onset of
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the axisymmetric type of instability. Feng et al. (2017a,b, 2018) studied three-dimensional
viscous flow dynamics of perturbations on a solid-body rotation via direct numerical
simulations (DNS). Their simulation results of the neutral stability line and the global
dynamics of the perturbed solid-body rotation are in agreement with the stability analysis
of Wang et al. (2016).

The solid-body rotation vortex profile does not have a finite-size vortex core. While it is
of both theoretical and practical importance, most vortices in real flows consist of a small
vortex core surrounded by a nearly inviscid potential vortex. The Lamb—Oseen vortex is
an analytical model for such practical vortices. Rayleigh criterion yields the conclusion
that vortices with the Lamb—Oseen vortex velocity profile are stable to axisymmetric
perturbations, which is contrary to experimental observations that the Lamb—Oseen vortex
evolves to axisymmetric vortex breakdown when the swirl exceeds a critical swirl ratio
(Billant ez al. 1998). Wang & Rusak (1997a) and Rusak, Wang & Whiting (1998) studied
the Lamb—Oseen vortex with uniform axial velocity. They analysed the axisymmetric
Euler equations and established the evolution path from the columnar base flow to the
onset of vortex breakdown. Wang (2008) discovered the important effect of energy transfer
occurring in the vortex core and at the pipe outlet boundary. Wang & Rusak (1997b) also
studied the stability limit and the effect of slight viscosity when the swirl ratio is at a near-
critical level. No DNS based on the full Navier—Stokes equations has been performed yet
for such flows.

Weakly non-parallel flow convective instability and absolute instability analyses were
used to explain the vortex breakdown phenomena in swirling flow (see Ruith ef al. 2003;
Gallaire et al. 2006). They focused on the vortex breakdown in a semi-infinite domain
and found that the bubble breakdown state was unstable with a spiral instability mode and
evolved to a spiral breakdown state. Moreover, they claimed that the onset of the spiral
vortex breakdown was initiated by a nonlinear global mode due to the absolute instability
of the bubble vortex breakdown. However, the axisymmetric bubble breakdown state in
Ruith et al. (2003) did not satisfy the weakly non-parallel assumption. Later, Meliga &
Gallaire (2011) relaxed the locally parallel hypothesis and imposed a realistic, general per-
turbation mode similar to the analysis of Wang & Rusak (1996a). Meliga & Gallaire (2011)
verified the accuracy of their stability analysis by comparing with DNS results in Ruith
et al. (2003). Neither the classical stability theory nor the convective instability—absolute
instability analysis appear to adequately explain instability modes in a finite domain with
strong axial inhomogeneity under the non-periodic inlet—outlet boundary conditions.

In this paper, we study the three-dimensional, incompressible and viscous flow
dynamics of perturbations on a base Lamb-Oseen vortex flow with a uniform axial
velocity entering a rotating, finite-length, straight circular pipe. The present work focuses
on identifying the dynamics of three-dimensional instability of the base swirling flow.
We identify different linear perturbation modes in the perturbed Lamb—Oseen vortex and
their full linear—nonlinear evolution paths to two types of final stable states: a steady non-
columnar but symmetric flow state and a spiral breakdown state. Linear growth rates
of disturbances of both axisymmetric and spiral modes and the corresponding mode
shapes are extracted from data obtained by DNS. Effects of swirl ratio and Reynolds
number on the instability modes are investigated. The complete stability boundaries of
the perturbation modes are determined in the Reynolds number and swirl ratio (Re, »)
plane. We also reveal the detailed kinetic energy transfer mechanisms responsible for the
instabilities by an energy method based on the Reynolds—Orr equation.

The mathematical model and numerical method are discussed in § 2. Section 3 presents
computational results and analysis of the linear and nonlinear evolution processes. Two
typical linear instability modes that appear in different regimes of the (Re, ) plane
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are discovered. Their linear growth rates, nonlinear development and then long-time
behaviour until the flow reaches their final states are presented. The stability boundaries
corresponding to these two types of instability are mapped out in the (Re, w) plane. Section
4 presents analysis of the energy transfer mechanisms of the two instability modes. Finally,
§ 5 draws conclusions from the present study.

2. Physical model and numerical method
2.1. Governing equations

The incompressible three-dimensional Navier—Stokes equations are solved in the cylindri-
cal coordinate system (7, 8, x). Let the three components of («,, ug, u,) represent the radi-
al, azimuthal and axial velocity components, respectively. A new set of velocity variables

(%’7 q97 q;c):(rur,ru97 ux) (21)

is introduced to avoid the singularities at the axis of symmetry in numerical computations.
Notice the quantities ¢; do not all have the same physical dimensions as velocity. In the
following presentations, dimensional variables are marked with asterisks. The flow is
assumed to have constant density p* and viscosity u*. Flow quantities, space and time
coordinates are non-dimensionalized using the pipe radius R* as the length scale and
the axial velocity U* as the velocity scale. Time is scaled by R*/U™* and the pressure is
scaled by p*U*?. The Reynolds number Re = p*U*R*/i* is based on the pipe radius.
The dimensionless Navier—Stokes equations in terms of the new variables are

g, 19 9
ar 2090 | %9x _ 2.2)
or r 00 0x

D 9 1 Ta 9 1 92 92 29
@ _ 0P [—( (ﬂ))—q’+ i "’——ﬁ} 2.3)

Dr ar " Relor "ar \; 2T 20902 T 92 T 2 00
D 9 1 Ta 9 1 92 92 29
29 _ P, |2 r_(q_9> _% " %46 T4 < 9%4r| 2.4)
Dt 960  Re|or \ or \r r2 - r2 902 ox2  r2 96
Dg,  dp 1 [10 ([ 0g,\ 10%  0%q
__op 1L (o) 1 , 2.5
Dt dx + Re |:r or (r or * r2 962 * dx2 (2.5)

For enhanced computational accuracy, the substantial derivatives in the above equations
are written in conservative form as

Dg, dq- 9 (q? 9 (arqo\  04rqx 4

= — )+ (%5°) % 2.6)
Dt ot or \ r 96 \ r2 ox r2
Dgy  dq0 3 (qeq,\ = 1 3q7 qeqx . dpdr
=B = () 55 , 2.7)
Dt ot or \ r r2 06 ox r2

D ) 19 19 9g?

qx _ 0qx 4+ qrqx | 1 0964x i qx (2.8)

Dr  at  r or r2 96 Ix

2.2. The base flow

The dimensionless velocity components of the Lamb—Oseen vortex with uniform axial
velocity and pressure distribution are

ur =0, u9=%[l—exp(—br2)], uy =1, p=/O

r

1 2
—ug dr, 2.9
,
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where w and b are two dimensionless parameters defined as

B 1'*0* B R*Z
w=——, b= .
2mU* R* 4u*r*

(2.10)

Here If and v* are the circulation of the vortex core and the kinematic viscosity,
respectively. Notice I7'/2m R* is the swirl velocity of the vortex at the outer edge r = 1.
Therefore, the @ defined above is the ratio of the swirl velocity to the axial velocity, which
measures the swirl strength of the Lamb—Oseen vortex.

The Lamb—Oseen vortex defined by (2.9) has a uniform axial velocity and zero
radial velocity. Unlike the solid-body rotation vortex, it consists of an inner vortex core
surrounded by a potential flow with a fixed total circulation I7}. It is an idealization that
captures the critical features of a real-world vortex, such as a vortex in a combustion
chamber or the trailing vortex from an aeroplane wing tip, all of which have a tight finite
vortex core size. The Lamb—Oseen vortex is one of those few exact analytical solutions
to the full Navier—Stokes equations. However, it is unsteady. Its vortex core expands with
time due to diffusion (Wu, Ma & Zhou 2015). If the vortex-core radius is defined as the
location where the azimuthal velocity is maximum, its non-dimensional radius is then

VEL* 1.2564
ro =2.2418 R P (2.11)

The parameter b can be used as a control parameter that specifies the size of the vortex core
to match that of a real-world vortex to be studied. Garg & Leibovich (1979) confirms that
experimental data of time-averaged swirl velocity profiles are well fitted by the analytical
Lamb-Oseen vortex profile ‘frozen’ at chosen fixed dimensionless time b. In the present
study, b is set as b = 4, representing a medium core-size ro = 0.5604.

Notice that the Lamb—Oseen vortex frozen in time does not exactly satisfy the steady
Navier—Stokes equations because of the slow nevertheless unsteady diffusion of the vortex
core. The ratio of the diffusion time scale, ¢ = R*2 /v*, to the convection time scale,
ty;=R*/U*,is

th  RYU* v

t* _ R2/v*  U*R* Re

2.12)

We assert that the vortex core expands slowly compared with the axial flow velocity for
large Reynolds numbers. Nevertheless, after a sufficient amount of time, which may be
short for low Reynolds numbers, the vortex core will diffuse to infinite size and the
magnitude of vorticity dissipates to zero, making it useless as a base flow to represent
the state of a real-world stationary vortex with fixed core size and strength.

To enable a meaningful stability study, a small constant body-force term f =

wb? (rze_brz) /Re is added to the right-hand side of (2.4) in our computations. The constant
body-force term is designed to make the columnar Lamb—Oseen vortex a steady base flow
that captures the major features of a real-world vortex. Its use is to represent the effect
of small local radial flow velocities in a real-world vortex that counters viscous diffusion
to keep the vortex tight. It makes the idealized columnar Lamb—Oseen vortex an exact
steady solution of the Navier—Stokes equations. In the terminology of dynamical systems,
this makes the steady base flow a fixed point. A detailed discussion on the relevance
and effectiveness of the source term is provided in Appendix A. There, we will provide
evidence to justify the use of this source term for stability studies.
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2.3. Boundary conditions

The inlet boundary conditions at x =0 are set to be the base Lamb—Oseen vortex with
uniform axial velocity expressed in terms of (g, o, qx) as

g =0.q0 = Z[1 —exp (~br?)]. x = 1. (2.13)

At the outlet x = L the following convective boundary conditions are specified:

agqr (r,0, L, 1) " Caq, (r,0,L,1t) _

07
dt dx
dgp (1,6, L, 1) +C349 (r,0,L,t) o, (2.14)
ot 0x
0 0, L.t 0 0, L.t
qx (r ) +C qx (r ) —0,
ot 0x

where C is a constant value, representing the advection speed of the mean flow. The
magnitude of C is not critical to the solution (Feng et al. 2017a). In our simulations C
is set to 1. This convective boundary condition, also known as non-reflective boundary
condition, can effectively avoid non-physical feedback at the outlet and is successfully used
in simulations of axisymmetric coaxial jets (Salvetti, Orlandi & Verzicco 1996), rotating
circular flow (Ortega-Casanova & Fernandez-Feria 2008) and three-dimensional pipe flow
(Ruith ez al. 2003). Slip conditions are specified at »r = 1 which means that a Lamb—Oseen
vortex confined in an inviscid round pipe is simulated.

