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EXACT COMPLETION AND CONSTRUCTIVE THEORIES OF SETS

JACOPO EMMENEGGER AND ERIK PALMGREN*

Abstract. In the present paper we use the theory of exact completions to study categorical properties

of small setoids in Martin-Löf type theory and, more generally, of models of the Constructive Elementary

Theory of the Category of Sets, in terms of properties of their subcategories of choice objects (i.e., objects

satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack

equalisers and just have weak ones, but whose objects can be regarded as collections of global elements.

In this context, we study the internal logic of the categories involved, and employ this analysis to give a

sufficient condition for the local cartesian closure of an exact completion. Finally, we apply this result to

show when an exact completion produces a model of CETCS.

§1. Introduction. Following a tradition initiated by Bishop [4], the constructive
notion of set is taken to be a collection of elements together with an equivalence
relation on it, seen as the equality of the set. InMartin-Löf type theory this is realised
with the notion of setoid, which consists of a type together with a type-theoretic
equivalence relation on it [29]. An ancestor of this construction can be found in
Gandy’s interpretation of the extensional theory of simple types into the intensional
one [12]. A category-theoretic counterpart is provided by the exact completion
construction Cex, which freely adds quotients of equivalence relations to a category
C with (weak) finite limits [6, 8]. As shown by Robinson and Rosolini, and further
clarified by Carboni, the effective topos can be obtained using this construction
[5, 30]. The authors of [3] then advocated the use of exact completions as an abstract
framework where to study properties of categories of partial equivalence relations,
which arewidely used in the semantics of programming languages. For these reasons,
this construction has been extensively studied and has a robust theory [7, 13, 32,
33], at least when C has finite limits, whereas its behaviour is less understood when
C is only assumed to have weak finite limits.
The relevance of the latter case comes from the fact that setoids in Martin-

Löf type theory arise as the exact completion of the category of closed types,
which does have finite products but only weak equalisers (what we shall call a
quasi-cartesian category), meaning that a universal arrow exists but not necessarily
uniquely. However, this category of types has some other features: it validates the
axiom of choice and it has a proof-relevant internal logic with a strong existential
quantifier. These features have been investigated by the second author in [25], where
this internal logic is called categorical BHK-interpretation.
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More generally, the same situation arises for any model of the Constructive
Elementary Theory of theCategory of Sets (CETCS), a first order theory introduced
by the second author in [26] in order to formalise properties of the category of sets
in the informal set theory used by Bishop. In fact, this theory provides a finite
axiomatisation of the theory of well-pointed locally cartesian closed pretoposes
with enough projectives and a natural numbers object. Therefore, any model E of
CETCS is the exact completion of its projective objects, which formaquasi-cartesian
categoryP. As for closed types inMartin-Löf type theory, these are objects satisfying
a categorical version of the axiom of choice, and the internal logic of E on the
projectives is (isomorphic to) the categorical BHK-interpretation of intuitionistic
first order logic in P.
The aim of the present paper is to isolate certain properties of a quasi-cartesian

category C that will ensure that its exact completion is a model of CETCS while,
at the same time, making sure that these properties are satisfied by the category of
closed types inMartin-Löf type theory. In fact, for some of the properties defining a
model E of CETCS, an equivalent formulation in terms of projectives of E is already
known, as in the case of pretoposes [13], or follows easily from known results, as
for natural numbers objects [3, 5]. However, in the general case of weak finite limits
(or just quasi-cartesian categories), a complete characterisation of local cartesian
closure in terms of a property of the projectives is still missing.
The first contribution of this paper consists of a condition on a category which

is sufficient for the local cartesian closure of its exact completion. This condition
is a categorical formulation of Aczel’s Fullness Axiom from Constructive Zermelo-
Fraenkel set theory (CZF) [1, 2], and it is satisfied by the category of closed types.
A complete characterisation of local cartesian closure for an exact completion is
given by Carboni and Rosolini in [7], but it has been recently discovered that the
argument used requires the projectives to be closed under finite limits [11]. Another
sufficient condition, which applies to those exact completions arising from certain
homotopy categories, has been recently given by van den Berg and Moerdijk [34].
We formulate our notion of Fullness, and the proof of local cartesian closure, in the
context of well-pointed quasi-cartesian categories in order to match some aspects
of set theory, like extensionality. However, a suitably generalised version of our
formulation of Fullness in fact reduces to Carboni and Rosolini’s characterisation
in the presence of finite limits, and is tightly related to van den Berg and Moerdijk’s
condition as well [10].
In CZF minus Subset Collection, the Fullness Axiom is equivalent to Subset

Collection. Hence it is instrumental in the construction of Dedekind real numbers
in CZF and it implies Exponentiation [2]. The axiom states the existence of a full
set F of total relations (i.e., multi-valued functions) from a set A to a set B, where
a set F is full if every total relation from A to B has a subrelation in F , i.e., if F ⊆
TR(A,B) and

∀R ∈ TR(A,B) ∃S ∈ F S ⊆ R,

where TR(A,B) :=
{
R⊆A×B|∀a∈A∃b∈B (a,b)∈R

}
is the class of total relations

from A to B. Since functional relations are minimal among total relations, a full set
must contain all graphs of functions, however it is not a (weak) exponential as it
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may also contain non-functional relations. We shall use a characterisation of local
cartesian closure in terms of closure under families of partial functional relations as
in [26] and, similarly, we shall formulate a version of the Fullness Axiom in terms of
families of partial pseudo-relations (i.e., non-monic relations). The key aspect of
the proof is the very general universal property of a full set (or of a full family
of partial pseudo-relations), which endows the internal (proof-relevant) logic with
implication and universal quantification.
The second contribution of the paper is a complete characterisation of well-

pointed exact completions in terms of their projectives. We relate well-pointedness,
which amounts to extensionality with respect to global elements, with certain choice
principles, namely versions of the axiom of unique choice in Cex and the axiom of
choice in C. We also exploit this correspondence to simplify the internal logic of
the categories under consideration, and the exact completion construction itself. In
the related context of quotient completions of elementary doctrines, an analogous
result relating choice principles is obtained by Maietti and Rosolini in [21].
The paper is understood as being formulated in an essentially algebraic theory

for category theory over intuitionistic first order logic, as the one presented in [26].
However, we believe that all the results herein can be formalised in intensional
Martin-Löf type theory using E-categories [29], and this is indeed the case for those
regarding the category of setoids. A step towards this goal is made in [28], where
CETCS is formulated in a dependently typed first-order logic, which can be straight
forwardly interpreted in Martin-Löf type theory.
The paper is organised as follows. In Section 2 we recall the basic category-

theoretic concepts needed in the paper and provide a brief overview of already
known facts about the exact completion construction.
In Section 3 we consider the concept of elemental category, which is needed

to formulate the constructive version of well-pointedness satisfied by models of
CETCS, and which allows to regard objects as collections of (global) elements.
Indeed, in abstract categorical terminology, it amounts to say that the global section
functor is conservative, however we avoid this formulation since it refers to the
category of sets, and prefer an elementary definition instead. The main result of this
section is a characterisation of elemental exact completions as those arising from
categories satisfying a version of the axiom of choice.
Section 4 contains the main result of the paper, namely our categorical

