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Introduction. Various semigroups of partial transformations (and more generally, semi-
groups of binary relations) on a set have been studied by a number of Soviet mathematicians;
to mention only a few: Gluskin [2], Ljapin [4], Shutov [6], Zaretski [7], [8]. In their study
the densely embedded ideal of a semigroup introduced by Ljapin [4] plays a central role. In
fact, a concrete semigroup Q is described in several instances by its abstract characteristic,
namely either by a set of postulates on an abstract semigroup or by a set of postulates (which
are usually much simpler) on an abstract semigroup S which is a densely embedded ideal of a
semigroup T isomorphic to Q. In many cases, the densely embedded ideal S is a completely
0-simple semigroup. The following theorem [3, 1.7.1] reduces the study of a semigroup Q
with a weakly reductive densely embedded ideal S to the study of the translational hull of S:

THEOREM (Gluskin). If S is a weakly reductive densely embedded ideal of a semigroup Q,
then Q is isomorphic to the translational hull £l(S) of S.

The purpose of this work is to characterize the translational hull of some special classes
of completely 0-simple semigroups by using the results obtained in [5]. We obtain as corol-
laries several results proved in the papers mentioned above (with different methods of proof);
furthermore, the descriptions of the translational hull can be used, e.g., for constructing ideal
extensions.

Notation and summary. In order to summarize our results, we find it expedient to first
introduce the necessary notation. We follow the notation introduced in [5] (this paper will
henceforth be referred to as TH) and use freely the results proved there (the construction of
the translational hull of a completely 0-simple semigroup); otherwise the notation and
terminology is that of Clifford and Preston [1].

Throughout the whole paper, / denotes a fixed non-empty set, G a fixed group whose
identity is denoted by 1; a one-element group is also denoted by 1. For any set A, \A\
stands for the cardinality of A; Pff denotes the family of all non-empty subsets A of / such
that | A | < a, where either a = 2 or a is an infinite cardinal. Further let

where P = (pBA) and

f l if
PBA (0 otherwise.

We identify a one-element set with the element itself, so, e.g., we write / instead of P 2 , in
which case pBa = loaeB. For any semigroup S, K(S) [P(S)] denotes the semigroup of left
[right] translations for which there exists a linked right [left] translation.
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It is easy to verify that Sax is reductive, or, equivalently, that it satisfies condition (c)
and its dual, of Theorem 8 of TH; hence by the corollary (and its dual) to the same theorem,
we have

) s A(sfft) s

where T(S) and A(5) are respectively the semigroups of all inner left and all inner right trans-
lations of a semigroup S.

We are interested here in a description of the translational hull £2(Sfft) of Sat; in view of
the remarks just made, for convenience we will restrict our attention to either &(Sat) or P(5fft).
In §1, we consider the case a = T = 2; in §2, a = 2, i an infinite cardinal; and in §3, a and T
are both infinite cardinals. In the first two sections, the principal results are expressed by
means of partial transformations on a set, while in the third section, they are expressed by
means of binary relations on a set.

For any non-empty set 3 and a, x having values as above, WJJ) [W^{J)~\ denotes the
semigroup of all partial transformations a on the set J written as operators on the left [right]
and such that rank a < a and, for every ye da, | x~l(aj) \ < x [ | (ya)a"11 < x]; a~1k [for1]
denotes the complete inverse image of k if kern; J will be one of the sets /, Pa, P t . If
<j> \I\, we write Wm(J) instead of WJJ); similarly for W^(J) and for x. We write W(J)
instead of Wm(a(J) which conforms with the notation introduced in TH; similarly for W^a(J).

If D is a semigroup with zero 0, we denote by Dx0 G (G a fixed group as above) the
Rees difference semigroup (D x G)/(0 x G) (that is, the Cartesian product of D and G
modulo the ideal 0 x G). To simplify the notation, we identify A(5fft) with L(Pa, G) and
P(5(Tt) with /?(Pt, G); thus left translations are written as (a,$), right translations as (P,\j/).

1. a = T = 2. The semigroup 522 is a Brandt semigroup, that is, S22 --^°(.G; I, I; A),
where A is the identity matrix.

THEOREM 1.