Classical vortex stability theory assumes homogeneous or periodic boundary conditions
along the vortex. However, any vortex found in reality is confined in a finite domain.
Therefore, it is important to apply proper boundary conditions that will closely represent
the real physical conditions and minimize any non-physical reflections in numerical
computations at the same time. In an experimental set-up and also most real flow
situations, the flow conditions upstream are specified, while at the exit the flow is allowed
to go downstream without immediate obstruction or disturbance. The choice of the
Dirichlet boundary conditions at the inlet and convective outlet boundary conditions at
the exit described above is designed to best represent the physical situation. It is this set
of non-periodic boundary conditions that gives rise to the possibility of instability of the
Lamb-Oseen vortex in a finite-length pipe.

2.4. Stability analysis by DNS
Let (ur0, up,0, Ux0,po) denote the base Lamb—Oseen vortex velocity and pressure.

Disturbances of velocity and pressure in the DNS stability analysis are defined as the
difference between the computed instantaneous velocity and pressure at time ¢ and (.9,

19,0, Ux,0,P0),

u,  =up(t) —up,

/
ug =ug(t) —upp,

, (2.15)
U, =ux(t)_ux,0a

/

p = p()— po.

The stability analysis examines the evolution of the above perturbation velocity
components starting with an arbitrary initial field under specified well-posed boundary
conditions.
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In a theoretical linear stability analysis one may assume the following form of
perturbation solutions as Wang et al. (2016) did:

w,(x, 7,60, 1) =Re(Zn(x,r)e™ "), ) (x,1,0,1) =Re(Yp(x, r)e™ "),
up(x,r,0,1) =Re(#p(x, remtony - p(x,r, 0, 1) =Re(Py(x, r)e™Ton) (2.16)

where o0 = 0, + ioj is the linear growth rate of the perturbations. Its real part o, represents
the growth rate of the velocity amplitude and its imaginary part gives the angular
frequency of the possible oscillatory behaviour of the perturbation modes. The above form
of solution represents one single azimuthal component of the full perturbation solution,
where m =0, 1, 2, ... is the azimuthal wave number and %,,, ¥, # and &2, are the
corresponding mode shapes for the mth mode. The axisymmetric mode is given by the
m =0 mode. Any m > (0 mode yields a non-axisymmetric solution. In a linear stability
analysis, the growth rate o for each perturbation mode may be determined by solving an
eigenvalue problem independent of other modes since the individual modes do not interact
within the linear assumption for small amplitude perturbations.

In the present numerical study, we add to the base stationary flow a random initial
perturbation velocity field and perform direct numerical computation to obtain the full
velocity field. Perturbations at every time instant are computed by using (2.15). The
resulting perturbation field consists of all possible ‘modes’ and frequencies. Separation
of spatial modes and constant growth rates may not always be possible. However, for the
present problem, we can always decompose our full DNS perturbation solutions into an
infinite number of Fourier modes in the azimuthal direction due to the retained azimuthal
homogeneity. For example, at any given time, the axial perturbation velocity function
u; (x, r, 0, t) can be decomposed as

+00
W, 1, 0,6) =Y gm(x,r,0)e™ (2.17)
—00

where
1 [ .
gm(x,r,t):—/ W (x,r,0,1) e ™do. (2.18)
2 0

We might call g, (x, r, t) the mth azimuthal ‘mode’ of u/., recognizing that its spatial
structure may change with time. This is a basic method used in this article for extracting
the linear stability modes from DNS results.

In the linear growth range, it will be demonstrated that g, (x, r, t) can be expressed in
the following space—time separated form:

gn(x,r 1) =g (x, r)e’’ (2.19)

where g/ (x, r) is the true spatial mode shape for the mth mode, consistent with the
assumptions by Wang et al. (2016) in (2.16). For real functions of u/ (x, r, 0, t), we need
only examine the m =0, 1, 2, . . . modes. The corresponding complex growth rate for each
mode is then

Om =Omr+i0Om,;. (2.20)

The real part oy, , stands for the amplitude decay or growth of the mth azimuthal
perturbation mode. Any non-zero imaginary part o, ; signifies a travelling wave in the
perturbations.
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In the DNS stability analysis, one can easily calculate the time history of the kinetic
energy of the mth azimuthal mode without assuming the above spatial and time separation
by using

1 2
En (t)=§/V[gm(x,r, n] av, (2.21)

where V is the domain of the flow field. A local instantaneous growth rate for this energy
can be defined as (dE,,/dt)/E,,. For consistency with the growth rate definition for the
velocity magnitude, we here define a local instantaneous growth rate by using /E,, instead
of E,,. Thus, we define

_ d(n VE,)
- dr '

A negative oy, , indicates decay of the perturbation mode. All modes must have negative
om,r for stability. A positive o, value for any m proves instability.

The growth rate calculated by the above equation will be a constant if the evolution of
the perturbation velocity of mode m is in the linear range and the value of this constant
should be equal to that defined in (2.19) and (2.20). Therefore, it is convenient to extract
the linear growth rate for each azimuthal mode from the DNS data by using (2.22).

By Parseval’s equality, we can also obtain the total kinetic energy

(2.22)

Om,r

1 ) 400
E(t):E/vu; AV =>"Ep. (2.23)
—0o0
A local instantaneous growth rate based on this total energy may also be calculated:
d 1 dE
=—1 =——. 2.24
7= "VE= 25 g (2249

The total perturbation energy will be dominated by the mode that has the highest
positive oy, » as time increases. Very often, one single mode becomes unstable. In
that case, the overall growth rate based on the total energy from (2.24) is practically
the same as the o, , of the unstable mode. (Similar analysis can be applied to the
total kinetic energy of the perturbation including all three velocity components: E(t) =
(1/2) [, l? +ul? +u,*)dv.).

To extract the imaginary part of the growth rate oy, ; in (2.20), however, one may need
to consider phase shift of the mode shapes with time or perform Fourier analysis of the
DNS data in time to determine the frequency of the perturbations. We will demonstrate
the use of such methods in §§ 3.1.1 and 3.2.1. It suffices here to note that

Om.i =27 fn =21/ Ty (2.25)

where f;, and T,, are the frequency and period of mode m should it behave in travelling
wave nature.

2.5. Numerical scheme, grid convergence and parallel computation

The continuity and Navier—Stokes equations (2.2) to (2.5) are solved by the fractional
step method developed by Kim & Moin (1985). The convective and viscous terms are
advanced temporally by the explicit third-order Runge—Kutta scheme and the implicit
Crank—Nicolson scheme, respectively. Spatial derivatives are discretized by second-order
central differences on staggered grids. Velocities are located at the centre of the cell face
and pressure is at the centre of the cell. In each time step, there are two computational
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DNS Theory
Grid 128 x 64 x 64 256 x 128 x 128 512 x 256 x 256 /
o 0.00912 0.00906 0.00905 0.00918

Table 1. The linear growth rates computed by different grids and the theoretical value at Re = 5000 and
w=3.8.

processes. First, an intermediate non-solenoidal velocity field is introduced and the
Navier—Stokes equations are advanced using the pressure at the previous time step. This
intermediate velocity field is used in the calculation of an intermediate pressure field. In the
second stage, the intermediate fields have been obtained thus the solenoidal velocity field
and the pressure field can be calculated by solving the Poisson equation. The time step
is determined according to the Courant-Friedrichs—Lewy (CFL) condition of the third-
order Runge—Kutta method. The theoretical stability criterion is CFL < +/3. We choose
CFL,,4x = 1.5 to limit the time step. The reader is referred to Verzicco & Orlandi (1996)
and Ruith er al. (2003) for more details on the specific method to solve the above equations.

Under the initial and boundary conditions described above, the Lamb—Oseen vortex flow
is a stationary solution to the full three-dimensional unsteady Navier—Stokes equations.
Care must be taken to ensure this is true also in the discrete form of the numerical
computation. In the present study, we make sure that the base Lamb—Oseen vortex velocity
field with the specified boundary conditions described in § 2.2 is divergence free and the
time derivatives of velocity components evaluated by computing the right-hand sides of
(2.3)—(2.5) are all within machine zero.

Although the Navier—Stokes equations are cast in the cylindrical coordinate system
in (2.2)—(2.5) and the initial Lamb—Oseen vortex is axisymmetric, no axisymmetry is
assumed in the computation.

A small random initial perturbation velocity field is then added to the base flow to study
its time evolution for stability analysis. In principle, the added velocity perturbations must
be divergence free to ensure it is an allowed solution to the Navier—Stokes equations. In
practice, the base flow can be perturbed by a random three-dimensional disturbance to
one or all velocity components. In the present study, only the axial velocity component is
perturbed by a three-dimensional random function. The computational algorithm corrects
the velocity field to be divergence free within the first few iterations by solving the
Poisson equation for pressure. The initial random perturbations in the axial velocity induce
perturbations in all other directions.

We present here the case of dimensionless pipe length L = 6. The choice of pipe length
and its impact are investigated in § 5. Meshes are uniform in the axial, azimuthal and
radial directions. The accuracy of the flow calculations is validated by a grid refinement
study. The computational domain (0 <x <L =6,0<r < R=1,0<60 <2m) is resolved
on three successively refined grids with dimensions 128 x 64 x 64, 256 x 128 x 128 and
512 x 256 x 256. At each time step, solution of the Poisson equation for pressure ensures
that the divergence of the velocity field is within 10~'3. Table 1 shows the computed linear
growth rate of the perturbation kinetic energy on those three grids. The values computed
on the 256 x 128 x 128 and 512 x 256 x 256 grids show little difference (only 1.1 x 1073
relative error) and the converged growth rate also agrees with the theoretical value by
Gong (2017) with less than 1.4 x 1072 relative error. For consideration of computational
cost and accuracy, the following results are obtained on the medium 256 x 128 x 128
grid.
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Figure 1. Parallel speedup factor versus number of used computer cores.

Because the three-dimensional DNS requires much central processing unit (CPU) time
and computer memory, the numerical simulation is accelerated by parallelizing the code
with a message-passing interface. The cost of time is reduced greatly by parallelized
simulations. For example, the time needed to compute the flow field is approximately
18 days with the serial version of the code but only approximately 10 hr with the parallel
code on 112 CPU cores for a typical three-dimensional case of Re =5000 and w = 3.8
on a 256 x 128 x 128 grid. Three meshes are used to test the performance of our parallel
programme, see figure 1. It illustrates that the speedup and efficiency (the slope of speedup
lines) increase with mesh size. Although the speedup achieved by our code is lower than
the ideal linear speedup represented by the black line, the speedup scales almost linearly
with the number of cores on sufficiently fine grids.

3. Computational results and analysis

We present in this section computational results and detailed analysis of two typical cases
of complete linear and nonlinear evolution of the perturbations to the Lamb—Oseen vortex
in a finite-length pipe using the methodology described in § 2.

