

Letter to the Editor

Virtual reality for infection prevention training: moving from feasibility to measurable impact

Nathkapach K. Rattanapitoon¹, Nav La², Chutharat Thanchonnang³ and Schawanya K. Rattanapitoon¹

¹FMC Medical Center, Nakhon Ratchasima, Thailand, ²Faculty of Medicine and Pediatrics, International University, Phnom Penh, Cambodia and ³Faculty of Public Health, Mahidol University, Nakhon Sawan Campus, Thailand

Dear Editor,

Barreto et al¹ provide important early evidence that virtual reality (VR) can be harnessed to strengthen training for cleaning and disinfection of portable medical equipment (PME). Their pilot demonstrates feasibility and user acceptability, but the crucial question remains: how do we translate immersive learning into measurable improvements in infection prevention and control (IPC)?

First, on outcomes beyond satisfaction. The study highlights favorable perceptions of VR but does not yet demonstrate translation into practice. Evidence from personal protective equipment training trials shows that VR can improve procedural accuracy and reduce error rates under simulated conditions.² Extending this paradigm, PME-focused VR training should be evaluated against concrete infection outcomes—such as reductions in residual bioburden (via fluorescent marker assays or ATP bioluminescence) and downstream healthcare-associated infection (HAI) incidence. Without linking to these metrics, VR risks being adopted as a novelty rather than a validated IPC intervention.

Second, on cost-effectiveness and scalability. A key barrier identified by Barreto et al¹ is technical usability. Equally pressing is the economic challenge. Full VR rigs are expensive and may be unrealistic for facilities with limited resources, precisely those where PME contamination is most consequential.³ Mobile-based augmented reality (AR) modules, which have demonstrated feasibility in hand hygiene training,⁴ may offer a scalable hybrid model: immersive, context-sensitive, but cost-contained. Rigorous economic evaluations comparing VR, AR, and conventional simulation will be critical for decision-makers.

Third, on sustainability and integration. IPC training is not a one-time event but a continuous competency process. Embedding VR into mandatory training cycles, with periodic content updates aligned to evolving Centers for Disease Control and Prevention (United States) and World Health Organization (a specialized agency of the United Nations) guidelines, would ensure currency and institutional buy-in. Importantly, scenarios must be culturally and contextually adapted—reflecting the types of PME, workflow patterns, and infection risks most salient in different regions.⁵ This localization could prevent the common pitfall of "one-size-fits-all" digital interventions.

Corresponding author: Nathkapach K. Rattanapitoon; Email: nathkapach.ratt@gmail.

Cite this article: Rattanapitoon NK, La N, Thanchonnang C, Rattanapitoon SK. Virtual reality for infection prevention training: moving from feasibility to measurable impact. *Infect Control Hosp Epidemiol* 2025. doi: 10.1017/ice.2025.10341

Finally, on research priorities. Future investigations should move beyond pilot usability to randomized and pragmatic trials. Key design features include:

- longitudinal follow-up to assess retention of cleaning skills,
- objective contamination measures pre- and post-training,
- stratification by professional role and experience, and
- cost-per-outcome analyses to benchmark against existing IPC education.

Such studies would help determine whether VR should remain an adjunct tool for high-resource centers or evolve into a global standard for PME disinfection training.

In conclusion, Barreto et al¹ set the stage for innovation in IPC education. The next frontier is demonstrating that VR training produces **sustained**, **cost-effective**, **and equitable reductions in contamination and HAIs**. Only then can immersive technologies transition from promising pilots to essential components of an infection prevention strategy.

Data availability statement. No new data generated.

Financial support. None.

Competing interests. The authors declare no conflicts of interest.

Al usage statement. ChatGPT was used only for language polishing and editing. No data analysis or scientific conclusions were generated by AI, and the authors take full responsibility for the content.

References

- Barreto EA, Jerry MS, García V, et al. Getting real clean: a virtual reality training pilot study for cleaning and low-level disinfection of portable medical equipment. Infect Control Hosp Epidemiol 2025;46:852–854.
- Tsukada K, Yasui Y, Miyata S, et al. Effectiveness of virtual reality training in teaching personal protective equipment skills: a randomized clinical trial. IAMA Netw Open 2024;7:e2355358.
- Sansom SE, Gussin GM, Schoeny M, et al. Rapid environmental contamination with Candida auris and multidrug-resistant bacterial pathogens near colonized patients. Clin Infect Dis 2024;78:1276–1284.
- 4. Gasteiger N, van der Veer SN, Wilson P, Dowding D. Virtual reality and augmented reality smartphone applications for upskilling care home workers in hand hygiene: a realist multi-site feasibility, usability, acceptability, and efficacy study. J Am Med Inform Assoc 2023;31:45–60.
- Kouijzer MMTE, Kip H, Bouman YHA, Kelders SM. Implementation of virtual reality in healthcare: a scoping review on the implementation process of virtual reality in various healthcare settings. *Implement Sci Commun*. 2023;4:67.

[©] The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America.