formulation of Aczel’s Fullness Axiom and the proof that it implies the local
cartesian closure of the exact completion. In this section we fully exploit the
simplifications of the internal logic and the exact completion construction given
by elementality, as well as the proof relevance of the internal logic given by the
BHK-interpretation.
In Section 5 we recall the axioms of CETCS from [26] and discuss how its models

are exact completions of their choice objects (i.e., projective objects). We then use
the results from the previous sections, and already known ones, to show when an
exact completion produces a model of CETCS.
Finally, Section 6 treats the case of setoids in Martin-Löf type theory. Here we

recall the main concepts and definitions and show how to apply results from the
previous section to obtain a compact and uniform proof that the category of setoids
is a model of CETCS.
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§2. Exact and quasi-cartesian categories. An equivalence relation in a category
C with finite limits is a subobject r : R →֒ X ×X such that there are (necessarily
unique) arrows witnessing reflexivity, symmetry and transitivity as in the following
diagrams

r r r

X
R

R R R

RRXX XX XXX
r2 ,r1

X
r1p1 ,r2p2

(1)

whereR
p1←− R×X R

p2−→ R is a pullback ofR
r2−→ X

r1←− R. Here and in the rest of the
paper we denote by fi the i-th component of an arrow f into a product. Subobjects
obtained by pulling back an arrow along itself are always equivalence relations,
these are called kernel pairs. A diagram of the form R⇒ X → Y is exact if it is a
coequaliser diagram and R⇒ X is the kernel pair of X → Y . In such a situation,
the regular epi X → Y is called quotient of the equivalence relation R →֒ X ×X .

Definition 2.1. A category is exact if it has finite limits, and pullback-stable
quotients of equivalence relations. An exact category is a pretopos if it has disjoint
and pullback-stable finite sums, and the initial object is strict.

In an exact category, regular epis are quotients of their kernel pair and they
coincide with the simpler notion of covers: an arrow f is a cover if, whenever it
factors as f = gh with g monic, then g is in fact an iso. In a pretopos regular epis
also coincide with epis.
We say that an object P is projective if, for every cover X → Y and every arrow

P→ Y , there is P→ X such that the obvious triangle commutes.

Definition 2.2. A projective cover of an object X ∈ C is given by a projective
object P and a cover P→ X . A projective cover of C is a full subcategory P of
projective objects such that every X ∈ C has a projective cover P ∈ P. C has enough
projectives if it has a projective cover.

The property of having enough projectives corresponds to the set-theoretic
principle known as Presentation Axiom [1, 2], which states that every set is the
image of a choice set (or base), i.e., a set for which the axiom of choice holds.
Projective covers are not necessarily closed under limits that may exist in C.

However they do have a weak limit of every diagram that has a limit in C [8], where
a weak limit is defined in the same way as a limit but dropping uniqueness of the
universal arrow. Indeed, if L ∈ C is a limit in C of a diagram D in P, then any
projective cover P ∈ P of L is a weak limit of D in P: given any cone over D with
vertex Q ∈ P, the weak universal Q→ P is obtained lifting the universal Q→ L
along the cover P→ L using projectivity of Q.
Nevertheless, in the rest of the paper we shall be interested in subcategories of

projectives which are closed under finite products, so we introduce the following
definition.
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Definition 2.3. A category is quasi-cartesian if it has finite products and weak
equalisers.

Remark 2.4. As for the case of limits, a category with finite products has all
weak finite limits if and only if it has weak equalisers if and only if it has weak
pullbacks.

Remark 2.5. Quasi-cartesian categories come naturally equipped with a proof-
relevant internal logic. This interpretation has been investigated in detail by the
second author in [25], where it is called categorical BHK-interpretation due to its
similarities to the propositions-as-types correspondence. Lawvere gave a description
of it in the case of locally cartesian closed categories as an instance of what he calls
the Curry-Läuchli adjoint, i.e., the adjunction between the bicategory of posets
and the bicategory of categories [18]. This logic may also be understood in terms of
hyperdoctrines [17], and this perspective has been developed byGrandis [14, 15] and
more recently by Maietti and Rosolini [19, 20] with the name “weak subobjects”.
Since this internal logic will be one of the main tool in the proof of our main result,
we briefly review it here.
Recall that, given two arrows f : Y → X and g : Z→ X , f ≤ g means that there is

h : Y→Z such that gh= f . This defines a preorder onC/X , we denote by PsubC(X)
its order reflection and, following [25], call its elements presubobjects. Presubobjects
are used for the interpretation of predicates. Since weak limits are unique up to
presubobject equivalence, weak pullbacks can be used to interpret weakening and
substitution. For the same reason,we can interpret equalitywithweak equalisers and
conjunction with weak pullbacks, while postcomposition provides an interpretation
for the existential quantifier. Hence regular logic has a sound interpretation into any
quasi-cartesian category.

As shown by Carboni and Vitale [8], any category with weak finite limitsC can be
regarded as a projective cover of an exact category, known as the exact completion
of C. This construction consists in freely adding quotients of pseudo-equivalence
relations and we now describe it in the case of a quasi-cartesian category C.
Objects of the exact completion Cex are pseudo-equivalence relations in C, that

is arrows r : R→ X ×X such that there are (not necessarily unique) arrows for
reflexivity, symmetry and transitivity as in (1), where now the domain of ô is just
a weak pullback of r1 and r2. Arrows from R→ X ×X to S→ Y ×Y in Cex are

arrows f : X → Y in C such that there is f̂ : R→ S making the left-hand diagram
below commute, and where f ,g : X → Y are identified in Cex if there is h : X → S
making the right-hand diagram below commute.

S S

X

R

X X
f f

f

Y Y Y Y

h

f,g

The functor Γ: C → Cex mapping an object X ∈ C to the diagonal on X is
full and faithful and preserves all the finite limits which exist in C. The image of
this embedding is a projective cover of Cex, and every exact category with enough
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projectives is in fact an exact completion. In the case of quasi-cartesian categories,
this characterisation assumes the following form.

Theorem 2.6 ([11]). Every exact category with a quasi-cartesian projective cover
is the exact completion of a quasi-cartesian category, namely its subcategory of

projectives. Conversely, every quasi-cartesian category appears as a projective cover of

its exact completion.

Remark 2.7. The theory of exact completions provides an isomorphism of posets

SubCex(ΓX)
∼= PsubC(X),

which, in particular, commutes with the regular-logic structure on both posets [8].
Hence it guarantees that the internal logic of Cex on a projective is still the BHK-
interpretation in C of intuitionistic logic.

§3. Elemental categories. An object G in a category C is called a strong generator
if an arrow f : X → Y is an iso whenever

(∀y : G→ Y)(∃!x : G→ X) fx= y.

An object G is separating if for any pair of arrows f ,g : X → Y , f = g whenever

(∀x : G→ X) fx= gx.

Definition 3.1. A category C with a terminal object is elemental if the terminal
object is a strong generator and is separating

The terminology comes from the fact that objects in elemental categories can be
regarded, to a certain extent, as collections of global elements. In particular, this
simplifies the internal logic of an elemental category, as shown in Propositions 3.6
and 3.7 and Corollary 3.9.
We denote global elements x : 1→ X as x ∈ X and simply call them elements.