Linear perturbation modes become unstable when the swirl ratio is beyond a certain
critical swirl level at a given Reynolds number or when the Reynolds number is beyond a
certain critical Reynolds number at a given swirl ratio. During the linear phase, different
modes behave independently. Each mode may be easily identified with its own mode shape
and growth rate. The mode that has the highest growth rate determines the linear stability
boundary and dominates the development of instability in the linear stage. With further
growth of perturbations, unstable modes lead to large-amplitude nonlinear modes and
may evolve to different final equilibrium states. The identification of the different unstable
modes provides a fundamental connection to the nonlinear growth of the instability
modes and the eventual passage to a final equilibrium state. Two representative cases at
Re =5000, w =3.85 and Re = 700, w = 4.3 are identified here. The first case is dominated
by an axisymmetric instability mode (m = 0) and it leads to a final steady axisymmetric
but non-columnar flow. The second case is dominated by a spiral mode (m = 1) and it
leads to a final unsteady periodic spiral vortex breakdown state.
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Figure 2. Time history of growth rate and perturbation energy for the case w = 3.85 and Re = 5000.

For each case, we present the velocity trajectory at a given point to depict the global
nonlinear evolution towards the corresponding final equilibrium state. We examine the
structure of the linear mode shapes and the final equilibrium states.

Finally, stability boundaries of different modes in the (Re, w) plane are determined
through the DNS simulations. These boundaries identify the most unstable mode and
demarcate regions of stability of the Lamb—Oseen vortex in the (Re, w) plane for both
the axisymmetric (m = 0) and the spiral (m = 1) modes.

3.1. Case I: flow dominated by instability of the axisymmetric m = 0 mode

We start by examining the flow at Re = 5000. An initial low-amplitude random velocity
perturbation field is added to the base Lamb—Oseen vortex flow. As will be shown later
in § 3.1.3, the initial perturbations of the m =0 component increase when the switl ratio
o is above a critical value w = 3.762, indicating that the base Lamb—Oseen vortex flow
becomes unstable at this Reynolds number and swirl ratio condition. For the flow with
3.762 < w < 3.91, the m = 0 perturbation mode grows quickly with time and we examine
such a case with Re = 5000, w = 3.85 in this range.

3.1.1. Linear growth of the perturbed flow

Figure 2 shows the time history of the square root of the perturbation energy (E%) and
its instantaneous growth rate based on our DNS simulations. The growth rate is found to
be negative at the beginning and reaches zero at ¢ = 30. The initial random disturbances
imposed on the base flow contain energies of a wide range of modes. All stable modes
of the perturbation decay quickly except the most unstable mode, whose growth overtakes
the decay of other initial perturbation components. At around ¢ =400 the growth rate o
approaches a near-constant value of 0.0133 and stays at this value for 500 non-dimensional
time units. This period is the linear growth stage of the perturbation. The computed
growth rate o =0.0133 agrees closely with the value (o =0.0131) predicted by Gong
(2017) through linear analysis. As the disturbance grows larger, the flow enters into a
nonlinear growth stage, for which any linear analysis including that by Gong (2017) does
not apply. The present full three-dimensional Navier—Stokes solution, however, has no such
limitation. Figure 2 shows that the linear stage ends at ¢t = 900 with o decreasing quickly
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Figure 3. Projected perturbation velocity vectors and contours of perturbation pressure for the case Re = 5000
and w = 3.85 at t = 6000: (a) in the x—z plane, (b) in the & — r plane at x = 3.

to near zero at t = 1250. From then on, the total energy of the perturbation appears to
saturate with minor fluctuations until it reaches a steady level beyond ¢ = 2400. Indeed,
the flow has reached a new stable steady state of non-columnar accelerated flow shown in
figure 3 at + = 6000. The flow in the 6 — r plane is axisymmetric, as shown by the velocity
and pressure field in figure 3(b). Low-pressure regions correspond to accelerated axial
velocities.

We see from this case the process of the initial unstable axisymmetric columnar Lamb—
Oseen vortex flow evolves to another steady axisymmetric state due to instability of an
axisymmetric perturbation mode. Rusak et al. (2012) predicted a similar phenomenon of
the flow starting from a columnar base flow to a non-columnar accelerated flow type by
using an inviscid weakly nonlinear analysis method. Their solution has the same qualitative
features as the present solution despite the use of only an inviscid flow model and with
slightly different boundary conditions. Recently, Qiao et al. (2025) revealed that the final
state of this flow is one solution belonging to a branch of steady, axisymmetric non-unique
solutions of the Navier—Stokes equations for the Lamb—Oseen vortex base flow in a finite-
length pipe.

In order to identify and examine the particular modes of instability, we decompose
the perturbation velocity field by using the method described in § 2.4. Figure 4 presents
the time history of the energies of mode m =0 and 1 of our DNS results for this
case. The perturbation energy E and growth rate o for the m =0 and 1 modes are
denoted by the subscripts 0 and 1, respectively, while those for the total perturbation are
denoted by the subscript DNS. The energy of the perturbation mode m = 1 decays rapidly
with a negative linear growth rate o1, = —0.0039 until it reaches and then remains at a
machine-zero level of 10~13. We thus assert that mode m = 1 is stable to three-dimensional
disturbances and does not have any impact on the subsequent flow evolution. In addition,
we find that all higher azimuthal modes decay faster than mode m = 1. For example, modes
m =2 and m =3 decrease to a magnitude of 10~ at r =240 and remain at this value
thereafter. Consequently, it is not surprising to see in figure 4 that the growth history for
mode m = 0 overlaps fully with that for the total perturbation field except in the very short
early stage (¢ < 30) when some of the initial stable perturbation modes have not died out
yet. This analysis shows that the axisymmetric mode m = 0 is the only one that dominates
the flow dynamics during the linear growth stage. When the amplitude of this mode grows
to a sufficiently high level the evolution goes into the nonlinear stage.

Next, we examine the spatial structure of the unstable m = 0 mode. Figure 5 plots the
axial perturbation velocity profiles of gg°™ at t = 560, 640 and 720 in the linear growth

1019 A47-12


https://doi.org/10.1017/jfm.2025.10595

https://doi.org/10.1017/jfm.2025.10595 Published online by Cambridge University Press

Journal of Fluid Mechanics

t

Figure 4. Time history of growth rate and energy of perturbations of mode m = 0 and mode m = 1 for the
case Re = 5000 and w = 3.85.

a b
( )1.2 - . ®) 1.0 : : : .
. [—7=560 0r=640 ©r=720]
r=0.55 :
osf "L l ] 0.6}
g g
S S
< o S o
%0 80
04 i1 0.2}
[—7=560 0ot=640 =r=720]
o : ' -0.2 : : : ;
0 2 4 6 0 0.2 0.4 0.6 0.8 1.0
X r

Figure 5. Normalized profiles of perturbation axial velocity for mode 0 at ¢ = 560, 640 and 720: (a) along
axial direction and () along radial direction.

stage. For each time instant, the axial profile is normalized by its value at the outlet while
the radial profile by its value at the central axis. The spatial profiles of the perturbation
velocity at the different time instants apparently collapse into a single line, proving that
the dependence of the solution on ¢ is separable from that on space in the linear growth
stage in the form of (2.19), and the velocity profiles in figure 5 are essentially those of
the g™ in (2.19). These results by solving the full nonlinear Navier—Stokes equations
support the use of the method of separation of space and time variables and eigenvalue
analysis by Gong (2017) in the linear range of the evolution of the perturbations.
Furthermore, figure 5(b) shows the radial profiles of g5°"™ at different axial x locations
almost collapse into one single line, while figure 5(a) shows only slightly dissimilar axial

profiles for different radial locations. These findings based on DNS data support the
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Figure 6. The phase difference and direction of travelling wave u in the azimuthal direction at x = 3 with
time interval At = 1.
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Figure 7. Normalized profiles of perturbation axial velocity for mode m = 1 at t = 480—483: (a) along axial
direction and () along radial direction.

assumed separation-of-variables solution ¥ (X, r, T) = ¢p(r)A(X, T) in the long-wave
asymptotic analysis by Rusak, Granata & Wang (2015). Here X and T are rescaled axial
coordinate and time, ¥ is the stream function and ¢ and A are functions to be determined.
Figure 5(b) shows that the spatial structure of the unstable m =0 mode may be further
separated approximately as standing waves in r and x, respectively.

Although the instability mode for this case is the axisymmetric m =0 mode, it is
insightful to examine the decaying m = 1 mode. The growth rate calculated by the kinetic
energy of this mode yields a constant o7 , = —0.0039 in the linear range as shown in
figure 4. Figure 6 shows the azimuthal profiles of the extracted axial perturbation velocity
u1 of mode m = 1 multiplied by e~“!" at five consecutive time instants. These profiles
are clearly footprints of one single azimuthal travelling wave moving in the positive 6
direction. The phase difference is A9 = 1.2665 in an interval At =1, which determines
the phase speed as o1 ; = —1.2665. Its sign is determined by the direction of the travelling
wave. The perturbation flow field is seen to rotate anticlockwise around the pipe centreline
as shown in figure 6. Therefore, we determine o,,—1 = —0.0039 — 1.2665i and reveal that
the m = 1 mode is an unsteady spiral mode despite its decaying nature.

Figure 7 shows the profiles of the axial perturbation velocity g at t =480—483 in the
linear growth stage. For each time instant, the axial profile of g1 is normalized by its value
at the outlet while the radial profile by its value at the central axis. Once again, we see
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Figure 8. The perturbation velocity trajectory for Re = 5000 and w = 3.85: (a) t = 0-30, the initial transient
stage; (b) t = 0-900, the linear growth stage; (¢) t = 30-1250, the complete linear and nonlinear stage;
(d) t = 1250-4000, final stage spiralling towards a stable fixed point; (e) r = 30-4000, the long-time behaviour
of evolution.

the normalized spatial shapes are fixed in time showing that the variable ¢ is separable at
selected linear growth stage following the form of (2.19): g, (x, r, 1) = g™ (x, r)e’"'. In
addition, it is observed that the axial profiles of g/ are almost fully similar for different
r locations, but the radial profiles show significant variations for different x locations.
Therefore, it is not proper in a theoretical analysis to assume solutions of the separation-
of-variables type in space for the m = 1 mode.

Although not shown here, the radial and azimuthal velocity components ;. and u; and
the pressure perturbation field p’ all show the same characteristics.

The DNS simulations yield only full velocity fields. We have demonstrated how one can
separate the perturbation field into its composing modes and identify their growth/decay
rates, spatial structure, wave speeds (if any) by using the present method of analysis.

3.1.2. The global dynamics and the final state of the flow
At the beginning of the flow evolution, the perturbation is small and the growth of any
unstable modes is controlled by a linear process. When the perturbation reaches a finite
size, a conventional linear stability analysis becomes invalid while the present method
based on DNS remains valid. The long-time behaviour and global nonlinear dynamics of
the swirling flow for this case are discussed in this section.

