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Introduction. Various semigroups of partial transformations (and more generally, semi-
groups of binary relations) on a set have been studied by a number of Soviet mathematicians;
to mention only a few: Gluskin [2], Ljapin [4], Shutov [6], Zaretski [7], [8]. In their study
the densely embedded ideal of a semigroup introduced by Ljapin [4] plays a central role. In
fact, a concrete semigroup Q is described in several instances by its abstract characteristic,
namely either by a set of postulates on an abstract semigroup or by a set of postulates (which
are usually much simpler) on an abstract semigroup S which is a densely embedded ideal of a
semigroup T isomorphic to Q. In many cases, the densely embedded ideal S is a completely
0-simple semigroup. The following theorem [3, 1.7.1] reduces the study of a semigroup Q
with a weakly reductive densely embedded ideal S to the study of the translational hull of S:

THeEOREM (Gluskin). If S is a weakly reductive densely embedded ideal of a semigroup Q,
then Q is isomorphic to the translational hull Q(S) of S.

The purpose of this work is to characterize the translational hull of some special classes
of completely O-simple semigroups by using the results obtained in [5]. We obtain as corol-
laries several results proved in the papers mentioned above (with different methods of proof);
furthermore, the descriptions of the translational hull can be used, e.g., for constructing ideal
extensions.

Notation and summary. In order to summarize our results, we find it expedient to first
introduce the necessary notation. We follow the notation introduced in [5] (this paper will
henceforth be referred to as TH) and use freely the results proved there (the construction of
the translational hull of a completely O-simple semigroup); otherwise the notation and
terminology is that of Clifford and Preston [1].

Throughout the whole paper, I denotes a fixed non-empty set, G a fixed group whose
identity is denoted by 1; a one-element group is also denoted by 1. For any set 4, |A4]|
stands for the cardinality of 4; P, denotes the family of all non-empty subsets A4 of I such
that | A | < ¢, where either ¢ = 2 or ¢ is an infinite cardinal. Further let

Sy = #M°G;P,,P,; P),

where P = (pg,) and
{1 if AnB# [,
Ppa =

0 otherwise.

We identify a one-element set with the element itself, so, e.g., we write I instead of P,, in
which case pg, = 1<>aeB. For any semigroup S, A(S) [P(S)] denotes the semigroup of left
[right] translations for which there exists a linked right [left] translation.
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It is easy to verify that S,, is reductive, or, equivalently, that it satisfies condition (c)
and its dual, of Theorem 8 of TH; hence by the corollary (and its dual) to the same theorem,
we have

AS,)=B(S,)=Q(S,),
S 2 T(S,0) = A(S,0) = TI(S,),

where I'(S) and A(S) are respectively the semigroups of all inner left and all inner right trans-
lations of a semigroup S.

We are interested here in a description of the translational hull Q(S,,) of S,,; in view of
the remarks just made, for convenience we will restrict our attention to either A(S,,) or B(S,,).
In §1, we consider the case ¢ = 1 = 2; in §2, ¢ = 2, t an infinite cardinal; and in §3, ¢ and ©
are both infinite cardinals. In the first two sections, the principal results are expressed by
means of partial transformations on a set, while in the third section, they are expressed by
means of binary relations on a set.

For any non-empty set J and o, T having values as above, W, (J) [W, (/)] denotes the
semigroup of all partial transformations « on the set J written as operators on the left [right]
and such that rank a <o and, for every je da, |a~ ()| <t [|(jo)ou~* | <1); o'k [ka™1]
denotes the complete inverse image of k if kerx; J will be one of the sets I, P,, P,. If
a > |I|, we write W (J) instead of W_,(J); similarly for W, (J) and for . We write W(J)
instead of W,(J) which conforms with the notation introduced in TH; similarly for W, (/).

If D is a semigroup with zero 0, we denote by DX, G (G a fixed group as above) the
Rees difference semigroup (D x G)/(0 x G) (that is, the Cartesian product of D and G
modulo the ideal 0 x G). To simplify the notation, we identify A(S,,) with L(P,, G) and
P(S,.) with R(P,, G); thus left translations are written as («, ¢), right translations as (8, ).

1. 6 =t =2. The semigroup S,, is a Brandt semigroup, that is, S,, =.#%G; I, I, A),
where A is the identity matrix.

THEOREM 1.
A(S;2) = {(x, ) A(S:2) | ae W, (1)}u0;
B(S22) = {(B,¥) €P(S22) | Be Wa(D}V0.

