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This paper proposes a robust moment selection method aiming to pick the best model
even if this is a moment condition model with mixed identification strength, that
is, moment conditions including moment functions that are local to zero uniformly
over the parameter set. We show that the relevant moment selection procedure of Hall
et al. (2007, Journal of Econometrics 138, 488–512) is inconsistent in this setting as it
does not explicitly account for the rate of convergence of parameter estimation of the
candidate models which may vary. We introduce a new moment selection procedure
based on a criterion that automatically accounts for both the convergence rate of the
candidate model’s parameter estimate and the entropy of the estimator’s asymptotic
distribution. The benchmark estimator that we consider is the two-step efficient
generalized method of moments estimator, which is known to be efficient in this
framework as well. A family of penalization functions is introduced that guarantees
the consistency of the selection procedure. The finite-sample performance of the
proposed method is assessed through Monte Carlo simulations.

1. INTRODUCTION

The validity of the standard moment condition-based inference hinges on the
strong/point identification property. Strongly identified models are those solved
by a unique parameter value. Many estimators have been proposed including the
generalized method of moments (GMM) and the generalized empirical likelihood
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estimators that are all consistent and asymptotically normal under further reg-
ularity conditions. Moment selection methods have also been developed under
standard identification settings.

The literature on moment selection presents two main approaches. One is based
on Lasso-type penalized estimation procedures in which both the parameter of
interest and the best subset of moment restrictions are jointly estimated. This strand
of literature includes Belloni et al. (2012), Caner and Fan (2015), Cheng and Liao
(2015), and Windmeijer et al. (2019).

The second strand of literature on moment selection adopts a more classical
methodology for model selection by relying on information criteria. This approach
includes Andrews (1999), Andrews and Lu (2001), Donald and Newey (2001;
henceforth DN), Hall and Peixe (2003), and Hall et al. (2007). The selection
problem in these papers consists in selecting the best subset of moment restrictions
among those useful to estimate a given parameter as the one minimizing an
information criterion. In this framework, all the candidate models are expressed
in terms of that same parameter of interest and the selection methods proposed
in these papers differ by their choice of information measure. Andrews (1999)
and Andrews and Lu (2001) rely on the GMM overidentification test statistic
with the aim to select correct moment restrictions. DN rely on the mean squared
error (MSE) of some estimators including the two-stage least-squares estimator, its
bias corrected version, and the limited information maximum likelihood estimator,
whereas Hall et al. (2007) consider an entropy-based moment selection criterion
with the focus on selecting from a set of correct moment restrictions, the relevant
ones. This is a set of moment restrictions that does not contain a subset of
restrictions with equal amount of information about the model parameter nor is
included in a set of moment restrictions that carry more information about the
parameter. In some sense, the relevant moment selection criterion (RMSC) of
Hall et al. (2007) and the J-statistic selection criterion of Andrews (1999) are
complementary. The best model in terms of RMSC is the smallest model (in
number of moment restrictions) among those that are correct and yielding the
maximum information about the parameter of interest.

Common to all the papers cited above is the requirement of strong identification
for consistency of the selection procedure and to ensure valid inference using the
selected model. Nevertheless, strong identification is not always guaranteed for
moment condition models and a still growing literature is devoted to inference in
models failing this property. Identification properties are outlined by considering
on the one hand strong identification and on the other hand the extreme lack of
identification pattern where the model is uninformative about the parameter of
interest. In the latter, consistent estimation is not possible and identification is
deemed weak. Between weak and strong identification lies a wide range of identifi-
cation patterns. Since the seminal work of Staiger and Stock (1997), the strength of
a moment restriction has been captured by the possibility that the moment function
vanishes uniformly over the whole parameter space as the sample size grows. The
faster the moment function of the restriction vanishes, the weaker is the restriction.
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Weak moment restrictions are those vanishing at least at the rate T− 1
2 ; strong

ones are those vanishing only at the true value and do not drift to 0 at any other
value, whereas those vanishing over the parameter set at rate T−α , α ∈ (0, 1

2 ), are
considered semi-weak (or semi-strong). More importantly, the moment restrictions
defining a moment condition model can have various strengths, leading the model
to have mixed identification strength. Examples of such models can be found in
Section 2. They include the classical linear instrumental variable (IV) model with
nearly weak instruments and GMM inference on conditional moment restrictions
with finite-support conditioning variables. We refer to Caner (2009), Andrews and
Cheng (2012), Antoine and Renault (2012), and Han and McCloskey (2019) for
further account of such models.