A(S22) = {(a, <£)eA(S22) \*

P(S22) = {(/?, </0eP(S22) 106 W 2̂(

Proof. Let (a,(j>)eK(S22); then (a,(j>) is linked to some (Ji,il/)eP(S22). By Theorem 3
of TH, we have

ieda, pm) # 0 o jedp, pm, # 0,
which implies that

ieda, j = ai o jeAQJP = i,

and thus P=a~\ that is, ueWa2(l). Conversely, if (a,0)eA(S22) and aeW^I), then,
letting j\ji = </>(a"V) f°r allyera, in view of Theorem 3 of TH we easily see that (a,#) and
(a"1,^) are linked. Hence (a,^)eA(522); the case of P(S22) follows by symmetry.
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THEOREM 2. The following statements hold:

(a) S22 s W22(T) x 0 G;

(b) the set of idempotents o/A(S22) = {(iA, 4>A) | D ¥= A<=, 7}uO;

(c) A(522) has 2 | J | idempotents;

(d) A(S22) is an inverse semigroup.

Proof, (a) It is easy to verify that the function e defined on S22 by

e(0 5 Uj) = (a, 5). e0 = 0,

where a/ = 1, is an isomorphism of S22 onto W22(I) X0G.

(jb) Recall that iA is the partial transformation on / defined by iAi — i for all ieA, while
<j>A maps A onto 1; this statement follows easily from Proposition 3 of TH (and can also be
established directly).

(c) The mapping (iA, <j>A) -+A, 0 -• • , is a one-to-one mapping of the set of idem-
potents of A(522) onto the set of all subsets of /.

id) Since
if

0 otherwise

idempotents of A(522) commute. If (a,(j>)eK(S22), then ae Wa2(I)'> ̂  <f>'i = (^a"1 /)"1 for
all ie roc. One verifies easily that

and A(S22) is also regular.

The semigroup P satisfying conditions (l)-(5) in [4] is isomorphic to T = J(°(\; I, I; A);
it is stated there that P s W22(J) (in our notation) and that W22{I) is a densely embedded
ideal of Wa2(I). By Gluskin's theorem and fi(S22) = A(522), this case follows from above
for |G\ = 1, namely

COROLLARY. For T = Ji°{\; /, / ; A), we have

T^W22(I), A(T) s Wa2(I).
See also [2, 2.5.1].

2. a = 2, T is an infinite cardinal. We are dealing with S2t =J£°(G;I,'PX;P), where

1 i f ieA \ I , I
0 otherwise}' ^ ' < T -

Let <<f be the set of all fie fF'(Pa>) which can be constructed as follows. Let A be a non-
empty subset of /, and let

n}; (1)
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with each ieA associate a non-empty set Bte Pt so that BtnBj = • if / jtj. For Bedp, let

BP = U Bt. (2)
ieB

Then pe ^ '(Pt); for \Bp\ = | U 5 f | <TT = x since 5,5,. e P t .
ieB

THEOREM 3.

A(S2t) = {(a, 0)eA(S2t) | ae ^ , (1 ) , ^ = constant} uO;

F(S2t) = {(& !^)eP(S2t)| Pe<tf,\l/ = constant} uO.

Proof. Let ((a, (/>), (0, ^))efi(S'2t); then, by Theorem 3 of TH, we have

ieda,aieB o Bedp,ieBp ( ie/ ,5ePt) , (3)

</>i = Bij/ if ieda, aieB ( ie/ , 5ePt) . (4)

Let /,yeda and let B = {ai,uj}. Then by (3), 5edjS and ij'eBP, since \B\ ^ 2 < T .
By (4), iJeBP implies that <£/ = #/ = Bij/; hence 0 = constant. Further, let A,Bedp and let
ieAP, jeBp. Then (3) and (4) imply that (j>i = 5^, #/ = Ci/'. Since <j> = constant, it follows
that B\}i = C^ and thus \j/ = constant.

Let ieda.. Ifje(<xi)P, then, by (3), aj = a/ and hence je<x~ 1(a/). Conversely, ifyea~1(a/),
then a/ = a/, which again by (3) implies that ye (ai)/?- Consequently

(<xi)p = <x-\ai) (/eda); (5)

since j?e W(Pt), we must have (a/)/? e P t , whence a-1(a/) e Pt . But then ae ^ , (7) .