Figure 8 is the phase portrait for the perturbation velocity at the spatial point x = 3,
r =0.25 and 6 = 0 during several important time intervals for 0 < ¢ < 4000. It is helpful
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to refer back to figure 4 in the discussion of the different stages of the evolution of
perturbation velocity. In the initial stage from ¢ = 0 to t = 30, various perturbation modes
except m = 0 decay in time and the perturbation velocity of the flow field changes rapidly
and irregularly as shown in figure 8(a). The decay of the stable modes, which comprise
most energy of the initial random perturbations, dominates the evolution of the flow so that
the velocity trajectory is drawn towards a point around (0, 0, 107>). Figure 8(b) plots the
trajectory of the perturbation velocity from # =0 to t = 900. The velocity change during
30 < ¢ <900 (red line) is much larger than that in the time period 0 < ¢ < 30 (black line,
which is almost invisible in the figure). During this time period, the most unstable m =0
mode grows with a constant rate 0 = 0.0133 and dominates the flow dynamics. During
the linear growth stage, the velocity trajectory moves along a straight line with constant
ratios between the three perturbation velocities. Notice that the scales in all three velocity
coordinate directions are made equal in the plots. The axial and azimuthal velocities grow
at larger rates compared with the radial velocity, which indicates a tendency towards
axial symmetry. The time period 900 <t < 1250 marks the end of the linear stage with
a decreasing growth rate from 0.0133 to 0. The trajectory of the perturbation velocity
moves fast along a slightly curved line due to nonlinearity as shown in figure 8(c). The
axial and azimuthal velocities still grow significantly more than the radial component.
In the time period 1250 < ¢ <4000 shown in figure 8(d), the trajectory moves along a
spiral orbit that is eventually drawn into a fixed point far away from the initial base flow,
signifying that the flow has reached another stable steady state (red square in figure 8d).
Finally, figure 8(e) plots the trajectory of the perturbation velocity evolving from near-zero
initial perturbations to the base Lamb—Oseen flow to the final fixed point, an attractor of
the dynamic system finite-distance away from the initial base flow.

Figure 9 shows the isosurface of vorticity |£2| = 0.7 as well as contours of azimuthal
and axial vorticity components in the x—z plane of the perturbation field at ¢+ = 4000.
The light yellow isosurface represents the surface where vorticity magnitude |§2| =0.7.
Contours of the axial vorticity component in the y = 0 azimuthal plane are also displayed.
Figures 9(b) and 9(c) show that both the azimuthal and the axial vorticity components are
axisymmetric. It is observed that the final state is a steady axisymmetric accelerated flow
swirling around the axis in the same direction as the base flow.

It is to be noted that the structure of the final state of the flow shown in figure 9 bears
close resemblance to that of the disturbance flow field of the linearly unstable m = 0 mode
shown in figure 3. Despite the fact that the growth of the initial disturbance goes from the
linear stage and through the nonlinear stage, the final flow state appears to have evolved
from the dominant linearly unstable mode shape. In addition, computations demonstrate
that the final flow field is stable to three-dimensional disturbances. Rusak et al. (2015)
studied the inviscid and axisymmetric Lamb—Oseen vortex by a long-wave asymptotic
analysis. They also find a branch of accelerated flow solutions that bifurcates from the first
critical swirl ratio. However, their velocity profile of inviscid accelerated flow (see their
figure 2) differs from those in the present work shown in figure 3, indicating significant
impact of viscosity on the flow dynamics.

3.1.3. Effect of swirl ratio

The above discussions detail the flow evolution of disturbances to the base Lamb—Oseen
vortex for the condition Re = 5000 and w = 3.85. Computations have been performed for
w ranging from 3.75 to 3.95 at the same fixed Re = 5000. The curve of the growth rate of
the perturbation energy in the linear range as a function of  is shown in figure 10. At swirl
ratios below a critical number the Lamb—Oseen vortex base flow is asymptotically stable to
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Figure 9. Structure of final state of flow at = 4000 for the case Re = 5000 and w = 3.85: (a) isosurface of
vorticity |§2| = 0.7 and contours of axial vorticity in the azimuthal plane; (b) contours of azimuthal vorticity in
the x—z plane; (¢) contours of axial vorticity in the x—z plane.

three-dimensional perturbations. This critical swirl ratio is computed as w = 3.762. When
w 1s above this critical swirl ratio, the flow becomes unstable with m = 0 as the unstable
perturbation mode. The flow evolves into a final steady non-columnar flow. In cases for
3.762 < w < 3.91 all flow features are qualitatively the same as the representative case of
Re =5000 and @ =3.85 where the m =0 axisymmetric mode is the dominant linearly
unstable mode.

Figure 10 shows that the growth rate of disturbance increases with increasing swirl ratio
until it reaches the maximum at w = 3.86 before decreasing with increasing swirl ratio.
The results by Gong (2017) at the same swirl ratio range are also presented in figure 10.
There is a surprisingly good agreement between the DNS results and predictions based on
the linear stability analysis.

3.2. Case 2: flow dominated by instability of the spiral m = 1 mode

The Lamb—-Oseen vortex may respond differently to initial random perturbations at
different Reynolds numbers and swirl ratios. Results for the case at Re = 700 and w = 4.3
are presented and analysed in this section as another typical case in the (Re, w) plane
where the axisymmetric m =0 mode is stable while the m =1 spiral mode becomes
unstable. Unlike in Case 1, where the final state of the flow is a steady axisymmetric
but non-columnar flow, instabilities at this condition lead to a spiral vortex breakdown
state. In addition, it is found that the growth of the linearly unstable m = 1 mode induces
growth in the axisymmetric m = 0 component as a forced response due to a weak nonlinear
interaction mechanism.
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Figure 10. Linear growth rate versus w at fixed Re = 5000: circle, obtained from DNS; black line,
predicted by linear theory (Gong 2017).
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Figure 11. Time history of energy and growth rate of total perturbation velocity and those of mode m =0 and
mode m =1 for the case Re =700 and w =4.3.

3.2.1. Linear growth of the perturbed flow

Figure 11 plots the instantaneous growth rate and perturbation energy versus time based
on DNS simulation data for this case. Like in Case 1, the total energy of the initial
perturbations experiences a short decay period during 0 < ¢ < 8. By the end of the period,
the initial energy contained by the stable modes has decayed, while the energy of the
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Figure 12. The phase difference and direction of travelling wave u; in the azimuthal direction at x = 3 with
time interval At =1.

dominant unstable mode is the only one that grows at that time. Then the system enters
its linear growth stage, during which the growth rate stabilizes at a constant value of
o, =0.0059 from ¢ = 180 to r =2000. With further increase of time, the linear growth
process is saturated with o, decreasing to 0 at # = 2681. From that time on, the flow seems
to have reached a ‘steady’ state for approximately 400 non-dimensional time units before
the total energy starts to oscillate again and eventually enters into a periodic state beyond
t =4000.

We examine the energy composition in the linear growth period (180 <t < 2681).
Contrary to the findings of Case 1, the m = 0 axisymmetric mode is initially stable while
the m = 1 mode becomes the dominant unstable mode for this case.

The m =1 mode grows with a constant positive growth rate of o7, = 0.0059 over the
entire linear growth period. Figure 12 shows the azimuthal profiles of the extracted axial
perturbation velocity u; of mode m =1 multiplied by e 17" at five consecutive time
instants in the linear growth period. These profiles are clearly the same profile displaced
over an equal phase difference between the evenly spaced time instants, proving that the
m = 1 mode is a single azimuthal travelling wave moving in the positive 6 direction. Based
on the phase difference (A8 = 1.2566) and the time interval At = 1, the phase speed can
be determined to be o ; = —1.2566. Therefore, we have o,,—1 = 0.0059 — 1.2566i.

Figure 13 shows the axial perturbation velocity profiles of g at t = 960—963. For each
time instant, the axial profile of g; is normalized by its value at the outlet and the radial
profile by its value at the central axis. Once again, we see that these normalized profiles
collapse into a single line for the four time instants, asserting the validity of the separated
time and space modal representation of the perturbations in the form of (2.19). The modal
shapes of g{*"" plotted in figure 13 are invariable during the complete linear growth period
180 < ¢ < 268]1.

However, figure 13 shows that the radial profiles of g7*"" are very dissimilar for different
x locations and their axial profiles are only slightly similar for different radial locations.
Therefore, it is not possible to represent the spatial mode in terms of a separated variable
form of f(x)g(y) in an attempt at analytical study for this case.

The axisymmetric m =0 mode, on the other hand, decays very fast with a negative
growth rate of og, = —0.014 from ¢ = 180 to r = 520. Despite its fast decay, its spatial
mode shape can be clearly recovered from the computational data as shown in figure 14.
Perfect collapse of the normalized perturbation velocity profiles at the three time instants
t =240, 245, and 250 and the negative growth rate of its energy affirms it being a stable
m = ( eigenmode of the system.
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Figure 13. Normalized profiles of u/, of mode m =1 at t = 960—963: (a) along the axial direction and ()
along the radial direction.
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Figure 14. Normalized profiles of u’, of mode m = 0 in the first linear growth period 180 < ¢ < 520: (a) along
the axial direction; (b) along the radial direction.

At t = 520, however, the energy of the m = 0 component makes a sudden change from
decay to growth at a high positive rate of 0.0118 for 1300 non-dimensional time units.
The growth rate is exactly two times that of the unstable m =1 mode. Figure 15 shows
the normalized axial perturbation velocity profiles of the m =0 component at ¢ = 1200,
1210 and 1220 in this second linear growth stage. This seemingly unstable m =0 ‘mode’,
however, is not a true eigenmode of the system. Its spatial profiles shown in figure 15 are
distinct from those of the true m = 0 mode shown in figure 14, which is stable.

The appearance of this growing m =0 component in the perturbation velocity cannot
be explained in a strict linear analysis. It is a response of the system to a forcing by the
unstable m = 1 mode through a weakly nonlinear effect after the m = 1 mode has grown
sufficiently large in amplitude.

Following the decomposition in the form of (2.16) for the perturbation modes in the
linear range, the m = 1 component of the axial perturbation velocity is represented as

w1 = el (x, r)e 0T L gy (x, e O o1t 3.1)

where the overbar stands for complex conjugate; € is a small parameter and 7% (x, r) is the
function of &'(1) within the linear small perturbation assumption. Substituting (3.1) into
the Navier—Stokes equations and collecting terms of &'(¢) will yield the linear equations
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Figure 15. Normalized profiles of u/, of m =0 component in the second linear growth period 520 < ¢ < 2000:
(a) along the axial direction; (b) along the radial direction.

for each component. Within a strict linear analysis, each component is independent of
others. However, if we keep terms of &'(¢?), we will obtain non-homogeneous equations
with forcing terms collected from neighbouring modes due to the nonlinear convection
terms in the Navier—Stokes equations. In this case, the unstable m = 1 mode gives rise to
the following forcing term in the equation for the m = 0 perturbation velocity component

um=07
(3 — Louly_og = — (U U + UV U)e* (3.2)

where %) represents the linear operator of the Navier—Stokes equations, Vi =
(0, r~1(=i), 3,). The forcing term grows exponentially at exactly twice the growth rate
of the m =1 mode. The solution will then consist of a homogeneous part, which is the
intrinsic stable or unstable m = 0 mode depending on the sign of the eigenvalues, and a
non-homogeneous part, which is a response due to the forcing term on the right-hand side
of (3.2). If we were able to invert the linear operator on the left-hand side of (3.2), we can
then write the forced response solution as

w, _o=—€Qor, I — L) NV U + U\ U)e* . (3.3)

The spatial solution in front of the exponential term yields the ‘mode’ shape while
the exponential term determines the growth rate of the forced response in the m =0
component by the m = 1 mode.

