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ON THE "LARGENESS" OF ONE-RELATOR GROUPS
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1. Introduction

If G is a one-relator group on at least 3 generators, or is a one-relator group with
torsion on at least 2 generators, then it follows from results in [1] and [6] that G has a
subgroup of finite index which can be mapped homomorphically onto F2, the free group
of rank 2. In the language of [2], G is equally as large as F2, written G ̂  F2. This leaves
open the following question, raised as a problem in [2]:

Let G be a two-generator, torsion-free, one-relator group. Under what conditions is G
equally as large as F21

Examples of two-generator one-relator groups which are not equally as large as F2

are given in [2] (Examples 3.2, 3.3). In this paper we shall prove the following positive
results.

Theorem 1. Let G = (a,b;a"ibeia'X2bP2...aambPmy, where w^2 , a,,/?,- are non-zero
integers (l^i^m), and Y*=iPk = ®- Suppose that there is a pair i,j (l^i<j^m) and an
integer p > 1 such that:

(1) p | ak for k #i,j and hcf(p, a,) = hcf(p,a,) = 1;

(2) \ I \
(3)

Then G^F2.

Theorem 2. Let G = (a,b;a*lbPl...a"mbfm} where the a,-,/?,- ( l ^ i ^ m ) are non-zero
integers. Assume that there is a factorisation m = rlofm(r,l> 1), and integers p,q>l such
that the following hold:

(4) For 1 g i g j < r , the number /?,-l +/?; is not divisible by q;

(5) s = /

(6) P\

(7) Pk = Pk+r = Pk-r2r= ••• =&+</ - ! ) , (mod pq) for 1 ^ f e ^ r ; and

(8) ( S ,p )#(2 ,2) .

Then G^F2.
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It is clear that if the relator aaibPl... a2mbfm satisfies the conditions (4), (6) and (7) then
so does the relator

for any choice of integers nh l^i^m. Thus any particular example of a group satisfying
the conditions of Theorem 2 will generate an infinite family of further such examples.

We also note that condition (5) of Theorem 2 cannot in general be removed. For
example let G0 = <a)t;t~

1a"t=an+1>, n>l , and let Gt be the HNN extension

This latter presentation does not satisfy condition (5). Moreover, Gj is not equally as
large as F2 ([2], Example 3.3).

2. Notation and definitions

Most of the definitions and results in this section are fairly standard. Further details
can be found in [3, p. 115-120].

A 1-complex or graph consists of two disjoint sets V,E together with three functions,
i:£-»K r:E-*V, ~l:E^E satisfying i(e"1) = T(e), ( r ' f ^ e . e ' V c for all e in E. When
representing 1-complexes diagrammatically we follow the convention adopted in [5,
p. 13].

If y is a closed path in a 1-complex then the set of cyclic permutations of y, denoted
{y}*, is called a cycle. If c is the cycle {y}* then c"1 is defined to be {y"1}*.

A 2-complex C consists of three disjoint sets V,E,C where V,E together constitute a
1-complex (called the 1-skeleton C1 of C), and where there are two maps d from C to
the set of cycles in C\ and ~U.C^C satisfying dA'1 =(aA)"1,(A-1)-1 = A,A^A"1 for
each A in C. The members of C are called 2-ceIls and dA is the boundary of A.

The fundamental group of C at a vertex ve V is denoted by n^Qv). All 2-complexes
shall be connected, so u1(C, u) is independent of v up to isomorphism. Thus we can
speak of the fundamental group of C, which we denote by TTI(C).

A mapping from the 2-complex C to the 2-complex L consists of three functions, one
from the vertex set of C to the vertex set of L, one from the edge set of C to the set of
paths of L, and one from the set of 2-cells of C to the set of 2-cells of L. Denoting all
three functions by the same latter, say </>, we require that given an edge e in C, we have
<p(i(e)) = i(<t>(e)), 4>{x{e)) = x(<i>{e)), ^ e " 1 ) = 0 ( e ) - 1 , and, for a given 2-cell A of C, 4>{dA) =
d<f>(A), and 0(A-1) = 0(A)"1. (Here, if 8A = {y}*, then <j)(dA) is defined to be {<Ky)}*-)
If v is a vertex in C and if <f>{v) = u, we have a well-defined induced group homomorph-
ism (f)^ from n^C, v) to n^L,!*).