Proof. Let (¢, $)eA(S,,); then (a, ) is linked to some (B,y)eP(S,,). By Theorem 3
of TH, we have

iEda, Pjat) #0 <« jEdﬂ’ Piipyi # 0,
which implies that

ieda, j=0ai <> jedB, jf=1,

and thus f=a~’, that is, ae W ,(I). Conversely, if (a,¢)eA(S,,) and ae W, ,(I), then,
letting jiy = ¢(a %)) for all jera, in view of Theorem 3 of TH we easily see that (a,¢) and
(@™, ) are linked. Hence (x, $)eA(S;;); the case of P(S,,) follows by symmetry.
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THEOREM 2. The following statements hold:

(@) Sz = WD) X, G;

(b) the set of idempotents of A(S12) ={(14, $.)) 0 # A< I}U0;
(©) A(S,,) has 2!"! idempotents;

(d) A(S,,) is an inverse semigroup.

Proof. (a) It is easy to verify that the function e defined on S,, by
e(g;i,j)=(xg), €0=0,
where o = i, is an isomorphism of S,, onto W,,(I) X, G.

(b) Recall that 1, is the partial transformation on I defined by 1,i =i for all ie 4, while
¢, maps 4 onto 1; this statement follows easily from Proposition 3 of TH (and can also be
established directly).

(¢) The mapping (i,, ¢,) > A,0 -3, is a one-to-one mapping of the set of idem-
potents of A(S,,) onto the set of all subsets of L.

(d) Since
(14,00 (5, 05) = {

idempotents of A(S,,) commute. If (o, $)eA(S,,), then ae W, ,(I); let ¢'i = (pa~'i)"* for
all ie ra. One verifies easily that

(@, ¢) (@™, ¢) (% ¢) = (2, ),

(14n:Panp) if AnB# (0O
0 otherwise

and A(S,,) is also regular.

The semigroup P satisfying conditions (1)-(5) in [4] is isomorphic to T =.#°(1; I, I; A);
it is stated there that P = W,,(I) (in our notation) and that W,,(J) is a densely embedded
ideal of W,_,(I). By Gluskin’s theorem and Q(S,,) = A(S,,), this case follows from above
for |G| = 1, namely ‘

COROLLARY. For T =.#°(1; I, I; A), we have

T = WD), A(T) = Wo(D).
See also [2, 2.5.1].

2. g=2, 7 is an infinite cardinal. We are dealing with S,,=./%G;LP,;P), where
P=(p,ﬁ),
1 if ied
”“‘{0 otherwise}’ 4] <=

Let € be the set of all fe W’'(P,) which can be constructed as follows. Let A be a non-
empty subset of J, and let

df = {BeP,|Bn4 # O}; ¢))
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with each ie 4 associate a non-empty set B;e P, so that B,nB; = if i #j. For Bedp, let
Bﬁ = UBi. (2)

ieB

Then fe W'(P,); for |Bf| =|U B;] <tt=1since B,B; €P,.
ieB

THEOREM 3.
A(S,) = {(2, §) e A(S,,) | ae W, (I), = constant}L0;
B(S,.) = {(B,¥) e P(S;,)| B 4, ¥ = constant} 0.
Proof. Let ((o, @), (B,¥))eQ(S,,); then, by Theorem 3 of TH, we have
ieda,aicB <> Bedf,ieBf (iel,BeP), A3)
¢pi=By if ieda, aieB (iel,BeP)). @
Let i,jeda and let B={wi,aj}. Then by (3), Bedf and i,jeBp, since |B| £2 <.
By (4), i,je Bp implies that ¢i = ¢j = By; hence ¢ = constant. Further, let A, Bedf and let
i€ AB, je Bf. Then (3) and (4) imply that ¢i = By, ¢j = Cyf. Since ¢ = constant, it follows
that By = Cy and thus ¥ = constant,

Let ieda. If je(ai)B, then, by (3), & = «i and hence jea™'(ai). Conversely, if jea™!(xi),
then aj = ai, which again by (3) implies that je(«i)f. Consequently

(@B = o~ (ai) (ieda); (5
since fe W'(P,), we must have (ai)B € P,, whence a~'(ai) € P,. But then ae W, (]).

We show next that fe¥. Let 4 =ra. If ieranB, then i = aje B for some jeda, which
by (3) implies that Bedf. Conversely, if Bedf, then, for any i€ Bf, we obtain ieda, axie B
by (3) so that ranB # 3. Hence (1) holds, since Be W'(P,). For every iera, let B, =if;
again, since fe W'(P,), B,;eP, (note that iera implies that iedf by (1)). If B;nB;# [,
then there is keifinjf, which by (3) implies that keda, ak =i, ak =j; thus i = as required.
To prove (2), we must show that, if Bedf, then

jeBB<«jeif forsome ieB.