In the present case, the intrinsic m = 0 mode is stable and decays to machine zero at
t =520. At the same time, the forced response by the unstable m = 1 mode has gained
notable amplitude to overpower the small € and show the predicted 207 , growth rate
in figure 11 and the fixed ‘mode’ shape shown in figure 15. To further prove that this
forced response in the m = 0 component is not an eigenmode of the linearized Navier—
Stokes operator, we performed additional computations. We continue the solution from an
arbitrary time instant between ¢ = 1000 and 2000 when the growing m = 0 component has
reached significant amplitude (see figure 11) and artificially remove the m = 1 mode in the
solution at each time step. Invariably we find the total energy of the perturbations decays
quickly to zero, proving that this growing m = 0 component is indeed dependent on the
unstable m = 1 mode as a forced response. A similar forced response phenomenon was
also found by Sipp & Lebedev (2007).

1019 A47-21


https://doi.org/10.1017/jfm.2025.10595

https://doi.org/10.1017/jfm.2025.10595 Published online by Cambridge University Press

Y. Qiao, Y. Shi, X. Meng, S. Wang and F. Liu

(a) (b)
BT [ [ [ [ [ [ ..

/
10 P 035-0.24 -0.14 -0.03 0.07 0.18 029 0.39 0.50

Figure 16. Planar projected perturbation velocity vectors and contours of perturbation pressure for the case
Re =700 and w =4.3 at t =2681: (a) x—z plane; (b) § — r plane at x = 3.

Despite its fast growth, the energy of the m = 0 component remains almost one order of
magnitude lower than that of the primary unstable m = 1 mode even at its peak at t = 2681.
Therefore, its impact on the growth rate of the m =1 is non-observable. It should be
noted that higher azimuthal modes such as m =2 and m = 3 are found to decay faster than
mode m = 0 and their energy decreases to the level of 10716 at 7 = 23. The growth of the
m = 1 mode perturbations also forces growth in the higher harmonic m = 2, 3 components
due to the above weakly nonlinear effect. Their evolution process is similar to that of
mode m = 0. However, their energy levels stay insignificant compared with even that of
the m = 0 component. Therefore, we notice that the total perturbation energy is almost all
contained in the m = 1 mode as shown in figure 11 throughout 180 < # < 2681.

The axial profiles at different » and the radial profiles at different x of g;*™ shown
in figures 14 and 15 are very dissimilar for both the intrinsic m = 0 mode and the forced-
response mode, much more so compared with those for Case 1 (see figure 5), which makes
the assumption of a separated variable form solution in x and r even less plausible. Notice
also that the axial profiles of gj°"" for the stable m =0 mode in this case consist of
three wavelengths while those for the unstable m = 0 mode in Case 1 appear to be 3/2
waves. This may be due to the increase of the swirl ratio (w =4.3 versus w =3.85 in
Case 1). Because of the above reasons, the long-wave asymptotic analysis by Rusak et al.
(2015) assuming separated variable solutions becomes questionable for the complex flow
structures appearing at high swirl ratios.

As time approaches t = 2681, figure 11 shows the growth rates for m =0 and m =1
reduce to O at the same time. The flow appears to have reached a ‘steady’ state for
approximately 400 non-dimensional time units. It must be noted that the perturbations are
really in an unsteady rotational mode because it is dominated by the spiral m = 1 mode
with an imaginary growth rate although the energy of both the total and the m = 1 mode
show a constant level.

Figure 16 presents the planar projected velocity vectors together with contours of
pressure on the x —z plane and the & — r plane at x = 3 for the ‘steady’ state at t =2681.
The low-pressure regions correspond to accelerated axial and azimuthal velocities. This
flow field has directly evolved from the unstable m =1 mode and has a similar spatial
structure in its mode shape, demonstrating that the spiral mode of perturbation dominates
the process. This state is unstable to three-dimensional disturbances. It undergoes a second
nonlinear oscillation process and finally reaches a stable unsteady state after time ¢ > 4700:
a temporally periodic spiral vortex breakdown.
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3.2.2. The global dynamics and the final state of the flow

As in the study of Case 1, we present in figure 17 the phase portraits for the perturbation
velocity at the point (x =3, » =0.5, 6 =0) in different time periods to examine the
long-time behaviour and global nonlinear dynamics. Figure 17(a) presents the velocity
trajectory in the initial stage when the movement is complicated and irregular in a short
transient period (0 < ¢ < 62) during which various stable perturbation modes decay. The
trajectory is eventually drawn towards the velocity point (0, 0, 5 x 107%) from ¢ = 62 to
t = 180 (black line). Starting from ¢ = 180, however, the unstable m = 1 mode takes over
and grows exponentially. Consequently, the trajectory of the perturbation velocity during
180 < t < 2000 (blue line) traverses a much larger range so that the trajectory over the time
period O < ¢ < 180 (black line) is almost invisible in figure 17(b). During that linear growth
stage, the spiral mode m =1 grows with a constant rate ¢, = 0.0059 and dominates the
flow dynamics. The perturbation velocity is seen to move along a spiral orbit expanding
with time. The radial and azimuthal velocities grow at greater rates compared with the
axial velocity, which represents a tendency towards asymmetry.

Figure 17(c) zooms further into the time period 2000 < ¢t < 2681, during which the
trajectory continues to move along an outward spiral orbit but with the growth rate
decreasing from 0.0059 to O, reaching a limit cycle at = 2681. Compared with the time
period 180 <t <2000 (dark blue line), the orbit to the final limit cycle (light blue line)
is of much larger size, which corresponds to the nonlinear evolution process. The radial
and azimuthal perturbations remain large. This limit cycle, however, is unstable to three-
dimensional disturbances. A growing nonlinear oscillation around the final limit cycle of
figure 17(c) begins at time t = 2681 and continues to t = 4700 as shown in figure 17(d).
After t = 4700, the flow reaches a stable final state with a temporally periodic behaviour.
The velocity trajectory takes the unstable limit cycle at t = 2681 as a centre ring and
forms a complex but regular orbit shown in figure 17(e), which is the attractor of the
flow dynamics.

Figure 18(a) shows the time-periodic axial perturbation velocity for mode m =0 and
mode m =1 at x =2, r =0.2, and 8 =0 versus time. The m =1 velocity experiences a
fast oscillation at a high frequency and the m = 0 velocity experiences a slow oscillation
at a low frequency. Figure 18(b) presents the corresponding fast Fourier transform (FFT)
of u/, for the two modes. The distinct fundamental frequencies are clearly identified. The
frequency of the slow variation of the m =0 signal is fr =0.0073, which is also the
frequency of the final total energy oscillation. Since the m =0 velocity represents the
azimuthal average, the low frequency reflects periodic behaviour in the axial direction, see
Supplementary movie 2, available at https://doi.org/10.1017/jfm.2025.10595.

The frequency of the rapid variation of the m =1 signal is f, =0.2089. This high
frequency reflects the fast spiral motion in the azimuthal direction. This spiral frequency
is clearly related to the angular frequency |o7 ;| = 1.2566 of the m = 1 mode identified in
§ 3.2.1 during its linear growing phase between ¢ = 180 and 2681. It means that the fast
spiral motion of the final dynamic equilibrium state is inherited from the linearly unstable
m = 1 spiral mode. Moreover, the low frequency originates from the m = 0 mode, which
also modulates and influences the dynamics of the m =1 field.

Simultaneously, the spiral mode is subject to spatial modulation by the slow oscillation
of the m =0 mode in the axial direction, resulting in a visible envelope in the signal in
figure 18(a). The red line in figure 18(b) also shows the modulated frequency centred at
fu with sidebands around f = f,, £ nfeg, n=1, 2, ..., clear evidence that the envelope
frequency originates from the m = 0 field. The presence of multiple harmonically spaced
sidebands in the FFT analysis confirms the frequency-modulated behaviour of the signal.
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Figure 17. The velocity trajectory for Re=700 and w =4.3: (a) t = 0-180, the initial transient stage;
(b) t= 0-2000, the linear growth stage; (c) t = 180-2681, the complete linear and nonlinear stage;
(d) t =2681-4700, second instability growth stage; (¢) unstable limit cycle at = 2681 and stable final periodic
behaviour.
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Figure 18. (a) The time-periodic perturbation axial velocity at x =2, r =0.2 and 6 =0 versus time.
(b) The FFT of u/.. The black line represents the extracted mode m = 0 and the red line represents the extracted
mode m = 1.
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Figure 19. Perturbation energy of extracted azimuthal wavenumbers m = 0 ~ 3 together with total energy in
the period Tg = 136.4.

The energy of the perturbation velocity experiences periodic growth and decay in a
period T = 1/fr = 136.4 due to the final oscillatory flow, see figure 11. The total energy
and those of the four extracted azimuthal wavenumbers m = 0 — 3 of the final flow state
are presented in the form of polar plots in figure 19. The polar angle represents time in a
period and the radius represents the perturbation energy E. Time #y = 5085.72 is chosen
as 0° so that eccentric circles in figure 19 show the fluctuating energy of various modes
in a period fy + Tg. The m =1 spiral mode is the dominant mode. The energy amplitudes
of m =2 and m = 3 are almost invisible compared with those of components m =0 and
m = 1. All azimuthal modes appear as a frequency lock-in phenomenon with fg = 0.0073,
showing a good periodic stability of the dynamical attractor.

To visualize the final state of the vortex flow, streaklines are obtained by releasing
particles at equidistant azimuthal positions on a circle of radius r =0.1 at the inlet.
Based on the period T, =4.7870 for the spiral motion of the vortex flow, two sets
of streaklines released consecutively with a separation time of At =T, /2 =2.3935 are
shown in figure 20, which clearly illustrate two whirling vortex structures in opposing
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Figure 20. Streaklines with 180° phase shift in a small period 7,, = 4.7870 at time r = 5094.12 and
t = 5096.51 in three-dimensional space.

t=5030.19

Figure 21. Streaklines at t =5030.19 and t = 5096.51 in the global period Tg = 136.4 at the x —z plane.

positions (180° phase difference) for the two time instants. Within each period 7, of the
fast spiral motion of the vortex, the tube formed by the streaklines maintains almost the
same size and shape.