We show next that Pe%>. Let 4̂ = ra. If ietanB, then / = aye5 for someyeda, which
by (3) implies that Bedp. Conversely, if Bedp, then, for any ieBP, we obtain ieda, a ie5
by (3) so that r an5 ^ D- Hence (1) holds, since 5 e W'(?x). For every /era, let B, = IP;
again, since peW\Vx), 5,ePt (note that iera implies that fed/? by (1)). If BidBj^t • ,
then there is keiPnjP, which by (3) implies that keda, a.k = i, <xk =j; thus i =y as required.
To prove (2), we must show that, if Bedfi, then

jeBPojetp for some i e5 .

Suppose that 5ed/?. IfjeBP, then (3) implies thatyeda, aye5. Let j = ay; then by (5),
iP = (ay)/? = a"'(ay), whence ye a"'(ay) = /^. Consequently ye ifi and /e5 . Conversely, suppose
that ye//?, ie5 . By (3), we obtain ay =» j'e5, and again by (3), jeBp. This establishes (2).

We have proved so far that A(52t) and P(S2x) are contained in the respective sets stated
in the theorem. We now turn to the converse.

Let ae Wai(I), a^O, (f>:da-+geG; then (a, <£)eA(S2t). Let

dp = {B ePt | ai eB for some i eda}, (6)

Bj3 = {ieda|aiefl} if Bedp, (7)

\j/:ip^g. (8)
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Since <xe Wm(I), for every ieda, |or^ai) | < T; if Bedp, then |B\ < x by (6). Thus, by (7),
| £ / } | < T T = T since T is an infinite cardinal, and PeW'(Px). Consequently (fi, ^)eP(S2t);
(3) follows immediately from (6) and (7), while (8) trivially implies (4). Thus (<x,$) and
0?,^) are linked and therefore (a,^)eA(5'2t).

Finally let /Se^ idJ? -+g e G; then (fti/Oe P(S2t). Let

da =11, /? , (9)

ai=j if iejfi, (10)

(t>:Aoc^g. (11)

If iej/inkp, then, by (2),y/J = 5, , kp = Bk, and thus 5 ;n5 t # • which implies that j = k,
that is, a is single-valued and (a, $)eA(S2t). Suppose that 2?ePt. If /eda, ixieB, then let
y = «i; by (10), ieyjS. It follows from (1) that ^ = {ye/|./ed/?}. Hence jedfinB implies that
BeAf}. Further, ley'j? = Bj,jeB implies by (2) that ieBp. Conversely, suppose that Bedf},
ieBfi. Then, by (2), ieBj =jP for some jel, whence, by (9) and (10), /eda, ai =j. More-
over, iejPnBp so that (2) implies that jeB, that is, aieB. Consequently (3) holds; (4)
follows trivially from (11). Therefore (a, <j>) and (/J,^) are linked, which proves that (/J,t/O

S2t).

THEOREM 4. The following statements hold:

(b)

(c) A(S2t) is a regular semigroup.

Proof, (a) It is easy to verify that the function f defined on S2t by

t(0;i,A) = {«,g), f0 = 0,

where a: A -*i, is an isomorphism of S2t onto W2x(I) Xo G.
(b) By Theorem 3, if (a, <£)eX(S2t), then ae Wat{I), <f> = constant. It then follows easily

that the function g defined on A(S2t) by

g(a,tf>) = (a,0), g0 = 0,

where $:da -*g, is an isomorphism of A(52t) onto Wm(l) XOG.
(c) For a given (a, cf>) e A(52t), (a', $') constructed in the proof of Proposition 2 of TH, has

the properties that a' is one-to-one and, if <j> = constant, so is <!>'. Thus a'e Wm(I) and conse-
quently, by Theorem 3, (a,4>)eK(S2t) implies that (<x.',(j)')eA(S2x). Since (a,0)(a',<£')(<*,$)
= (a,tf>), A(S2t) is regular.