Let <X; R> be a presentation of the group G. Then we can associate a 2-complex K
with this presentation as follows. The 2-complex K has a single vertex v, and an edge ex

for each x in X together with e'1. Furthermore, for each defining relator x\*...x% in R
(x;eX, e,= ± l , for l^ijSn), we introduce a 2-cell A with boundary 5A = {e?x

l ...e%}*,
together with A"1. The fundamental group of the associated 2-complex K is isomorphic
to G.

We can represent a given subgroup H of G = <X;R> by a 2-complex KH. Firstly
identify G with n^K). Then KH is constructed as follows. The verticies of KH are the
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right cosets Hy of H in G. (Strictly speaking the elements of TT^K) are equivalence
classes of paths, but we will abuse notation and represent a class by a path in it.) The
edges of KH are (Hy,e) where e is an edge in K. We define i(Hy,e) to be Hy and r(Hy,e)
to be Hye. Also, (Hy,e)~1 = (Hye,e~1). Let a = ele2...en be a path in K1. Then the lift of
a to Ki at the vertex Hy is the path

{Hy,e1)(Hyel,e2)...(Hye1...en_1,en).

For the 2-cells of KH let RiHy be the lift of Rt (R.eR) at Hy. Then Rt Hy is a closed path
in K .̂ Attach a 2-cell AlHy to K^ with boundary {RiHy}*, and attach an inverse 2-cell
A;7HV with boundary {R^y}*. There is a mapping 0:KH-»K which sends the edge
(Hy,e) to e, and the 2-cell Ae

iHy to A?, e= ±1 , where dAi = {Ri}* for R,eR. The induced
homomorphism ^^-.n^K^-^n^K) is injective, and (j)^(n1(Kfd) = H, whence the isomor-
phism ^ ( K H J S H .

We remark that the edges of K^ with second co-ordinate e*1 will sometimes be
called eredges.

If we collapse each edge of a maximal subtree in K1 to a point and make the
corresponding alterations to the 2-cells of K, then the fundamental group of the 2-
complex which remains will be isomorphic to rc^K). These collapses are examples of
mappings of 2-complexes and, by consideration of the induced homomorphisms, it is
clear that further collapsing of edges will give 2-complexes whose fundamental groups
are homomorphic images of n^K).

3. Proof of Theorem 1

By cyclically permuting the relator of G, if necessary, we may assume that i= l . Also,
replacing b by ft"1, if necessary, we may assume that Xis*<j/?*:>0- For simplicity,
denote X i s t < j ^ by/J.

Let K be the 2-complex associated with the given presentation of G and let H be the
normal closure in G of {a,bh}. Then KH, the covering of K corresponding to H, has
1-skeleton:

a o

E.M.S.—F
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The life of the relator of G at the vertex n has the form

where orb,_1(<»J = l, <rbk_l(vl^ = — 1. Collapse all the b-edges apart from bh-u obtaining a
2-complex KH. Then, since we have collapsed a maximal tree, n^K^^H.

Let L be the homomorphic image of TI^EH) obtained by adding the relations a£=l
h). Then, using (1), and writing z for bh-u we have

L= <a0,..., ah _15 z; a% <%zc£*z ~l (0 ^

Again making use of (1), this may be rewritten as

for some integer q with hcf(p,q) = l. Adding the relation z*(p) = l, where $ is the Euler
function, then gives a group which is a split extension of the free product L of h cyclic
groups of order p, by a cyclic group of order (j)(p). Since L~F2 (using conditions (2), (3)
and [4], Theorem 3.7), the result follows.