Streaklines obtained at two instants ¢ = 5030.19 and r = 5096.51 are plotted in figure 21,
corresponding to the maximum and minimum perturbation energy levels, respectively,
within the low-frequency energy oscillation cycle Tf. It is found that the cross-section of
the streaktube with the maximum perturbation energy is bigger than that of the streaktube
with the minimum perturbation energy at the outlet and also, has a larger wave amplitude.
The spiral vortex bulges as the total perturbation energy peaks. The spatial shape of
streaktubes changes at the low frequency fr during the long period Tk. It reflects the
slow periodic behaviour of the extracted m = 1 spiral mode modulated by the oscillation
of the m = 0 mode.

Continuous streaklines based on the total velocity field (Supplementary movie 1) and
those consisting of only the m =0 (Supplementary movie 2) and m =1 (Supplementary
movie 3) modes of perturbations are also provided. The m = 1 mode is the dominant mode
and its streaktube shows a fast spiral motion around the pipe at the frequency of f,. The
streaktube of the m = 0 mode is axisymmetric and exhibits small and slow bulging motions
along the axial direction corresponding to the oscillation of the total perturbation energy
at frequency fr. Together they form the total vortex flow field since the m =0 and m =1
modes constitute most of the total energy of the perturbation velocity field.
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Figure 22. (a) Isosurface of vorticity [§2| = 1.61. (b) Contours of axial vorticity at x—z plane. (¢) Contours of
azimuthal vorticity at x—z plane.

Figure 22 presents a different set of visualization of the final spiral breakdown state at
t =5200. The yellow surfaces in figure 22(a) are isosurfaces of the vorticity magnitude
|§2| = 1.61, which are overlapped with the contours of the axial vorticity component £2, in
the azimuthal plane. Figures 22(b) and 22(c) plot in the x —z plane the contours of the axial
vorticity component §2, and those of the azimuthal vorticity component £2y, respectively,
both of which reveal asymmetric alternating signs of the vorticity components relative
to the axis. These figures help illustrate the flow structure of the ultimate spiral vortex
breakdown state.

3.3. Stability boundary in the (Re, w) plane

In order to determine the stable and unstable regions in the parameter (Re, @) plane, one
may search for ranges of unstable critical swirl ratios for a given Reynolds number Re.
Alternatively, we may start with a given swirl ratio w and search for the critical Reynolds
number and also determine the mode of instability. Computations have been done in such
a way to map out the stability boundaries in the (Re, w) plane for the Lamb—Oseen vortex.
The results are shown in figure 23.

The curves in the figure delineate the neutral stability boundaries for the marked m =0
or m = 1 modes. The solid m = 0 boundary and the dash—dotted m = 1 boundary mark the
boundary of critical Reynolds number, below which the base flow is found to be stable to
all small disturbances. In other words, they mark the most unstable mode for each w.

For example, at w = 3.85, the flow is found to be stable to any small initial random
perturbations for Reynolds number Re < 1484. At Re = 1484, the growth rate of mode
m =0 becomes zero, while all m > 1 modes stay negative. Once the Reynolds number
crosses the minimum threshold, the m = 0 mode becomes unstable, while all higher-mode
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Figure 23. Stability boundaries in the (Re, w) plane for the Lamb—Oseen vortex in a pipe of length L = 6: the
solid and dashed lines are neutral boundaries for the m = 0 axisymmetric mode with 0 =0 and 0, =0, 0; #0,
respectively. The dash—dotted line is neutral boundary for the m = 1 spiral mode.

disturbances are found to be stable. Case 1 (w = 3.85, Re = 5000) examined in § 3.1 is one
such example in that region. This is found to be the general behaviour of the flow for small
swirl ratios.

The critical Reynolds number decreases with increasing swirl ratio initially for small
swirl ratios, but then the trend reverses starting at approximately « = 3.875. For conditions
with swirl ratios higher than « = 3.91, the most unstable mode switches to m =1 spiral
mode shown by the dash—dotted line. The critical Reynolds number starts to decrease
again and monotonically so with increasing swirl ratio. More importantly, in the vicinity
of this intersection point, there exists a region at higher Reynolds numbers where both the
axisymmetric mode with real growth rate and spiral modes are unstable. Above the dash—
dotted line, two regions are identified. In the region between the dash—dotted and dashed
lines, the m = 0 mode is stable while the m = 1 mode is unstable, although the unstable
m = 1 may induce growth in the m = 0 component due to nonlinear forcing. Case 2 (v =
4.3, Re=700) examined in § 3.2 is such a typical case. In the high Reynolds number
region above the dashed line, both the m =0 and m = 1 modes are found to be unstable.
In addition, the unstable m = 0 mode there contains an imaginary part.

One may conclude from this study that higher swirl ratios favour spiral types of
instability and eventual spiral vortex breakdown.

4. Mechanism for instability

The appearance of an instability mode is tightly related to the energy transfer between
the perturbations and the base flow inside the flow domain and on its boundaries. The
Reynolds—Orr equation provides a useful tool for such analyses (Wang 2008; Gong 2017).

4.1. The Reynolds—Orr equation

The Reynolds—Orr equation is obtained by multiplying the transport equations for the
perturbation velocity with the perturbation velocity and integrating them over the flow
domain. Note that although a constant source term is added in (2.4), it does not affect the
production of perturbation energy, as the source term is balanced in the equations for the
base flow. In the cylindrical coordinate system, it is written as
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Here, V¢ is the computational domain and 0 V¢ is the pipe wall together with inlet and
outlet surfaces. Here S and §; represent the pipe inlet and outlet sections, respectively.
Here d/0n is the directional derivative in the outer normal direction of dVc. The
symmetric strain-rate tensor B of the base Lamb—Oseen vortex is
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The two integrals on S; vanish because there is no velocity perturbation at the inlet.
Substituting B into (4.1), we can express the growth rate o, of the perturbation velocity
defined in (2.24) by the following equation:
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The sum of the above four terms gives the total growth rate of the perturbation energy:
o1 represents the growth rate of the integrated perturbation energy produced by the vortex
core; 07 is the growth rate due to pressure work at the pipe outlet; o3 is the growth rate due
to the convection of perturbation energy out of the pipe, which is always negative unless
there is back flow at the exit; o4 stands for the growth rate due to viscous effect in the pipe
domain and on the pipe surfaces.

Note that in the classical stability theory, terms related to the outlet will vanish because
of the periodic inlet—outlet boundary condition. We will see that the energy transfers at
the outlet boundary due to pressure and convection play a critical role in determining
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Figure 24. Growth rates o1, 02, 03, 04, Osum and o versus ¢ for case Re = 5000 and w = 3.85.

the stability of a vortex flow in a pipe of finite length because of the non-periodic flow
condition at the inlet and outlet boundaries. In the following subsections we apply the
above analysis to the two typical instability cases studied in the previous section.

4.2. Energy balance and sources of instability

We make use of the Reynolds—Orr equation to categorize the production of the
perturbation energy and thus identify the sources of energy production responsible for
the observed instabilities of both Cases 1 and 2.

Figure 24 plots the time history of o1, 02, 03, 04 and their sum oy, for Case 1 (Re =
5000 and w = 3.85). Also shown for comparison is the growth rate og calculated directly
from the DNS perturbation velocity (black circles). The sum of the four contributions in
the Reynolds—Orr equation fully matches that of o, proving perfect energy conservation
in accounting for the sources of energy production in (4.1). The line of o represents kinetic
energy exchange between the base flow and the perturbation. During the linear growth
stage, o1 is negative, indicating that the vortex core is absorbing energy and therefore has
the effect of stabilizing the flow, which is consistent with Rayleigh’s criterion. However,
the energy production from pressure work o, and energy loss from flux o3 are both
significant and must be accounted for because of the non-periodic inlet and exit boundary
conditions in the case of a finite-length pipe. The computational results show that the
pressure work in the linear range is always positive and significantly higher than the energy
loss due to convection at the exit of the pipe (o2 > —o03), resulting in a net positive gain
07 + o3 that overpowers the energy drain o by the vortex core and the viscous dissipation
o4. The net energy balance oy, is thus positive, causing the observed instability. The
viscous effect tends to stabilize the flow because o4 is always negative, which also explains
the fact of an increased growth rate with increasing Reynolds number (lower viscous
dissipation).
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Figure 25. Linear growth rates o1, 02, 03, 04, 0, and og versus w at Re = 5000 (the unstable mode m =0
dominates the flow dynamics).

Figure 25 presents the same terms of energy balance but their values are taken from
the linear growth stages of flow conditions with swirl ratios in the range 3.762 < w < 3.91
and the fixed Reynolds number Re = 5000, where the flow is determined to be unstable
to the axisymmetric m = 0 mode of perturbations in § 3.3. The energy production due to
pressure o7 and the loss due to convection o3 at the exit of the pipe remain as the dominant
terms. The energy production rate due to viscous effect o4 remains negative and almost
constant for all swirl ratios because the viscous dissipative effect depends primarily on
the Reynolds number. Although the pressure work decreases with increasing swirl ratio,
it still overpowers all other negative energy sources, resulting in a net positive growth rate
osum for the total perturbation energy for all cases in figure 25. It is interesting to notice in
figure 25 that the energy production rate o1 due to the vortex core becomes less negative
and reaches zero as the swirl ratio @ increases towards 3.91 which is the critical switl
number.

Figure 26 plots the time history of o1, 02, 03, 04 and their sum oy, for Case 2 (Re = 700
and w =4.3), which belongs to the region of spiral mode instability with @ > 3.91 in
figure 23. Similarly to the cases where the m = 0 mode of instability dominates, the energy
production rates o, and o3 are still of the highest magnitudes. The energy production
rate by pressure work o is now slightly less than the energy loss due to convection at
the pipe exit (0 < —03). However, the energy production o driven by the Lamb—Oseen
vortex core is now positive and of the same order of magnitude as o, and o3. Together
with the positive work by the vortex core, the pressure work at the outlet overcomes the
energy loss due to convection at the outlet and viscous dissipation, leading to the spiral
mode instability. The vortex core appears to promote growth of non-axisymmetric spiral
perturbations at high swirl ratios.

Wang et al. (2016) revealed similar energy transfer mechanisms for the vortex flow of
the solid-body rotation type. We note the following general observations regarding the
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Figure 26. Growth rates o1, 02, 03, 04, 0, and o as a function of 7 for case Re =700 and w = 4.3.

stability mechanisms that apply to a swirling flow with non-zero axial flow velocity within
a tube of finite-length.