Moreover, if f : X → Y and y ∈ Y , we write y ǫ f if there is x ∈ X such that fx= y.
An arrow f : X → Y is injective if (∀x,x′ ∈ X)(fx = fx′ =⇒ x = x′), while it is
surjective if (∀y ∈ Y)y ǫ f . Notice that the terminal object is a strong generator if
and only if an arrow is iso exactly when it is injective and surjective. Finally, an
object Y in C is a choice object if every surjection f : X → Y has a section, i.e., an
arrow g : Y → X such that fg= idY .

Example 3.2. Sets and functions in (a model of) ZF form an elemental category.
Moreover, the Axiom of Choice is equivalent to the fact that every object is a choice
object, i.e., every surjective function has a section.

In the following lemma we collect some immediate results.

Lemma 3.3. Let C be a category with a terminal object.

(i) If the terminal object is separating, then every surjection is epic and every
injection is monic.

(ii) The terminal object is projective if and only if every cover is surjective.
(iii) If the terminal object is a strong generator, then every surjection is a cover. The

converse holds if every injection is monic.
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In the presence of weak equalisers, we can derive elementality from a categorical
choice principle.

Lemma 3.4. Let C be a quasi-cartesian category. If every object is a choice object,

then C is elemental.

Proof. Since every surjection has a section, it follows that every surjection is a
cover. Therefore it is enough to show that the terminal object is separating, since
elementality will follow from 3.3(iii). Let f ,g : X →Y be such that fx= gx for every
x ∈ X , and let e : E→ X be a weak equaliser for f and g. Since f and g coincide on
elements, e is surjective, hence it has a section s : X → E. Therefore f = fes= ges= g
as required. ⊣

Since an equaliser is the same as a monic weak equaliser, with a similar argument
we can also prove the following.

Lemma 3.5. Let C be a category with finite limits. Then C is elemental if and only

if every surjection is a cover.

The following result proves that, in every quasi-cartesian category, extensionality
of presubobjects is equivalent to a categorical choice principle.

Proposition 3.6. Let C be a quasi-cartesian category and consider the following.

(i) Every surjection has a section.
(ii) For every object X and arrows a,b with codomain X,

a≤ b if and only if (∀x ∈ X)(x ǫ a=⇒ x ǫ b).

(iii) For every pseudo-relation r : R→ X ×Y

(∀x ∈ X)(∃y ∈ Y)〈x,y〉 ǫ r =⇒ (∃f : X → Y)(∀x ∈ X)〈x, fx〉 ǫ r.

Statements (i) and (ii) are equivalent and imply statement (iii). If the terminal object
is separating, then they are equivalent.

Proof. (i) ⇒ (ii) The direction from left to right always holds, so let us assume
that (∀x ∈ X)(x ǫ a=⇒ x ǫ b) and observe that it amounts to the surjectivity of any
weak pullback of b along a. Hence there is a section of it which, in turn, yields an
arrow witnessing a≤ b.
(ii) ⇒ (i) This follows from the fact that an arrow f : X→Y is surjective precisely

when (∀y ∈ Y)(y ǫ idY =⇒ y ǫ f ) and that any arrow witnessing idY ≤ f is a section
of f .
(i) ⇒ (iii) Immediate from the fact that (∀x ∈ X)(∃y ∈ Y)〈x,y〉 ǫ r amounts to

surjectivity of r1 : R→ X .
(iii) ⇒ (ii) As before, we only need to show the direction from right to left.

Let r : R→ A×B be given as a weak pullback of a and b and observe that (∀x ∈
X)(x ǫ a=⇒ x ǫ b) implies (∀u ∈ A)(∃v ∈ B)〈u,v〉 ǫ r. Therefore we obtain an arrow
f : A→ B such that bfu = au for every u ∈ A. If the terminal object is separating,
this implies a≤ b as required. ⊣

In the presence of finite limits we have the following.

Proposition 3.7. Let C be a category with finite limits, and consider the following.
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(i) Every surjective mono has a section.
(ii) For every object X and monos a,b with codomain X ,

a≤ b if and only if (∀x ∈ X)(x ǫ a=⇒ x ǫ b).

(iii) For every relation r : R →֒ X ×Y

(∀x ∈ X)(∃!y ∈ Y)〈x,y〉 ǫ r =⇒ (∃f : X → Y)(∀x ∈ X)〈x, fx〉 ǫ r.

Statements (i) and (ii) are equivalent, and imply statement (iii). If the terminal
object is separating, then they are equivalent.

Remark 3.8. In the presence of finite limits, Lemma 3.5 tells us that elementality
is equivalent to item (i) in Proposition 3.7. Hence Proposition 3.7 generalises
Propositions 4.3 and 4.4 in [26], where only the implications from elementality
to (ii) and (iii) are proved. As shown in Proposition 3.7, if the terminal object is
separating, these are in fact equivalent to elementality.

An immediate consequence of Proposition 3.6 is that the internal logic of an
elemental quasi-cartesian category is determined, up to presubobject equivalence,
by global elements. Here we distinguish internal connectives and quantifiers by
adding a dot on top of them and, to increase readability, we commit the common
abuse of dealingwith representatives instead of actual presubobjects. A similar result
for the usual categorical interpretation of logic is in Theorem 5.6 in [26], which can
be seen as a consequence of Proposition 3.7.

Corollary 3.9. Let C be a quasi-cartesian category where every object is a choice

object, and let a,b ∈ PsubC(X), f ,g : Y → X and r ∈ PsubC(X ×Y), then:

(i) y ǫ f –1a if and only if fy ǫ a,
(ii) y ǫ (f

.
= g) if and only if fy= gy,

(iii) x ǫ (a
.
∧b) if and only if x ǫ a∧x ǫ b,

(iv) x ǫ

.

∃Y r if and only if (∃y ∈ Y)〈x,y〉 ǫ r,

and the presubobjects obtained by f –1,
.
=,
.
∧ and

.

∃ are uniquely determined by the
universal closure of the previous relations.

Proof. We prove the statement for
.
∧, the other proofs are similar. Of course if

c : C→X is a representative of a
.
∧b, then the equivalence in (iii) must hold for every

x ∈ X . Conversely, suppose that (∀x ∈ X)(x ǫ c⇐⇒ x ǫ a∧x ǫ b) and let p : P→ X
be a representative of a

.
∧b (e.g., a weak pullback of a and b). Then x ǫ c⇐⇒ x ǫ p

for every x ∈ X , so 3.6. (ii) implies that c is also a representative of a
.
∧b. ⊣

Proposition 3.6 also allows for a simpler construction of the exact completion as
described in [6, 8] in the case of a quasi-cartesian category where every object is a
choice object. Corollary 3.10 treats the case of objects and Corollary 3.11 that one
of arrows.
For a pseudo-relation r : R→X×X , denote with∼r the relation induced by r on

the elements of X , that is

x∼r x
′ ⇐⇒ 〈x,x′〉 ǫ r.

Corollary 3.10. LetC be a quasi-cartesian category where every object is a choice

object. Then for every pseudo-relation r : R→ X ×X :
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(i) r is reflexive if and only if

(∀x ∈ X)x∼r x.