Suppose that Bedf. If je BB, then (3) implies that jedx, ajeB. Let i = aj; then by (5),
if = (aj)B = o~ *(aj), whence jea™'(aj)=ip. Consequently jeip and ie B. Conversely, suppose
that jeif, ie B. By (3), we obtain aj = ie B, and again by (3), je Bf. This establishes (2).

We have proved so far that A(S,,) and B(S,,) are contained in the respective sets stated
in the theorem. We now turn to the converse. ‘

Let ae W, (D), a # 0, ¢:dx - geG; then (x, $)eA(S,,). Let

df = {BeP |aieB for some ieda}, (6)
Bf = {ieda|aicB} if Bedp, Q)]
Y:df—g. @®)
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Since ae W, (I), for every ieda, |a~ (ai)| <t; if Bedp, then | B| <<t by (6). Thus, by (7),
|BB| <1t =1 since t is an infinite cardinal, and fe W'(P,). Consequently (8,{)eP(S,,);
(3) follows immediately from (6) and (7), while (8) trivially implies (4). Thus (x,¢) and
(B, ) are linked and therefore (x, ¢) e A(S,,).

Finally let fe¥%,y:d48 -geG; then (B,¥)eP(S,,). Let

de = U jB, €)
jedp

ai=j if i€jp, 109

¢:da—g. (11)

If iejpnkp, then, by (2), jf = B;, kf = B,, and thus B;nB, # [J which implies that j =k,
that is, « is single-valued and («, ¢)e A(S,,). Suppose that Be P,. If ieda, aie B, then let
J=uai; by (10), iejp. It follows from (1) that 4 ={jeI|jedp}. Hence jedfnB implies that
Bedp. Further, i€jp = B;, je B implies by (2) that ie BB. Conversely, suppose that Bedf,
ie Bf. Then, by (2), ie B; = j for some jel, whence, by (9) and (10), ieda, ai =j. More-
over, iejfnBf so that (2) implies that je B, that is, aic B. Consequently (3) holds; (4)
follows trivially from (11). Therefore (o, ¢) and (f,y) are linked, which proves that (8, )
eB(S,.).

THEOREM 4. The following statements hold:

(@) Sz2. = W)X G

®) A(Sz) = W (DX,oG;

(¢) A(S,,) is a regular semigroup.

Proof. (a) It is easy to verify that the function f defined on S,, by
f(g;i,A)=(xg), 10=0,

where «: 4 — i, is an isomorphism of S,, onto W, () X, G.
(b) By Theorem 3, if (a, ¢)eA(S,,), then ae W, (I), ¢ = constant. It then follows easily
that the function g defined on A(S,,) by

g(a: ¢) = (a: g)r g0 = 0,

where ¢:da — g, is an isomorphism of A(S,,) onto W, (I) X, G.

(c) Fora given (a, )€ A(S},), (o', ¢’) constructed in the proof of Proposition 2 of TH, has
the properties that o is one-to-one and, if ¢ = constant, so is ¢’. Thus a'e W_(I) and conse-
quently, by Theorem 3, (x, ¢)eA(S,,) implies that («',$")eA(S,,). Since (a, ) (', ") (2, )
=(a, ¢), A(S,,) is regular.

For the case |G| =1, 7> ||, cf. 4.6, 4.7, 4.7.1 of [2], and for properties of W, (I) (in
the notation there W (Q)), see 4.7.2 of [2]; more generally we get

COROLLARY. For T,=.#°(1; I, P,; P), we have
Tt = WZ:(I)’ K(Tr = er(’)-
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The case t =N, was considered in [6]; the semigroup V] there is our W,(I) (with
Q =1I); by the corollary, W, (I) = T,. Itis asserted there (9°) that ¥} is a densely embedded
ideal of the semigroup ¥, of all almost identical partial transformations on the set I (a partial
transformation « is almost identical if ai # i for at most a finite number of i). According to
the corollary, T,= W,(I) and, since Q(T,) =A(T,), also Q(T,)= W,(I). Consequently
W,(I) is a densely embedded ideal of W, (I) by Gluskin’s theorem. However, if I is infinite,
V', is strictly contained in W () (recall that W, (J) is the semigroup of all partial transforma-
tions a on I for which |a~ (ai)| <t =R, that is «~!(a) is finite, for every ieda), so that
W,.(I) = ¥} cannot be a densely embedded ideal of ¥;. (If Iis finite, ¥; = W, (I).)