The vortex core in a swirling flow serves as a waveguide to sustain perturbation
propagation. In an infinitely long (or sufficiently long) waveguide, these waves appear
as helical neutral travelling waves as represented by the spatial Fourier modes in the axial
direction in a normal mode analysis for which the Rayleigh criterion applies. However,
when the waveguide length is comparable to the perturbation’s wavelength, the imposed
asymmetric boundary conditions at inlet and outlet will introduce additional energy
transfer at the inlet and outlet due to pressure work and flow convection, which can lead
to instability. In addition, swirling flows are capable of sustaining upstream propagating
helical waves. Imposition of non-periodic boundary conditions strongly affects the wave
shape of the perturbation velocity field. Typical axisymmetric and spiral mode shapes as
shown in figures 3 and 16 can be considered as the deformed helicity waves (see also
figures 5, 7, 13, 14 and 15). They effectively affect the generation of the perturbation
energy by the base vortex core.

Axial inhomogeneity can exist in practical flow situations such as the flow in a
combustion chamber or a swirling jet where the flow rotation is diminished in the axial
direction by viscous forces.

5. Effect of pipe length

Wang & Rusak (1996a), Wang et al. (2016) and Gong (2017) demonstrated that the key to
the existence of instability of a vortex in a pipe is the finite pipe length. Their analyses
focused on examples with L =6 (length to radius since L is non-dimensionalized by
the pipe radius) for both the solid-body rotation and the Lamb—Oseen vortex profiles.
Feng et al. (2018) studied the solid-body rotation in an L =2 pipe by DNS. A shorter
length was used due to limitations of the computer code and computational resources at the
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Figure 27. Linear growth rate versus w for three different pipe lengths at Re = 5000.

time. We have since improved the efficiency of the computer code, including incorporating
parallel computation as described in § 2.5. Together with increased computational power,
the new code enabled us to perform DNS simulations of the Lamb—Oseen vortex profile
with sufficient grid resolution in the large domain associated with L = 6. The effect of
pipe length is investigated in this section by performing additional computations for L =5
and L =7 conditions.

We examine the same two typical instability cases as those discussed in §§ 3.1 and
3.2. For the case where the axisymmetric instability mode dominates, computations are
repeated by varying the swirl ratio w at the fixed Reynolds number Re = 5000. The linear
growth rate of the perturbation energy as a function of w for three different pipe lengths
(L =5—7) is shown in figure 27 (see also figure 10). As the pipe length increases, the
range of swirl ratios where flow is unstable becomes narrower and the linear growth rate
decreases where instability occurs. This indicates that as the pipe length continues to
increase (approaching an infinitely long pipe or a pipe with periodic inlet—outlet boundary
conditions), the stability behaviour approaches the result of classic stability analysis as
predicted by the Rayleigh criterion: the Lamb—Oseen vortex is centrifugally stable. More
computations are needed in the future for full proof of the asymptotic limit. But the trend
is clear here.

Figure 28 plots the axial perturbation velocity profiles of g;°" along the central axis
in the linear growth stage for the three different pipe lengths obtained at w values that
correspond to the maximum growth rate for each pipe length. The profiles are normalized
by their corresponding values at the outlet. The axial distance is normalized by the pipe
length L. These normalized mode shapes of the perturbation velocity appear to be little
affected by the pipe length.

We next examine the same case as in § 3.2, where the flow is dominated by an m =1
spiral instability at Re =700 and w =4.3. The linear growth rates of the perturbation
mode m =1 for different L are listed in table 2. The trend is the same as that of the
axisymmetric mode: as the pipe length increases, the growth rate decreases, indicating a
more stable flow. Figure 29 plots the axial perturbation velocity profiles of g/ atr = 0.5
and 6 =0 in the linear growth stage for the three pipe lengths. These mode shapes of
m =1 instability mode show more noticeable variations with pipe length compared with
the m = 0 instability mode shown in figure 28. The mode shape for the shorter L =5 pipe
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L 5 6 7
o 0.0152 0.0118  0.0006

Table 2. Linear growth rate at Re = 700 and @ = 4.3 for three different pipe lengths.

1.2

norm

g

x/L

Figure 28. Normalized profiles of /. at the central axis of the linear perturbation mode m = 0 for three
different pipe lengths.

Figure 29. Normalized profiles of /. of the linear perturbation mode m = 1 for three different pipe lengths.

shows significantly more oscillatory behaviour, influenced by the non-periodic inlet—outlet
boundary conditions.

6. Conclusions

Direct numerical simulations are performed on the evolution of perturbations to a Lamb—
Oseen vortex in a pipe of finite length to study the stability of the base flow and its
linear and nonlinear dynamics. Contrary to conclusions based on the Rayleigh criterion
(Rayleigh 1917), the Lamb—Oseen vortex in a pipe of finite length is found to be unstable
for certain combinations of Reynolds number and swirl ratio. A methodology based on
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azimuthal Fourier decomposition is proposed to analyse the evolution of the perturbation
velocity field obtained by the DNS. Axisymmetric (m =0) and higher azimuthal
(m=1,2,...) types of instability modes are identified in the evolution of the
perturbations and final states of the perturbed Lamb—Oseen vortex flow. Total energy and
the energies contained in the different modes of the perturbation velocity field and their
instantaneous growth rates are examined during the full linear and nonlinear evolution
process and their connections are made to the final state of the flow.

The linear stability boundaries are determined in the (Re, w) plane. For a given swirl
ratio w, the flow is found to become unstable to small initial random perturbations when
the Reynolds number Re is above a critical value. However, different modes are found to
be responsible for the initial linear instability and to influence its subsequent nonlinear
evolution and the final equilibrium state of the perturbed vortex flow. For small swirl
ratios, it is the axisymmetric m = 0 mode that dominates the initial instability and leads
to a final axisymmetric but non-columnar flow state. For large swirl ratios, it is the non-
axisymmetric m = 1 spiral mode that dominates the initial instability and leads to a final
unsteady spiral vortex breakdown state. These two scenarios are exemplified by two cases
and are analysed in detail as Case 1 and Case 2, respectively.

For Case 1 (Re = 5000 and w = 3.85), the axisymmetric mode m = 0 grows at a constant
rate o,,=0 = 0.0133 while all other modes decay in the linear growth stage. The extracted
non-dominant mode m =1 has a negative and complex growth rate o,,=; = —0.0039 —
1.2665i. The existence of the non-zero imaginary part of growth rate indicates it is a spiral
travelling wave in the azimuthal direction. This spiral mode and all other higher modes of
perturbations decay fast until they remain at the machine zero level. The spatial shapes
of m =0 and m = 1 modes, go(x, r, t) and g1 (x, r, t), are both found to be time-invariant
functions (g;”"™ (x, r) and g{”""(x, r)) in the linear range when normalized properly by
the assumed linear growth behaviour described by (2.19). For the axisymmetric mode, the
mode shape g;”"™ (x, r) may also be well represented in separated variables form in x and
r because the axial profiles of g;°"(x, r) at different r locations and the radial profiles
of g5°"(x, r) at different x locations are, respectively, similar. This is, however, not the
case for the m =1 spiral mode. The radial profiles of g{*""(x, r) are quite dissimilar at
different x locations although the profiles along the x direction show a more similar wave-
like shape. After the saturated nonlinear process, the perturbation evolves to an attractor
of the global flow dynamics: a non-columnar accelerated flow, which is stable to any
further three-dimensional perturbations. During the whole evolution process including the
nonlinear stage, the axisymmetric mode dominates the perturbation velocity field.

For Case 2 (Re =700 and w = 4.3), a representative case with high swirl ratios in the
(Re, w) plane, the asymmetric m = 1 spiral mode is found to be the dominant instability
mode. The m =0 and m =2, 3, ... modes are all found to be initially stable. The unstable
spiral mode has a linear growth rate 0,,—1 = 0.0059 — 1.2566i and the stable axisymmetric
mode has a negative linear growth rate o,,—0 = —0.014. With the negative growth rate, the
initial symmetric m =0 mode appears to decay fast before its energy suddenly starts to
increase at a positive rate o,,—o = 0.0118. This sudden change of behaviour is identified
as a mean-flow response forced by the unstable m = 1 mode through a weakly nonlinear
effect after the perturbations of the m = 1 mode have grown sufficiently large in amplitude.
The normalized profiles g{°"™ of the m =1 perturbation mode are found to be time
invariant in the complete linear growth stage. The normalized profiles gy of the m =0
perturbation mode are found to be time invariant in the two separate linear growth stages,
the first of which is in the decay range of the initial m =0 mode, the second is in
the growing stage forced by the unstable m =1 mode. Their spatial structures are very
different in the two stages, revealing that the axisymmetric m =0 components in the
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two stages are really two different axisymmetric mechanisms. The first has a three axial
wavelengths shape while the second appears to be a 1/4 axial wave shape.

The growth of the m = 1 mode perturbations also forces growth in the higher harmonics
m=2,3, ... due to the same weakly nonlinear effect. However, their energy levels are
insignificant. Despite its fast growth rate, the energy of the forced m = 0 response stays
almost one order of magnitude below that of the unstable asymmetric m = 1 spiral mode
throughout the linear and nonlinear stages and until the flow is drawn into its final attractor
of the dynamic system: a spiral vortex breakdown state, in which the vortex is seen to move
in a fast spiral motion at frequency f, =0.2089 while pulsating in size and range of the
spiral motion giving rise to a low-frequency oscillation of the total perturbation energy at
fE =0.0073. The fast spiral frequency seems to have been inherited from that of the m = 1
linear perturbation mode and the slow energy frequency is from the secondary instability
mode of the mean flow, m = 0.

The energy method based on the Reynolds—Orr equation is used to identify the sources
of energy production responsible for the observed instabilities based on the DNS
simulation data. Four terms of perturbation energy production are identified: the
perturbation energy produced by the vortex core; the pressure work at the pipe outlet; the
energy that is carried out of the pipe by the flow; the energy dissipation due to viscosity.
The viscous effect always dissipates the perturbation energy and depends primarily on
the Reynolds number. In the classical stability theory for the vortex flow in an infinitely
long pipe, the pressure work and energy convection terms cancel at the inlet and outlet
boundaries due to the assumed periodic or homogeneous boundary conditions, thus the
energy production by the vortex core is the only potential source of instability to which
the Rayleigh criterion can be applied for an inviscid flow. In the case of a finite pipe,
however, the pressure work and energy convection at the pipe exit are found to be of the
highest magnitudes among the four energy production sources and thus play a critical role
in determining the stability of the flow.

For the conditions represented by Case 1, where the swirl ratio is small and the
axisymmetric m = 0 instability dominates, the energy production by the vortex core is
negative and small, consistent with the Rayleigh criterion. However, the energy production
from the pressure work at the outlet overpowers all other negative energy sources resulting
in a net positive growth rate for the perturbations.

For the conditions represented by Case 2, where the swirtl ratio is high and the m =1
instability is found to be dominant, the energy production by the vortex core becomes
positive and comparable in magnitude to those of the pressure work and energy loss due
to flow convection at the pipe exit.

Imposition of the non-periodic boundary conditions not only introduces the pressure
work and energy convection terms but also strongly affects the waveshape of the
perturbation velocity field, which in turn can change the sign of the energy production
by the vortex core. In the high swirl ratio case, the energy produced by the vortex core
together with the positive work by the pressure at the outlet overcomes the energy loss due
to convection and viscous dissipation, leading to a spiral mode instability.