(ii) r is symmetric if and only if

(∀x,x′ ∈ X)(x∼r x
′ =⇒ x′ ∼r x)

(iii) r is transitive if and only if

(∀x,x′,x′′ ∈ X)(x∼r x
′ =⇒ x′ ∼r x

′′ =⇒ x∼r x
′′)

Proof. This proof and that one of Corollary 3.11 are just a matter of unfolding
definitions and applying Proposition 3.6(ii). We prove point (iii) in order to
exemplify the idea.
One direction is straightforward, so let us assume

(∀x,x′,x′′ ∈ X)(x∼r x
′∧x′ ∼r x

′′ =⇒ x∼r x
′′). (2)

Consider the following weak pullback

p1

p2

r1

R

RP

X
r2

and define p := 〈r1p1,r2p2〉 : P→ X ×X . According to the construction described
in [8], proving transitivity of r amounts to show that p ≤ r. Thanks to 3.6.(ii) it is
enough to show that 〈x,x′′〉 ǫ p =⇒ 〈x,x′′〉 ǫ r. But 〈x,x′′〉 ǫ p implies that there is
x′ ∈ X such that x∼r x

′ and x′ ∼r x
′′, hence 〈x,x′′〉 ǫ r from (2). ⊣

Corollary 3.11. LetC be a quasi-cartesian category where every object is a choice

object and let r : R→ X ×X and s : S→ Y ×Y be two pseudo-equivalence relations.

(i) An arrow f : X → Y gives rise to an arrow r→ s in Cex if and only if,

(∀x,x′ ∈ X)(x∼r x
′ =⇒ fx∼s fx

′).

(ii) Two arrows f ,g : r→ s in Cex are equal in Cex if and only if,

(∀x ∈ X) fx∼s gx.

Finally, we can prove that elemental exact completions are precisely those exact
categories with a projective cover consisting of choice objects. In light of the
equivalences in Propositions 3.6 and 3.7, this result should be compared with the
equivalence, proved in [21], between elementary doctrines satisfying the Axiom
of Choice and elementary quotient completions satisfying the Axiom of Unique
Choice.

Theorem 3.12. Let C be a quasi-cartesian category. Then Cex is elemental if and

only if every object in C is a choice object.

Proof. Let us first prove that, ifCex is elemental, then every surjection inC splits.
Observe that, if f : X → Y is surjective in C, then f : ∆X → ∆Y is surjective in Cex,
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hence a cover because of elementality. But ∆Y is projective in Cex, therefore we get
a section g : ∆Y → ∆X which is a section of f in C as well.
In order to prove the other implication, thanks to Lemma 3.5 it is enough to show

that in Cex every monic surjection has a section. To this aim, let r : R→ X ×X and
s : S→ Y ×Y be two pseudo-equivalence relations in C and let f : X → Y be such
that x∼r x

′ =⇒ fx∼s fx
′ for every x,x′ ∈ X . Assume that f is monic and surjective

in Cex. In particular

(∀y ∈ Y)(∃x ∈ X) fx∼s y,

hence 3.6.(iii) yields g : Y → X such that fgy ∼s y for all y ∈ Y . If y ∼s y
′, then

fgy ∼s fgy
′ and injectivity of f implies gy ∼r gy

′, so g is an arrow s→ r from 3.11.
(i), and a section of f in Cex from 3.11.(ii). ⊣

§4. Fullness and exponentiation. This section contains the main contribution of
the paper, which provides a sufficient condition on the choice objects of an elemental
exact completion that ensures the local cartesian closure of the latter.
We begin recalling a characterisation of local cartesian closure for elemental

categories in terms of closure under families of partial functional relations [26].

Definition 4.1. Let Y
g
−→ X

f
−→ I be two arrows in a category C with finite

products. A pair h : J→ I , r : R→ J×X ×Y

(a) is a family of partial sections of g if for every j ∈ J, x ∈ X and y ∈ Y ,

〈j,x,y〉 ǫ r =⇒ gy= x,

(b) has domains indexed by f if for every j ∈ J and x ∈ X

fx= hj ⇐⇒ (∃y ∈ Y)〈j,x,y〉 ǫ r,

(c) is functional if for every j ∈ J, x,x′ ∈ X and y,y′ ∈ Y

〈j,x,y〉 ǫ r ∧ 〈j,x′,y′〉 ǫ r ∧ x= x′ =⇒ y= y′.

Definition 4.2. Let Y
g
−→ X

f
−→ I be two arrows in a category C with finite

limits. A pair h : J → I and r : R →֒ J ×X ×Y is a family of functional relations
over f ,g if it satisfies properties (a)–(c) from Definition 4.1. If J is terminal, then
h ∈ I will be called the domain index of r and 〈r2,r3〉 : R →֒ X ×Y will be called a
functional relation.
A universal dependent product for f ,g is a family of functional relations φ : F → I

andα : P →֒F×X×Y over f ,g such that, for every functional relation r : R →֒X×Y
over f ,g with domain index i ∈ I , there is a unique c ∈ F such that φc= i and for all
x ∈ X and y ∈ Y

〈c,x,y〉 ǫ α ⇐⇒ 〈x,y〉 ǫ r. (3)

Remark 4.3. Intuitively, the property defining a universal dependent product
amounts to say that the arrow φ contains a code c for every functional relation over
f ,g. In an elemental category with finite limits, functional relations coincide with
arrows (because of Proposition 3.7(iii)) and Theorem 6.8 in [26] proves that, in such
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a category, having all universal dependent products is equivalent to local cartesian
closure.

Considering pseudo-relations instead of relations, and dropping functionality we
obtain the following version of Aczel’s notion of full set.

Definition 4.4. Let Y
g
−→ X

f
−→ I be arrows in a quasi-cartesian category. A

pair h : J→ I , r : R→ J×X ×Y is a family of pseudo-relations over f ,g if it satisfies
properties (a) and (b) from Definition 4.1. If J is terminal, then h ∈ J will be called
the domain index of r, and 〈r2,r3〉 : R→ X ×Y will just be called a pseudo-relation
over f ,g.
A full family of pseudo-relation over f ,g is a family of pseudo-relations φ : F → I

and α : P→ F×X ×Y over f ,g such that, for every pseudo-relation r : R→ X ×Y
over f ,g with domain index i ∈ I , there is c ∈ F such that φc = i and for all x ∈ X
and y ∈ Y

〈c,x,y〉 ǫ α =⇒ 〈x,y〉 ǫ r. (4)

A quasi-cartesian category is closed for pseudo-relations if it has a full family of
pseudo-relations for any pair of composable arrows.

Notice that in (4) only one direction of the implication is required, as opposed
to the bi-implication in (3). This is to mimic the behaviour of a full set in CZF as
defined by Aczel (see [1] pg. 58 or [2]): a (total) relation is not necessarily an element
of a full set F , but it contains as subrelation an element of F .

Example 4.5. Proposition 6.5 in the last section proves that the E-category of
types is closed for pseudo-relations.

The next two results show that closure for pseudo-relations endows the internal
logic of a quasi-cartesian category with implication and universal quantification.

Lemma 4.6. Let C be a quasi-cartesian category where every object is a choice

object. If C is closed for pseudo-relations, then for every f : X → I there is a right
adjoint to f –1 : PsubC(I)→ PsubC(X).