3. o, T are infinite cardinals. We consider here S,, = #°(G;P,,P,;P), where P = (pg,) and

1 if AnB#0
pBA:{O otherwise }’ IA|<0', |B|<1,—_

Let 2 be the set of all fe W'(P,,) which can be constructed as follows. Let & be a non-
empty subset of P, such that, for every i€/, |{Eef|icE}| <t. Let

df = {BeP,|BnE# [ forsome Eed}; 12)
with each Ee€& associate an element kzel such that k; # kg if Es E'. For Bedf, let
BB = {kg| BnE # O0}. (13)

IfieBand iel E;, where E;e& and jeJ, then by hypothesis [J| < t; since also | B| <,
we obtain |Bf|<tt =1, 7t being an infinite cardinal. Thus BfeP, which proves that
e W'(P). It is of interest to compare the construction of the family 2 with that of 4 in
the preceding section, and the proof of the next theorem with that of Theorem 3. We
consider in the next theorem only B(S,,); the case of A(S,,) is symmetric.

THEOREM 5. B(S,.) ={(B,¥)eP(S,.) | B€ D, y = constant}UO.

Proof. Let ((«, @), (B,¥))eQ(S,,); then, by Theorem 3 of TH, we have
Aeda, aANB # [] < Bedf, AnBf # [ (AeP,, BeP), (14)

¢A=BY if Aeda,aAnB # ] (AeP,, BeP,). (15)

Let B, B’edf and let AP, be any set intersecting both Bf and B’S. By (14) and (15),
By = By = ¢ A, which implies that |y = constant.

We show next that fe 2. Let & ={uai|ieda} (note that & is not necessarily the range of
o). Since (a, )eA(S,,), it follows that |ai| <o for every ieda, so that & is a non-empty
subset of P,. Further, if i € Naj, where j ranges over a subset J of dx, then, for every jeJ,
iedp and jeif by (14). Since ifeP,, we obtain |J| <7, that is, |{EedlieE}| <. If
Bnai # [J for some ieda, then by (14), Bedf. Conversely, if Bedp, let ie Bf be arbitrary.
Again by (14), we get iedx and Bnai # (0. Hence (12) holds, since fe W'(P,). For each
Ee8, let kgy=iif E=ai. If ai # oj, then i # j and thus kg # kg if E# E'. To prove (13),
we must show that, if Bedf, then
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jeBB <« jeda, Bnoj # [J;
but this follows directly from (14). Therefore fe 9.
Conversely, suppose that fe 9, y:df -geG; then (8,¥)eP(S,,). Let

de = {AeP,|kze 4 for some Eeé}, (16)
aA= U E if Aedq, an

kEEA
¢:da—g. (18)

Since {kg|lkzeA}= A and | E| <o, for every A€P, we have, by (17), |a4| <00 =0,
so that a4eP,; consequently ae W(P,) and (o, )€ A(S,,). We obtain, for AeP,, BeP,,

Aeda, xAnB # [
<> Aeda, EnB#[] forsome Eeé& suchthat kzed

< Bedf, AnBf # O

by (16), (17), (12), (13), which proves (14); (15) follows trivially from 98). Therefore, by
Theorem 3 of TH, («, ¢) and (8,y) are linked, which proves that (B, ¥)eP(S,,).

Let
R D={AxBcIxI| |4| <o, |B|<r1},
B D={CcIXI| |CnIxi)| <o, |Cn(ix])| <t forevery iel}
under the usual multiplication of binary relations, that is,
ipdjeiyk,kdj forsome kel

(we write i y k rather than (i,k)ey). It is easy to see that both £,(I) and %,.(I) are semi-
groups, in fact #,,(I) is an ideal of £ _,(I) (the zero of %, (I) is the empty set denoted by 0)
(see {7, 2.3]).

THEOREM 6. The following statements hold:
@) Soe= R, (1) X G;
®) P(S,) =B, x,G.
Proof. (a) 1t is easy to verify that the function h defined on S,, by
h(g;4,B)=(4 x B,g), h0=0,
is an isomorphism of S,, onto #,(I) X, G.
() Let (B,¥)eP(S,); by Theorem 5, y =constant. We define the function i on

B(S..) by
B.¥)i=(B,g), 0i=0, 19)
where J is the binary relation on I defined by
iBj«iecdB, jeip  (i,jel), (20)
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and :df =-g. We now show that i is the required isomorphism. '
Let (B,¥)eP(S,,); by Theorem 8 of TH, there is a unique left translation (a, $) of S,,
linked to (8,¥). By (14) and (20), we have

iBjejeda,icaj (i,jel). (21)
We obtain by (21)

BCiy = {jel | j Bi} ={
so that | B{i) | < & since ae W(P,); further by (20)
(B ={jel | iBj} = {iﬂ i ieds }

{0 otherwise

ai If ieda
O otherwise |’

so that | (idB| <t since fe W'(P,). Consequently Be%,.(I) which shows that i maps P(S,,.)
into B,(I) x,G.