4. Proof of Theorem 2

Our proof of Theorem 2 takes the form of a discussion and we shall introduce each of
the conditions as we require them. In order to do this it is more convenient to replace
conditions (6) and (7) by the condition:

(9) For each i ( l ^ i^m) , pq\Pi+ •••/?,-+(,.-!), where subscripts are reduced mod m to lie
between 1 and m.

It is straightforward to check that conditions (4), (6) and (7) are together equivalent
to conditions (4) and (9).

Let G = (a,b;d*1bfil...0*"^"} where a,,/?, are non-zero integers ( l^ i^m) . Assume
that m is composite, say m = rl, (r,l>l). Now suppose that there is an integer q>\ such
that:

(10) For each i ( l ^ i ^m) , the numbers j?f+ •• • +Bi+(r_1); where subscripts are reduced
mod m to lie between 1 and m, are divisible by q.

Assume also that:

m

(11) There is an integer k> 1 such that k divides V a,.
• = i

Let K be the 2-complex associated with the given presentation for G and let H be the
normal closure in G of {ax, b9, [a, b]}. Then KH, the covering of K corresponding to H,
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has 1-skeleton:
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FIGURE 2

Consider the lift R(Vifl) of the relator of G at the vertex (v,/x). By (10), this will involve
edges from at most r a-columns, and will involve edges from the a0-column ( = {aoi

1:
0^i<X}) provided

v + /J1+ \-pk=0modq

for some ke{l,...,r}. We want to guarantee that the value k, if it exists, is unique; that
is, the lift /?(„,„) involves edges from precisely r a-columns. This is achieved by requiring:

(4) For 1 ̂  i ̂ j < r, the number /?; + • • • + ftp is not divisible by q.

It follows from (11) and (4) that the number of edges of the a0-column involved in
R(V(J] will either be zero or will be
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where the number ke{l,...,r}. Moreover,

x-i

1 = 0

We want the numbers Y,t=o aa0,(R(v,n))> ( O ^ v ^ ^ — 1 , 0 ^ / i ^ l — 1 ) , to have a common
factor greater than 1. By what we have just observed, this will be achieved by requiring:

(5) s =

(Note that (5) implies (11) with X = s.)

We shall also want information about Y,?=o ffbi0(,
R(v,^)- Assume therefore that:

(9) There is an integer p>\ such that for each i ( l ^ i ^ m ) , pq divides the number
Pt-\ +)S, + (r_1), where subscripts are reduced modm to lie between 1 and m.

(Note that (9) implies (10).)

Then (9) ensures that p divides the numbers YA=O
 fftj.^v.^)> Q^V^Q —1» O^^^A— 1.

Moreover, suppose that R^,^ involves edges from the a0-column, then (9) and (4)
together imply that:

(*) if a^waQj1 (i,je{0,...,X — 1}) is a subword of some cyclic permutation of R{Vfl),
where 03 does not involve any edges from the a0-column, then p divides Y,?=o fffci0(

a))-

Let KH be the 2-complex obtained by collapsing all the edges of KH except
{ao^bx,1:0^i^X — 1}, and let the corresponding images of/?( v / l ) be denoted by ^(v,^)-
Since we have collapsed a maximal tree in passing from KH to KH, ^(K,,) is a
homomorphic image of H, and has the presentation

Moreover, the choice of edge-set collapsed in obtaining R(Vtll) from RiVilt) implies that,
for each (v, //),

Z -oi((».J I
i=0 ;=o

and
X - l X - l

Z °biO(<o)= E ohi<o),
i=0 i=0

where co is the subword of R^Vill) as described in (*) above.

https://doi.org/10.1017/S0013091500017636 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017636


ON THE "LARGENESS' OF ONE-RELATOR GROUPS 269

Consequently, if L is the homomorphic image of ^ ( K H ) obtained by adding the
relations aoo = aoi= " = a oA- i . boo = bio=--- = ^ - 1 0 . aoo = 1> and fego

=1» then
L = <a00) b00; cf00 = bg0 = 1 >. Thus if:

(8) (s,p)*(2,2),

then G^F2 ([4], Theorem 3.7).
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