Proof. As for weak pullbacks, it is easy to see that full families are unique
up to presubobject equivalence. This defines an order-preserving function
∀f : PsubC(X) → PsubC(I). Given an arrow g : Y → X , let φ : F → I and
α : P → F ×X ×Y be a full family of pseudo-relations over f ,g. We need to
show that h ≤ φ ⇐⇒ f –1h ≤ g for every h : Z→ I , and we shall make use of the
statement in 3.6.(ii) in doing so.
Assume h ≤ φ. We have that x ǫ f –1h implies fx ǫ h ≤ φ, so there is c ∈ F such

that φc= fx and, from 4.2.(b), we obtain y ∈ Y such that 〈c,x,y〉 ǫ α. In particular,
gy= x, i.e., x ǫ g.
Suppose now that f –1h ≤ g. For every i ǫ h we have f –1i ≤ f –1h ≤ g, so there is

e : Z′ → Y such that ge = f –1i, where Z′ is the domain of f –1h. It is easy to see
that 〈f –1i,e〉 : Z′→ X ×Y is a pseudo-relation over f ,g with domain index i ∈ I . In
particular, there is c ∈ F such that φc= i, i.e., i ǫ φ. ⊣

Recall from Remark 2.5 that regular logic is valid under the BHK-interpretation
in any quasi-cartesian category. From the above lemma and results in [25] we obtain
the following.
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Corollary 4.7. Let C be a quasi-cartesian category which is closed for pseudo-

relations and where every object is a choice object. Then the (⊤,∧,⇒,∃,∀)-fragment
of intuitionistic first order logic is valid under the BHK-interpretation in C.

Remark 4.8. With the same hypothesis as the previous corollary, we can extend

Corollary 3.9. Subobjects obtained by
.
⇒ and

.

∀ are determined, up to presubobject
equivalence, by the universal closure of the following relations:

5. x ǫ (a
.
⇒ b) if and only if x ǫ a=⇒ x ǫ b,

6. x ǫ

.

∀Y r if and only if (∀y ∈ Y)〈x,y〉 ǫ r.

The following theorem proves that closure for pseudo-relations provides a
sufficient condition for the local cartesian closure of an elemental exact completion.

Theorem 4.9. Let C be a quasi-cartesian category where every object is a choice

object. If C is closed for pseudo-relations, then Cex is locally cartesian closed.

The idea of the proof is to isolate the functional relations from a suitable full
family of pseudo-relations, and to define an equivalence relation to identify point-
wise equal functional relations. In doing so, we exploit the characterisations of the
internal logic and of the exact completion construction provided by elementality
(Corollaries 3.9 to 3.11 and Remark 4.8).

Proof. We shall show that Cex has all universal dependent products. Thanks to
Corollaries 3.10 and 3.11 we can regard objects X in Cex as pairs (X0,∼X ) where
∼X is a pseudo equivalence relation on the elements X0, and arrows f : X → Y in
Cex as arrows f : X0→ Y0 in C such that fx∼Y fx

′ whenever x∼X x
′.

Let Y
g
−→ X

f
−→ I be a pair of composable arrows in Cex. Define two pseudo-

relations ô : T0→ X0× I0 and ó : S0→ Y0×T0 in C by the formulas

fx∼I i and gy∼X ô1t, (5)

respectively, for i ∈ I0,x ∈ X0,y ∈ Y0 and t ∈ T0, and let φ : F0 → I0, α : P0 →

F0×T0×S0 be a full family of pseudo-relations over S0
ó2−→ T0

ô2−→ I0. This means
that, for every c ∈ F0, t ∈ T0 and s ∈ S0,

〈c, t,s〉 ǫ α =⇒ ó2s= t, (6)

ô2t= φc⇐⇒ (∃s ∈ S0)〈c, t,s〉 ǫ α. (7)

Let ã : G0→ F0 be a presubobject of F0 defined by the formula

(∀t, t′ ∈ T0)(∀s,s
′ ∈ S0)(〈c, t,s〉 ǫ α∧〈c, t′,s′〉 ǫ α∧ ô1t∼X ô1t

′⇒ ó1s∼Y ó1s
′), (8)

for c ∈ F0, and let â : Q0 → G0×X0×Y0 be the pseudo-relation defined by the
formula

(∃t ∈ T0)(∃s ∈ S0)(ô1t= x∧ó1s= y∧〈ãu, t,s〉 ǫ α), (9)

for u ∈ G0,x ∈ X0 and y ∈ Y0.
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Define now an equivalence relation u ∼G u
′ on G0 as the conjunction of φãu ∼I

φãu′ and

(∀t, t′ ∈ T0)(∀s,s
′ ∈ S0)(〈ãu, t,s〉 ǫ α∧〈ãu′, t′,s′〉 ǫ α∧ ô1t∼X ô1t

′⇒ ó1s∼Y ó1s
′).
(10)

Reflexivity follows from (8) and reflexivity of ∼I , and symmetry is trivial. To verify
transitivity, assume u ∼G u

′ ∼G u
′′. Then φãu ∼I φãu

′′ follows immediately, so let
t, t′′ ∈ T0 and s,s

′′ ∈ S0 be such that 〈ãu, t,s〉 ǫ α, 〈ãu′′, t′′,s′′〉 ǫ α and ô1t ∼X ô1t
′′.

We need to show that ó1s∼Y ó1s
′′. From (7) and the definition of ô in (5) we have

f ô1t∼I ô2t= φãu∼I φãu
′, so there is t′ ∈ T0 such that ôt

′ = 〈ô1t,φãu
′〉 and (7) yields

s′ ∈ S0 such that 〈ãu
′, t′,s′〉 ǫ α. But we also have ô1t = ô1t

′ and ô1t
′ ∼X ô1t

′′, hence
ó1s∼Y ó1s

′ and ó1s
′ ∼Y ó1s

′′ from (10) and the assumption u∼G u
′ ∼G u

′′. We have
thus established thatG := (G0,∼G) is an object inCex andφã is an arrowG→ I inCex.
Define an equivalence relation q∼Q q

′ on Q0 as

â1q∼G â1q
′∧â2q∼X â2q

′ (11)

which makes Q := (Q0,∼Q) an object of Cex and â1 and â2 arrows Q→ G and
Q→X , respectively. We need to check that it also makes â3 an arrowQ→Y in Cex.
For q,q′ ∈Q0 we have, from (9) that there are t, t

′ ∈ T0 and s,s
′ ∈ S0 such that

〈â2,â3〉q= 〈ô1t,ó1s〉 〈â2,â3〉q
′ = 〈ô1t

′,ó1s
′〉 〈ãâ1q, t,s〉 ǫ α and 〈ãâ1q

′, t′,s′〉 ǫ α.

If q ∼Q q
′, then â1q ∼G â1q

′ and ô1t = â2q ∼X â2q
′ = ô1t

′, which in turn imply
â3q= ó1s∼Y ó1s

′ = â3q
′ as required.

This gives us a pair of arrows φã : G→ I and â : Q →֒ G×X ×Y in Cex, where
the latter is monic because of (11). We now need to show that this pair is a universal
dependent product for f ,g. Let us first remark that in Cex the membership relation
ǫ is different from the one inC: we denote the former with ǫ̃ and continue denoting
the latter as ǫ. In particular, we have:

b ǫ̃ f ⇐⇒ (∃b′ ∈ B0)(b∼B b
′∧b′ ǫ f ). (12)

We start showing that the pair φã,â is a family of functional relations over f ,g
by checking the three properties in Definition 4.1.