For the case | G | = 1, T > 11\, cf. 4.6, 4.7, 4.7.1 of [2], and for properties of W2JJ) (in
the notation there WJCi)), see 4.7.2 of [2]; more generally we get

COROLLARY. For Tt = J(°(l; I, Pt; P), we have
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The case T = N0 was considered in [6]; the semigroup V\ there is our W2t(I) (with
fi = I); by the corollary, W2x(I) s f t . It is asserted there (9°) that Vj is a densely embedded
ideal of the semigroup Vt of all almost identical partial transformations on the set / (a partial
transformation a is almost identical if ai # i for at most a finite number of i). According to
the corollary, Tt s W2x{I) and, since Cl(Tx) s A(rt), also Cl(T,) £ Wm{T). Consequently
W2t(J) is a densely embedded ideal of Wm(l) by Gluskin's theorem. However, if / is infinite,
Vj is strictly contained in Wm(J) (recall that Wm(l) is the semigroup of all partial transforma-
tions a on / for which | a~1(ai) | < T = No, that is a~1(ai) is finite, for every /eda), so that
W2t(I) = Vj cannot be a densely embedded ideal of Vr. (If/is finite, V, = Wm(I).)

3. a, T are infinite cardinals. We consider here Sn = J(0(G; Pff, Pt; P), where P = (pBA) and

f l if AnB^n] . .. •
JO otherwise J ' I

Let 2> be the set of all j3e W(Pa>) which can be constructed as follows. Let 8 be a non-
empty subset of Pff such that, for every iel, \{EeS \ ieE}| <T. Let

T.

D for some EeS); (12)

with each £6(? associate an element kEeI such that kE # A:E. if E # £'. For Bed/}, let

Bj8 = {fc £ |Bn£#n}. (13)

If i e5 and le f l^ . , where EjeS and ye/, then by hypothesis | / | < T ; since also \B\<x,
we obtain 15/? | < TT = T, T being an infinite cardinal. Thus BflePt which proves that
/? e W(Pt)- It is °f interest to compare the construction of the family Q) with that of # in
the preceding section, and the proof of the next theorem with that of Theorem 3. We
consider in the next theorem only 1?(Saz)\ the case of A(Sffr) is symmetric.

THEOREM 5. P(Sai) = {(fl,\{/)eP(Saz)\pe®,\f/ = constant}uO.

Proof. Let ((a,<£), (P,\p))e£l(Saz); then, by Theorem 3 of TH, we have

Aeia, a.Ar\B ^ D <=> Bei/i, AnBfi # • (AePa, BeVt), (14)

<I>A = B\I/ if Aeda,aAnBJ=n (AePa, BePz). (15)

Let B,B'e&fi and let Ae¥a be any set intersecting both Bfi and B'fi. By (14) and (15),
Bifr = B'IJJ = (f)A, which implies that \j/ = constant.

We show next that fie®. Let S = {ai | ieda) (note that § is not necessarily the range of
a). Since (a,^)eA(SJ, it follows that |a/| <a for every ieda, so that 8 is a non-empty
subset of P,,. Further, if i e Daj, where j ranges over a subset / of da, then, for every jeJ,
ie&P and jeifi by (14). Since /j3ePr, we obtain | / | < T , that is, \{EeS\ieE}\<x. If
Brvxi j= D for some /eda, then by (14), 2?ed/?. Conversely, if 5edjS, let ie5j3 be arbitrary.
Again by (14), we get /eda and Brvxi # • • Hence (12) holds, since /?e ^'(Pt)- For each
EeS, let kE = j if E = ai. If ai ± aj, then /' ^j and thus A:£ ^ kE, if £ # £'. To prove (13),
we must show that, if Be if}, then
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jeBp o je&a,Bnaj? D;

but this follows directly from (14). Therefore J?e®.

Conversely, suppose that ^e9,\ji'A^geG; then (/J,\ji)eP(5ffr). Let

d<z = {AePa\kEeA for some EeS), (16)

a.A= U E if 4eda, (17)
kEeA

<t>:A<x^>g. (18)
Since {kE\kEeA}^ A and \E\ <a, for every Ae¥a we have, by (17), \uA\ <oo = c,

so that xAe~Pa; consequently aeW(Va) and (a^)eA(S'J. We obtain, for

4̂ eda, a^lnB # •

, £nJ5 5̂  D for some £e(f such that kEeA

by (16). (17), (12), (13), which proves (14); (15) follows trivially from (18). Therefore, by
Theorem 3 of TH, (<x,<̂ ) and (f,\j/) are linked, which proves that (P,\l/)eP(Sax).