The effect of pipe length is investigated by performing computation of the Lamb—Oseen
vortex in different pipe lengths L =5 — 7. For cases where the axisymmetric instability
mode dominates, the linear growth rate of the perturbation energy as a function of w
decreases as the pipe length increases, and the unstable range of @ becomes narrower.
For cases where the spiral instability mode dominates, the linear growth rate of the
perturbation energy also decreases as the pipe length increases. For a shorter pipe L =5,
the mode shapes show more oscillatory variation due to the impact of the non-periodic
inlet—outlet boundary conditions. The results suggest that as the pipe length increases
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and approaches an infinitely long pipe (or a pipe with periodic inlet-outlet boundary
conditions), the Lamb—Oseen vortex becomes centrifugally stable, consistent with the
classical Rayleigh criterion.

The Lamb—Oseen vortex is a model for practical vortical flows. Practical situations
introduce boundary conditions over finite domains. The present work demonstrates the use
of DNS for the study of stability and global dynamics of vortex flows. The study reveals
important findings on the nature of the Lamb—Oseen vortex that provide critical insights
into the physical mechanisms of unstable vortex flows in a finite domain. The stability anal-
ysis is general and can be applied to other vortices of interest. Moreover, the results help
connect unstable base flow to experimentally observable transitions such as breakdown
phenomena and offer guidance for controlling flow regimes in practical systems such as
combustors where flow instability is utilized to enhance mixing and flame stabilization.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10595.
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Appendix A. Effect of the source term

In §2.2, we discussed the difficulty of using the Lamb—Oseen vortex with uniform axial
velocity and zero radial velocity as a base flow for stability analysis because of the
slow expansion of its vortex core and dissipation of vorticity magnitude due to viscous
diffusion.

There are three options to remedy this problem.

(i) Directly use the unsteady Lamb—Oseen vortex as the base flow. Starting from a given
vortex size and swirl ratio and Reynolds number, add disturbances to the base flow
and perform DNS simulations to observe how the flow and disturbances evolve.

(i) Fix the Lamb—Oseen vortex profile as boundary conditions at the pipe inlet, impose
relevant wall and pipe outlet boundary conditions. Perform computations first to
establish a steady flow and use that as the base flow for stability studies.

(iii)) Add a small constant body-force term as described in § 2.2 and obtain the results as
presented in the main body of the paper.

We examine each of the above options.

A.l. Option 1: Lamb—Oseen vortex without body force

The artificial source term is removed and the inlet velocity profile is allowed to evolve over
time in accordance with the analytical Lamb—Oseen solution. We perform computations
for the same two Cases studied in §§ 3.1 and 3.2.

We start at time #(, the inlet Lamb—Oseen vortex evolves with b = Re/[4(t + t9)], where
tfo is chosen to ensure that the inlet boundary conditions and the base flow at t =0
yield an initial vortex core size corresponding to b =4. A large initial perturbation is
introduced to trigger nonlinear evolution. Figures 30(a) and 30(b) present the time history
of the perturbation energy for the two cases: Case 1 Re = 5000 and w = 3.85 and Case 2
Re =700 and w = 4.3, respectively. The initial growth observed in the early stage indicates
that unstable modes allow the perturbations to grow and overcome viscous diffusion.
The flow fields shown in figures 31 and 32 closely resemble those in figures 3 and 16,
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Figure 30. Time history of perturbation energy of the Lamb-Oseen vortex without body force under large
disturbances: (a) Re = 5000 and w = 3.85; (b) Re =700 and w = 4.3.
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Figure 31. Planar projected perturbation velocity vectors and contours of perturbation pressure for the case
Re =5000 and @ =3.85 at t = 10 (time-dependent inlet velocity profile): (a) x—z plane; (b) 6 — r plane at
x=3.

demonstrating that the nonlinear modes captured under the presence of the source term
inherently exist in the unforced, naturally evolving flow.

As time progresses, the base flow evolves continuously under the influence of viscous
diffusion, with the vortex core gradually expanding. This results in a time-dependent
variation of the stability characteristics of the base flow. Ultimately, the flow always
evolves towards a stable state. The subsequent decrease in perturbation energy shown in
figure 30 is due to the instantaneous base flow becoming stable over time.

The above results demonstrate that if the instantaneous profile of the Lamb—Oseen
vortex is unstable, perturbations can grow temporarily over a short time before the base
vortex weakens under the effect of the viscous diffusion, but eventually will become
unobservable as discussed in § 2.2, leading to much difficulty and ambiguity in drawing
definitive conclusions on the stability of the original vortex. On the contrary, our present
approach of adding a small body-force term in the Navier—Stokes equations to render
the Lamb—Oseen flow a clearly defined base flow reveals the same physics in clear and
definitive terms.
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Figure 32. Planar projected perturbation velocity vectors and contours of perturbation pressure for the case
Re =700 and w =4.3 at t =2 (time-dependent inlet velocity profile): (@) x—z plane; (b) 6 — r plane at x = 3.

A.2. Option 2: frozen Lamb—Oseen vortex fixed at inlet

In this case, the flow will evolve in the pipe with the given inlet boundary conditions and it
does not satisfy the steady Navier—Stokes equations. One has to wait for the computations
to reach a steady-state solution before adding perturbations to it for stability studies. There
are two issues with this approach. First, the resulting solution may by itself be unstable,
making it impossible to obtain a definitive base flow in spite of the computational effort.
Second, the resulting steady base flow may not necessarily be representative of real-world
vortices with defined vortex strength and size. At best, it represents a particular flow
configuration. Therefore, this approach is not pursued here.

A.3. Option 3: use of a small constant body force to keep the vortex steady — the
approach of the present work

The Lamb—Oseen vortex defined by (2.9) has a uniform axial velocity and zero radial
velocity. As discussed in § 2.2, it is an idealization that captures the critical features of
a real-world vortex with a tight finite vortex core size. Unfortunately, it contains a slight
unsteady term because of the expansion of its vortex core due to diffusion.

To enable a meaningful stability study, a small constant body-force term

f= wb*(rle=tr 2) /Re is added to the right-hand side of (2.4) in our computations. The
constant body-force term is to represent the effect of small local radial and axial flow
velocities that counter viscous diffusion to keep the vortex tight in a real-world vortex.
It makes the idealized columnar Lamb—Oseen vortex an exact steady solution of the
Navier—Stokes equations.

In a real-world vortex, vortex transport due to small local radial and axial velocities
balances diffusion to keep the vortex core fixed and tight in its stationary state. The Burgers
vortex is an analytical model for it. The Burgers vortex has the same vortical structure
(azimuthal velocity profile) as the Lamb—Oseen vortex, but contains variable radial and
axial velocities. The inward radial velocity and axial vortex stretching keeps the vortex
core fixed. In order to demonstrate that our approach of using the small body-force for
this counter-diffusion effect preserves the fundamental stability nature of the problem, we
perform computation and stability analysis by using the exact Burgers vortex solution as
the base flow without the use of a body force.

The Burgers vortex is an exact steady solution to the Navier—Stokes equations. The non-
dimensional velocity components and pressure of the Burgers vortex are (Wu et al. 2015)
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Figure 33. Time history of growth rate and perturbation energy of the Lamb—Oseen vortex (black lines) and
Burgers vortex (red lines) for the case Re = 5000 and w = 3.85 by DNS.
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Here, xo denotes the axial location corresponding to the outlet of the finite-length pipe,
where the axial velocity satisfies u, = 1. All other scaling parameters are the same as those
used for the Lamb—Oseen vortex. Figure 33 compares the growth rate and perturbation
energy of the Lamb—Oseen and Burgers vortex at Re = 5000 and w = 3.85, demonstrating
that the Burgers vortex is more stable. The normalized axial perturbation velocity profiles
in figure 34 and the corresponding velocity vectors in figure 35 together reveal the linear
perturbation structure and the final accelerated state, similar to those observed in the
Lamb-Oseen vortex results (see figures 3 and 5).

Figure 36 presents the perturbation energy evolution of the Burgers vortex at Re = 700
and w = 4.45. After the decay of perturbation energy of mode m = 0in 0 < ¢ < 15, the flow
exhibits a sequence of stages, including initial linear growth, first nonlinear saturation,
secondary unstable growth and nonlinear spiral breakdown that closely resemble the
behaviour observed in the Lamb—Oseen vortex at Re = 700 and w = 4.3. The normalized
axial perturbation velocity profiles shown in figure 37, along with the perturbation velocity
vectors of ‘steady’ spiral states in figure 38, show similar dominant spiral perturbation
modes when compared with the Lamb—Oseen vortex results (see figures 13 and 16). The
transient state is unstable to three-dimensional perturbations and finally develops into a
periodic spiral breakdown with oscillating perturbation energy.

Our simplified treatment of the Lamb—Oseen with an artificial body force successfully
reproduces both the linear instability modes and the nonlinear final states observed in
the exact, steady Burgers vortex, indicating that the introduced body force plays a role
equivalent to the axial stretching in the Burgers vortex. The results show that the use of
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Figure 34. Normalized profiles of perturbation axial velocity for mode 0 along the axial direction.
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Figure 35. Planar projected perturbation velocity vectors and contours of perturbation pressure for the case
Re=5000 and w=3.85 by DNS (Burgers vortex as the base flow): (a) x—z plane; (b) 6 —r plane at
x =312.5.
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Figure 36. Time history of energy of total perturbation velocity and modes m = 0, 1 for the case Re =700
and w = 4.45 of the Burgers vortex.

1019 A47-41


https://doi.org/10.1017/jfm.2025.10595

https://doi.org/10.1017/jfm.2025.10595 Published online by Cambridge University Press

Y. Qiao, Y. Shi, X. Meng, S. Wang and F. Liu

2.0

norm

1

Figure 37. Normalized profiles of perturbation axial velocity for mode 1 along the axial direction.
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Figure 38. Planar projected perturbation velocity vectors and contours of perturbation pressure for the case
Re =700 and w = 4.45 (Burgers vortex as the base flow): (@) x—z plane; (b) 6 — r plane at x = 40.75.

an artificial source term is a justified and effective modelling strategy for maintaining a
stationary base flow in stability analysis. It enables a clear interpretation of the disturbance
growth mechanism while reflecting the physical behaviour of a fixed vortex profile or the
instantaneous stability property of a slowly diffusing vortex profile.

Our theoretical model and numerical simulations on a typical base flow, the Lamb-
Oseen vortex, reveal general instability mechanisms and capture characteristic linear
modes and nonlinear final flow states that are relevant to other vortex flows. The flow
parameters, such as swirl numbers, Reynolds number and vortex core size are identified
as key parameters that govern the onset and evolution of instability of vortices of specific
vortex profiles. The knowledge thus acquired can serve as guidance for further study of
a wide range of real swirling flows, such as the Burgers vortex and swirling jets (Billant
et al. 1998).
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