(a) φã,â is a family of sections of g: If 〈u,x,y〉 ǫ̃ â , then there are u′ ∼G u,
x′ ∼X x and y

′ ∼Y y such that 〈u
′,x′,y′〉 ǫ â . From (9) we obtain t ∈ T0

and s ∈ S0 such that ô1t = x
′, ó1s = y

′ and 〈ãu′, t,s〉 ǫ α and, from (6),
gy∼X gó1s∼X ô1ó2s∼X x.

(b) φã,â has domains indexed by f : Reasoning as above, and using (7), it is easy
to see that 〈u,x,y〉 ǫ̃ â implies fx∼I φãu. Conversely, let x ∈ X0 be such that
fx ∼I φãu. From (5) we obtain t ∈ T0 such that ôt = 〈x,φãu〉 and, from (7),
we get s ∈ S0 such that 〈ãu, t,s〉 ǫ α, that is, 〈u,x,ó1s〉 ǫ̃ â .

(c) φã,â is functional: Let 〈u,x,y〉,〈u,x′,y′〉 ǫ̃ â be such that x∼X x
′. As in point

(a), we obtain t, t′ ∈ T0 and s,s
′ ∈ S0 such that ô1t∼X x, ô1t

′ ∼X x
′, ó1s∼Y y,

ó1s
′ ∼Y y

′, 〈ãu, t,s〉 ǫ α and 〈ãu, t′,s′〉 ǫ α. Hence y∼Y y
′ from (8).

It remains to show that the pair φã : G→ I , â : Q →֒ G×X ×Y has the required
universal property. Let r : R →֒X×Y be a functional relation over f ,g with domain
index i0 ∈ I0, i.e., such that, for every x,x

′ ∈ X0 and y,y
′ ∈ Y0,
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〈x,y〉 ǫ̃ r=⇒ gy∼X x, (13)

fx∼I i0⇐⇒ (∃y ∈ Y)〈x,y〉 ǫ̃ r, (14)

〈x,y〉 ǫ̃ r ∧ 〈x′,y′〉 ǫ̃ r ∧ x∼X x
′ =⇒ y∼Y y

′. (15)

Properties (13) and (14) above ensure that the pseudo-relation r′ : R′

0 → T0×S0
defined by the formula

ó2s= t∧ ô2t= i0∧〈ô1t,ó1s〉 ǫ̃ r. (16)

is a pseudo-relation over ô2,ó2 with domain index i0 ∈ I0, hence from fullness of φ
and α we get c ∈ F0 such that φc= i0 and

〈c, t,s〉 ǫ α =⇒ 〈t,s〉 ǫ r′ (17)

for every t ∈ T ,s ∈ S0.
Using (15), (16) and (17) it is easy to see that c ∈ F0 satisfies (8), hence there is

u ∈ G0 such that ãu= c. We now need to show that

〈u,x,y〉 ǫ̃ â ⇐⇒ 〈x,y〉 ǫ̃ r. (18)

Suppose 〈u,x,y〉 ǫ̃ â , hence there are u′ ∼G u, x
′ ∼X x and y

′ ∼Y y such that
〈u′,x′,y′〉 ǫ â . From (9) we obtain t′ ∈ T0 and s

′ ∈ S0 such that ô1t
′ = x′, ó1s

′ = y′

and 〈ãu′, t′,s′〉 ǫ α. On the other hand, the family φã,â has domains indexed by f
and, in particular, fx ∼I φãu. So there are t ∈ T0 such that ôt = 〈x,φãu〉 and, from
(7), s∈ S0 such that 〈ãu, t,s〉 ǫ α. It follows from (17) and (16) that 〈x,ó1s〉 ǫ̃ r. Since
u∼G u

′ and ô1t= x∼X x
′ = ô1t

′, (10) implies ó1s∼Y ó1s
′ = y′ ∼Y y. Hence 〈x,y〉 ǫ̃ r.

For the converse, suppose 〈x,y〉 ǫ̃ r. Then fx ∼I i0 = φãu and, since the family
φã,â has domains indexed by f , there is y′ ∈ Y0 such that 〈u,x,y

′〉 ǫ̃ â . But then
〈x,y′〉 ǫ̃ r, and (15) implies y∼Y y

′. Hence 〈u,x,y〉 ǫ̃ â .
It only remains to show uniqueness of u ∈ G. Suppose that u′ ∈ G0 is such that

φãu′ ∼I i0 and satisfies (18) for all x ∈ X0 and y ∈ Y0. Clearly φãu ∼I φãu
′. Let

t, t′ ∈ T0 and s,s
′ ∈ S0 be such that 〈ãu, t,s〉,〈ãu

′, t′,s′〉 ǫ α and ô1t ∼X ô1t
′. Hence

〈u,ô1t,ó1s〉,〈u
′,ô1t

′,ó1s
′〉 ǫ̃ â from (9) and, since both u and u′ satisfy (18), we

obtain 〈ô1t,ó1s〉,〈ô1t
′,ó1s

′〉 ǫ̃ r. Functionality of r (15) implies ó1s ∼Y ó1s
′, hence

u∼G u
′ as required. ⊣

§5. Models of CETCS as exact completions. The Constructive Elementary
Theory of the Category of Sets (CETCS) is expressed in a three-sorted language
for category theory and is based on a suitable essentially algebraic formalisation of
category theory over intuitionistic first-order logic. We refer to [26] for more details.
We now recall the axioms of CETCS.
(C1) Finite limits and finite colimits exist.

(C2) Any pair of composable arrows has a universal dependent product.

(C3) There is a natural numbers object.

(C4) Elementality.

(C5) For any object X there are a choice object P and a surjection P→ X .

(C6) The initial object 0 has no elements.
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(C7) The terminal object is indecomposable: in any sum diagram
i : X → S← Y : j, z ∈ S implies z ǫ i or z ǫ j.

(C8) In any sum diagram i : 1→ S← 1 : j, the arrows i and j are different.

(C9) Any arrow can be factored as a surjection followed by a mono.

(C10) Every equivalence relation is a kernel pair.

Remark 5.1. Theorem 6.10 in [26] characterises models of CETCS in terms of
standard categorical properties, proving that CETCS provides a finite axiomatisa-
tion of the theory of well-pointed locally cartesian closed pretoposes with a natural
numbers object and enough projectives. Recall that a pretopos is well-pointed if the
terminal object is projective, indecomposable, non-degenerate (i.e., 0 ≇ 1) and a
strong generator.
In particular, since the terminal object is projective and a strong generator, we

have from Lemma 3.3 that covers and surjections coincide, hence the projectives
mentioned above are precisely the choice objects given by axiom (C5). Using
cartesian closure, it is also easy to see that these are closed under finite products.
Hence we obtain the following result as a consequence of Theorem 2.6.

Corollary 5.2. Choice objects in a model of CETCS form a quasi-cartesian

category, and every model of CETCS is the exact completion of its choice objects.

Remark 5.3. Choice objects in models of CETCS are in general not closed under
all finite limits: Remark 6.3 and Proposition 6.6 below show that the category of
small types in Martin-Löf type theory provides a counterexample.