Let (o, 9), (8, ¥)), (@, 9"), (B',¥"))€QS,.), where y:df —g, Y":dB’ —g". Then

I’ 1 'f ! 0
@ ={ P00 1 0 e
where
BYy" = (BY)(BpY')=gg"  (Bed(Bp)). (23)
Furthermore, we obtain
Gow.g)={ P70 L Bl 24

and, using (20), (21), and (14),
ipB j<iBk, kB j forsome kel
<iedf, keif,, jeda', kea’j for some kel
<iedf, jedo, ifna’j # 0O
«jeda, d'jeda, ico(a’f)
<jed(on’), ican'j
i BB j,
which together with (22), (23), and (24) proves that i is a homomorphism.
If (3,9) = (B',g"), then B = B’ and g = g’, whence

iedp, jeif<iBjip jeicdf, jeif.
It follows that, if iedp, then there is jeiff and thus iedff’, that is, df = df’; by symmetry we

conclude that d = df’. Further, if iedf, then jeif<>jeif’, so that iff = if’. Consequently
B =p and i is one-to-one.
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It remains to show that i is onto. Let (y,9)e %,.(I) X, G and let
da ={deP, | IxA)ny# 0O},
ad ={iel| iyjfor some jed} if Aeda,
$:4 -9,
df ={BeP, | BxDny# 0O},
BB ={jel| iyjfor someieB} if Bedpf,
V:B-g.
For Aeda, we have |ad| < 60 = 0, since ye,(I) and AeP,. Consequently ae W(P,)
and thus (o, @) € A(S,,); similarly (8, ¥)eP(S,,). For AeP,, BeP,, we obtain
Aeda, aANB # (<> Aeda, ica AnB for some iel
<>i7yj,ieBfor someicl, je A
<> Bedp, je Bf for some je A
<> Bedf, AnBf # [,

which proves (14); since (15) is trivially satisfied, we conclude that (&, ¢) and (B, ) are linked.
Thus (B,¥)eP(S,,). Clearly iedp, jeif<iyj, which by (20) implies that f = y. But then
(B,¥)i = (7,9), which proves that i is onto. Therefore i is an isomorphism of P(S,.) onto
gct(I) Xo G.

The case |G| =1, 0, T > | I| was considered (via Gluskin’s theorem) in [7] (elements of
AR,. with 6,1 > ||, are called there “ rectangular binary relations ’); more generally we
obtain

CoRroLLARY. For T,,=.4°(1;P,,P,; P), we have
Tﬂt g %UT(I); F(]‘0'1.') g '%UI(I)'

1t follows from 1.8 and 3.2 of [8], that the semigroup & of all binary relations on the set /
need not be regular. In view of Theorem 6, it then follows that the translational hull of a
completely 0-simple semigroup (even of a very special kind) need not be regular; however,
we have seen in Theorem 2 that Q(S,,) (that is, the translational hull of an inverse completely
0-simple semigroup) is an inverse semigroup, and in Theorem 4 that Q(S,,) is a regular semi-
group. It follows from Proposition 1 of TH that A(S,,), P(S,.) are regular semigroups for
any o, 1.

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys
No. 7, Amer. Math. Soc. (Providence, R. 1., 1961).

2. L. M. Gluskin, Ideals of transformation semigroups, Mat. Sb. 47 (1959), 111-130 (Russian).
3. L. M. Gluskin, Ideals of semigroups, Mat. Sh. 55 (1961), 421-448 (Russian).

4. E. S. Ljapin, Associative systems of all partial transformations, Doklady Akad. Nauk SSSR 88
(1953), 13-15 (errata 92 (1953), 692) (Russian).

https://doi.org/10.1017/50017089500000240 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500000240

TRANSLATIONAL HULL AND SEMIGROUPS OF BINARY RELATIONS 2]

5. Mario Petrich, The translational hull of a completely 0-simple semigroup, Glasgow Math. J. 9
(1968), 1-11.

6. E. G. Shutov, On semigroups of almost identical transformations, Doklady Akad. Nauk
SSSR 134 (1960), 292-295 (Russian).

7. K. A. Zaretski, Abstract characteristic of the semigroup of all binary relations, Leningrad. gos.
ped. inst. Uch. zap. 183 (1958), 251-262 (Russian).

8. K. A. Zaretski, Semigroup of binary relations, Mat. Sb. 61 (1963), 291-305 (Russian).

THE PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA

https://doi.org/10.1017/50017089500000240 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500000240