Let

3atf)={AxBGlXl\ \A\<o, | B | < T } ,

StJJ) = { C g / X / | | Cn(I x i) | < a, | Cn(i x /) | < T for every iel}

under the usual multiplication of binary relations, that is,

iydjoiyk,k5j for some kel

(we write iyk rather than (i,k)ey). It is easy to see that both 3tai{t) and 38n(I) are semi-
groups, in fact ^2ot(/) is an ideal of !%ai{I) (the zero of #„(/) is the empty set denoted by 0)
(see [7, 2.3]).

THEOREM 6. The following statements hold:

(a) So ts0f f t (7)xoG;

Proof, (a) It is easy to verify that the function h defined on Sat by

h(g;A,B) = (AxB,g), hO = 0,

is an isomorphism of Sn onto ^fft(/) x 0 G.

(b) Let (f},rl/)ef(S,t); by Theorem 5, ^ = constant. We define the function i on

(/W)i = (0,0), 0i = 0, (19)

where ^ is the binary relation on / defined by

P (ijel), (20)
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and \l/:ip~*g. We now show that i is the required isomorphism.
Let (fl,[l/)e?(SaT); by Theorem 8 of TH, there is a unique left translation (a,#) of Sat

linked to (JS, if/). By (14) and (20), we have

ipj*>jeda,ieaj (ijel). (21)
We obtain by (21)

„. . . , . . , . , . , foci if ie&ct }

* • > = {/*'I J / * • > - { • o t h e r w i s e j>
so that | /?</> | < a since ae W(Pa); further by (20)

so that |<i>/?| < T since /?e W(Pt). Consequently p~e3Baz{!) which shows that i maps P(Sfft)
ffr(7) x0G.

Let ((a,*), 08, W), ((a '^ ') , tf',^'))en(Sfft), where ^:d)S ̂ g, t':&B' -g'. Then

where
(23)

Furthermore, we obtain

{ ^ lif0}
and, using (20), (21), and (14),

iJ}P'joif!k,kP'j forsome kel

oiedfi, keifl, jeda', kea'j for some kel

oie&p, jeda', ijSna';' ^ •

oj 6 da', a'j e da, iea(a'j)

ojei(pux'), iecctx'j

which together with (22), (23), and (24) proves that i is a homomorphism.
If (3,9) = ($',9'), then p = P'andg= g', whence

It follows that, if iedB, then there is jeiB and thus fed/?', that is, d/? £ d/T; by symmetry we
conclude that d/? = if}'. Further, if /ed/?, then jsipojeip', so that //? = ij8'. Consequently
P = P' and i is one-to-one.
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It remains to show that i is onto. Let (y,g)e&89l(P) x 0 G and let

uA ={iel \ iyj for some jeA} if Asia,

B0 = {jel | i yj for some ieB} if Bed/1,

For AGda, we have \a.A\<oo = o, since ye3Sat{P) and /4ePo. Consequently ae
and thus (<x,0)eA(Sfft); similarly (£, i^)eP(5J. For AePa, BeVt, we obtain

Aeda, aAnB ^ D-o-^eda, ieccAnB for some ie/

o / yj, ieB for some ieI,jeA

oBedfiJeBfi for some ye/4

which proves (14); since (15) is trivially satisfied, we conclude that (a, (j>) and (/?, i]/) are linked.
Thus (P,il/)e?(Sa,). Clearly iedfijeifioiyj, which by (20) implies that J5 = y. But then
{fi,^i)\ = (y,g), which proves that i is onto. Therefore i is an isomorphism of ?(Sfft) onto

ajft x0 G.
The case | G | = 1,<T, T > | / | was considered (via Gluskin's theorem) in [7] (elements of

$ „ with a, x> | / | , are called there "rectangular binary relations"); more generally we
obtain

COROLLARV. For Tat =Jf°(\; Pff, P t ; P), we have

1 <rt = 'ylax\1)> r\I ax) = •Maz\1)-

It follows from 1.8 and 3.2 of [8], that the semigroup 38 of all binary relations on the set /
need not be regular. In view of Theorem 6, it then follows that the translational hull of a
completely 0-simple semigroup (even of a very special kind) need not be regular; however,
we have seen in Theorem 2 that il(S22) (that is, the translational hull of an inverse completely
0-simple semigroup) is an inverse semigroup, and in Theorem 4 that fl(S2t) is a regular semi-
group. It follows from Proposition 1 of TH that A(5fft), P(5l

or) are regular semigroups for
any a, x.
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