Using the results in the previous sections, we can isolate those properties that a
quasi-cartesian category has to satisfy in order to arise as a subcategory of choice
objects in a model of CETCS.
We begin recalling from [13] that an exact completion Cex is a pretopos if and

only if C has finite sums and is weakly lextensive, meaning that finite sums interacts
well with weak limits. More precisely, a quasi-cartesian category C with finite sums
is weakly lextensive if

(a) sums are disjoint and the initial object is strict,
(b) it is distributive, i.e., (X ×Y)+(X ×Z)∼= X × (Y +Z),
(c) if EX →X ⇒Z and EY →Y ⇒Z are weak equalisers, then so is EX +EY →
X +Y ⇒ Z.

In fact, as observed by Gran and Vitale, the exact completion of a weakly lextensive
category coincides with the pretopos completion.

Remark 5.4. Recall that a natural numbers object is an object N together with
0 ∈ N and s : N → N such that, for any other triple X ,x ∈ X , f : X → X , there is a
unique g : N→ X such that g0 = x and gs= fs. If we drop uniqueness of g, then we
obtain a weak natural numbers object.
If N = (N0,∼N) is a natural numbers object in an elemental Cex, then N0 is a

weak natural numbers object in C. Conversely, a weak natural numbers object in C
is a weak natural numbers object in Cex as well. Proposition 5.1 in [3] proves that
a cartesian closed category with equalisers and a weak natural numbers object also
has a natural numbers object.
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Proposition 5.5. Let C be a quasi-cartesian category with finite sums. Then

Cex is well-pointed if and only if the terminal object in C is non-degenerate and

indecomposable and every object in C is a choice object.

Proof. We already know that the terminal object in Cex is projective and, from
Theorem 3.12, that it is a strong generator if and only if every object in C is a
choice object. For non-degeneracy the equivalence follows from the fact that the
embedding Γ: C→ Cex is conservative and preserves terminal and initial objects.
If the terminal object is indecomposable in Cex, then clearly it is so in C as well.

To show the other implication, let us assume elementality of Cex (although it can be
easily proved also without it). Every element z ∈ X +Y in Cex is also an element of
X0+Y0 in C. Indecomposability of 1 in C implies z ǫ i0 or z ǫ j0, hence we have z ǫ i
in the first case, and z ǫ j in the second case, where i0, j0 (resp. i, j) are the coproduct
injections of X0+Y0 (resp. of X +Y). ⊣

We can now collect all the properties seen so far which, all together, provide a
sufficient condition ensuring that an exact completion construction will give rise to
a model of CETCS.

Theorem 5.6. Let C be a quasi-cartesian category with finite sums. Then Cex is a

model of CETCS if

(i) every object in C is a choice object,
(ii) the terminal object in C is non-degenerate and indecomposable,
(iii) C is weakly lextensive and closed for pseudo-relations,
(iv) C has a weak natural numbers object.

Proof. Well-pointedness of Cex follows from Proposition 5.5, while Proposi-
tion 2.1 in [13] and Theorem 4.9 imply thatCex is a locally cartesian closed pretopos.
The existence of enough projectives is automatic from the completion process,
and the existence of a natural numbers object is ensured by Proposition 5.1 in [3]
and Remark 5.4. By Theorem 6.10 in [26], well-pointed locally cartesian closed
pretoposes with enough projectives and a natural numbers object are precisely the
models of CETCS. ⊣

§6. The category of setoids. In this section we apply Theorem 5.6 to show that the
category of small setoids in Martin-Löf type theory is a model of CETCS. We claim
no originality on this result: it is known that this category forms a locally cartesian
closed pretopos with a natural numbers object. In particular, the proof that it is
a pretopos has also been formalised in Coq by the second author [27]. However,
we are not aware of a source that presents a complete proof of it, some references
include [9, 16, 23, 35].
LetML beMartin-Löf type theorywith rules for

∑
-types,

∏
-types, identity types

=X , sum types⊞, natural numbers type N, empty type N0, one-element type N1 and
a universe (U,T(·)) closed under the previous type formers [24]. We denote the non-
dependent versions of

∑
and

∏
types by ⊠ and→, respectively. For simplicity, in

this presentation we leave the decoding type constructor T(·) implicit. Henceforth,
we shall be working internally inML.
We shall work with categories without assuming equality on objects. This

formulation is also known as E-category: its objects are given by a type, while the
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arrows between two objects form a setoid, i.e., a type equipped with an equivalence
relation which is understood as the equality between arrows. For more details on
E-categories and categories in Martin-Löf type theory we refer to [29].
The E-category of setoids Std consists of small setoids and extensional functions

between them. More precisely, small setoids are pairs A := (A0,A1) where

A0 : U and A1 : A0→ A0→ U,

together with proofs of reflexivity, symmetry and transitivity for A1. We write
A1(a,a

′) as a∼A a
′ and omit its proof-terms. Sometimes we also drop the subscript

from the equivalence relation when this is clear from the context, and just say
“setoid” instead of “small setoid”.
Arrows from a setoid A to a setoid B are extensional functions, that is, elements

f : A0→ B0 together with a proof that f preserves equality, i.e., an element of
∏

a,a′:A0

(a∼A a
′→ f (a)∼B f (a

′)).

Two extensional functions f ,g : A→ B are equal if
∏

a:A0

f (a)∼B g(a)

is provable: this is clearly an equivalence relation and makes the type of extensional
functions into a (small) setoid. Identity arrows and composition are defined in the
obvious way using application and ë-abstraction.
Henceforth, we refer to elements of function types as operations and to extensional

functions simply as functions. However, we shall not usually distinguish between a
function and the underlying operation: the context should make clear which one we
are referring to.

Example 6.1. (1) Every small typeX :U gives rise to a small setoid X̂ := (X ,=X ),
called the free setoid on X , where x =X x

′ is the identity type between elements
x,x′ : X . Proofs of reflexivity, symmetry and transitivity are obtained using the
introduction and elimination rules for =X .
(2) For p,n,m :N, define n∼pm :=

∑
k:N(n=Nm+kp)⊞(m=N n+kp). Thenwhen

p 6=N 0, Zp := (N,∼p) is the setoid of integers modulo p. If q =N lp, multiplication
by l on N gives rise to a function i : Zp→ Zq, and similarly the identity operation
ëx.x :N→N produces a function e : Zq→Zp. These functions are such that ei∼ idZp .

It is not difficult to see that Std has finite limits. The very definition of setoid
ensures that Std has quotients of equivalence relations: the argument is the same
as in Proposition 7.1 in [23]. The presence of a universe entails that regular epis
coincide with surjective functions, i.e., functions f : A→ B such that

∏

b:B0

∑

a:A0

f (a)∼B b

is provable [35]. This implies in particular that they are stable under pullback, thus
we can conclude that Std is exact.
Being inductively defined from reflexivity, the identity type =X is in particular the

minimal reflexive relation on the type X . This has the consequence that, for a setoid
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A, any operation X → A0 gives rise to a function X̂ → A and, in turn, makes the
full subcategory on free setoids a projective cover of Std. Indeed, for any setoid A,
the identity operation on A0 gives rise to a function eA : Â0 → A which is clearly
surjective. Secondly, given a surjection f : A→B and a function g : X̂ →B, the type-
theoretic version of the axiom of choice (ttAC), which is provable in type theory
and is also known as the distributivity of

∏
-types over

∑
-types, yields an operation

s : X → A0 such that fs(x) ∼B g(x) for all x : X , and so a function s : X̂ → A such
that fs∼ g.

Remark 6.2. The type-theoretic version of the axiom of choice does not imply
that every surjection has a section, as it instead happens in the category of sets in a
model of ZFC. Indeed, for every surjection f : A→ B in Std, ttAC does provide an
operation s : B0→ A0 such that fs(b) ∼B b for all b : B0, but this is not necessarily
extensional.
Consider for example the canonical surjection eZp : (N,=N)→ Zp for p 6=N 0.

Applying ttAC to ën.(n+ kp, ) :
∏
n:N

∑
m:Nm ∼p n, where the obvious proof of

n+kp∼p n is left implicit, produces the operation ik := ën.n+kp : N→ N, for k : N.
This operation is clearly not extensional: for example, n∼p n+pbut ik(n) 6=N ik(n+p)
for any k : N.
For further details regarding the relation between ttAC and setoids we refer

to [22].

The full subcategory of Std on free setoids is in fact equivalent to the E-category
of small types Type. Its type of objects is the universe U, the setoid of arrowsX →Y
has X → Y as underlying type, and equivalence relation f ∼ g given by the type

∏

x:X

f (x) =Y g(x).

Recall that an E-functor F between two E-categories C and D consists of an
operation Fo between the types of objects together with an extensional function

FX ,X
′

a : HomC(X ,X
′)→HomD(Fo(X),Fo(X

′)) for each pair of objects X and X ′ of
C, satisfying the usual axioms. There is an E-functor fromType to Stdmapping each
small type to the free setoid on it, and each operation f :X→Y to the corresponding
function f : X̂ → Ŷ . It is clearly fully faithful and its image is the full subcategory
on free setoids.

Type is quasi-cartesian: a product of two objects X and Y is given by the (non-
dependent)

∑
-type X ⊠Y , and a weak equaliser of two arrows f ,g : X → Y is

given by the type
∑
x:X (f (x) =Y g(x)) together with the first projection into X . In

addition, the embedding X 7→ X̂ preserves all finite products: since the identity type
(x,y) =X⊠Y (x

′,y′) is type-theoretically equivalent to the type (x=X x
′)⊠(y=Y0 y

′),

the free setoid on X ⊠Y is isomorphic to X̂ × Ŷ .

Remark 6.3. Type has not arbitrary finite limits, since their existence would
imply the derivability of Uniqueness of Identity Proofs (UIP) in ML for all small
types. Indeed, given a small type X : U, the existence of an equaliser for every
pair x,x′ : 1→ X would yield a mere equivalence relation E : X → X → U (i.e.,
an equivalence relation such that u =E(x,x′) v for every u,v : E(x,x

′) and x,x′ : X)
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together with an element f : Πx,x′:XE(x,x
′)→ x =X x

′. Theorem 7.2.2 in [31] then
implies UIP (X).

We may collect what we have seen so far in the following proposition.

Proposition 6.4. Std is the exact completion of Type as a quasi-cartesian

E-category.

We now verify that Type satisfies the hypothesis of Theorem 5.6. These are all
either immediate or already known in one form or another, except for closure for
pseudo-relations which we prove first.

Proposition 6.5. Type is closed for pseudo-relations.

Proof. Let Y
g
−→ X

f
−→ I be arrows in Type. For i : I and x : X define

f –(i) :=
∑

x:X

f (x) =I i, and g–(x) :=
∑

y:Y

g(y) =X x,

and form the types

F :=
∑

i:I

∏

u:f –(i)

g–(pr1(u)) and P :=
∑

v:F

∑

x:X

f (x) =I φ(v)

where φ := pr1 : F → I . Finally, define ǫ : P→ Y and α : P→ F×X ×Y as

ǫ(v,x,s) := pr1((pr2v)(x,s)) and α(v,x,s) := (v,x, ǫ(v,x,s)).

If (v,x,y) ǫ α, then there is s : f (x) =I φ(v) such that ǫ (v,x,s) =Y y and

pr2((pr2v)(x,s)) : g(ǫ(v,x,s)) =X x,

so 4.2(a) is satisfied, while 4.2(b) follows immediately from the definition of equality
of arrows in Type. Hence the pair φ,α is a family of pseudo-relations over f ,g.
Let now r : R→ X ×Y be a pseudo-relation over f ,g with domain index i : I .

Property 4.2(b) implies that
∏

u:f –(i)

∑

t:R

r1(t) =X pr1(u)

is inhabited, therefore the type-theoretic axiom of choice yields a function term
k : f –(i)→ R such that

∏

u:f –(i)

r1(k(u)) =X pr1(u).

Property 4.2(a) implies that there is a closed term

m :
∏

u:f –(i)

g(r2(k(u))) =X pr1(u),

Hence we can define a function term h :
∏
f –(i) g

–(pr1(u)) as h(u) := (r2(k(u)),m(u)),

thus obtaining a term c := (i,h) : F . Clearly φ(c) =I i, we need to show that for all
x : X and y : Y

(c,x,y) ǫ α =⇒ (x,y) ǫ r.
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Suppose that there is s : f (x) =I φ(s) such that (c,x,s) : P and ǫ (c,x,s) =Y y,
hence

y=Y ǫ(c,x,s) =Y pr1(h(x,s)) =Y r2(k(x,s)).

Since moreover r1(k(x,s)) =X pr1(x,s) =X x, we can conclude (x,y) ǫ r as required.
⊣

We now briefly recall how to obtain the other properties.
The unit type N1 gives the terminal object in Type. It is non-degenerate and

indecomposable since the types

(N1→ N0)→ N0 and
∏

u:X⊞Y

(∑

x:X

inl(x) = u⊞
∑

y:Y

inr(y) = u
)

are both inhabited.Because of ttAC, all objects inType are choice objects. Lemma3.4
and Theorem 3.12 then imply that Type and Std are elemental, respectively.

Type is weakly lextensive. The initial object is given by the empty type N0 and
its elimination rule yields strictness. Sums are given by sum types ⊞, and their
disjointness follows from the type-theoretic equivalences

inl(x) =X⊞Y inl(x
′) ≃ x=X x

′,

inr(y) =X⊞Y inr(y
′) ≃ y=Y y

′,

inl(x) =X⊞Y inr(y) ≃ N0.

See for example [31]. For distributivity, it is enough to show that the operation (X⊠

Y)⊞ (X ⊠Z)→ X ⊠ (Y ⊞Z) defined by ⊞-elimination is injective and surjective,
which is straightforward using the elimination rules of the types involved. The
preservation of weak equalisers also follows from⊞-elimination, and the fact that a
weak equaliser of f ,g : X → Y is logically equivalent over X to pr1 :

∑
x:X f (x) =Y

g(x)→ X .
The type of natural numbers N provides Type with a natural numbers object. The

existence of a universal arrow is an immediate consequence of the elimination rule
of N (i.e., recursion on natural numbers) and, since the equality of arrows in Type
is point-wise propositional equality, such an arrow is in fact unique.
In conclusion we have the following result.

Proposition 6.6. Type is a quasi-cartesian category with finite sums that satisfies

properties (i)–(iv) from Theorem 5.6. Hence Std is a model of CETCS.
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