Even though point identification fails in the limit, consistent estimation is
possible due to the fact that (by the central limit theorem) these models gather
information about the parameter of interest at a faster rate than they lose their
potential for identification. This feature has first been pointed out by Hahn
and Kuersteiner (2002) and subsequently by Antoine and Renault (2009), who
also show—in this setting—that consistent estimators may converge at faster
rates in some directions of the parameters space. Interestingly, in this context,
standard optimal GMM inference is valid without a specific characterization of
the directions of faster convergence (see Antoine and Renault, 2009, 2012). More
recently, Antoine and Renault (2020) have proposed a test to investigate whether
a moment condition model is strong enough to warrant the validity of the standard
inference.

This paper proposes a robust moment selection method for moment condition
with mixed identification strength. We build on the work of Hall et al. (2007) and
propose a relevant moment selection procedure that consistently selects the best
model even if this model is of mixed strength. We argue that, in the configuration
of heterogeneity of restrictions’ strength, candidate models must be valued by the
rate of convergence of the estimator that they deliver and two models with the
same rate of estimation should be differentiated by the amount of information they
convey about the model parameter which is encapsulated in the entropy of the
asymptotic distribution of the parameter estimate. The estimator that we use as
benchmark is the two-step GMM estimator, which has linear reparameterizations
shown to be asymptotically efficient in this framework by Dovonon, Atchadé, and
Doko Tchatoka (2022). We propose a feasible selection criterion that has these
properties. This criterion turns out to be a modified version of RMSC that we label
mRMSC.

mRMSC conveniently scales the information part of RMSC to provide a
sequential estimation of rate of convergence and entropy. More precisely, mRMSC
first rewards the rate of estimation and then, for models with the same rate, it
rewards (negative) entropy. In addition, new penalty terms are introduced that
guarantee the consistency of the selection procedure. Conditions under which
mRMSC lead to consistent selection are outlined, and we show that the new
selection procedure is robust to the presence of uninformative and weak models. In
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comparison to the RMSC and accounting for the scaling factor, mRMSC penalizes
more strongly larger models. Indeed, the penalty term of mRMSC is proportional
to (1/ lnT)α , α > 0, whereas that of the Bayesian information criterion (BIC)-
RMSC—identified as the best-performing version of RMSC—is ln

√
T/

√
T . The

choice of penalty for mRMSC is guided both by robustness to unknown model
identification strength and selection consistency. In this case, stronger penalization
seems to be required to dissociate possibly weak signals from noise.

Simulations are performed to evaluate the finite-sample properties of the pro-
posed method. In support of our theory, the simulations reveal that, irrespective of
the Monte Carlo design considered and except for the cases where all candidate
models are weak, mRMSC selects the best model or set of instruments with
probability (hit rate) growing to 1 as the sample size increases. This exercise also
highlights the limits of RMSC in settings of identification with mixed strength.
Specifically, as the identification weakens, there are many instances where its
hit rate decreases to 0 with the sample size or plateaus way below 1, showing
evidence of its inconsistency. This issue with RMSC is exacerbated when the
number of parameters increases. Nevertheless, in standard identification settings,
RMSC seems to have a slight advantage over mRMSC as it converges a bit faster.
This seems to be the price for the robustness of mRMSC. We also consider the
MSE-based criterion of DN and found it bested by the two entropy-based criteria
in terms of hit rate.

The post-selection performance of these methods has been analyzed. For this
purpose, we also consider the moment condition model including all the available
instruments. According to Chao and Swanson (2005), this is a recommended
practice in settings where many weak instruments are available. We find that
models selected by mRMSC dominate the other models in terms of coverage
probability of confidence intervals except for the configuration where all relevant
instruments are weak. In these cases, all the models in competition perform very
poorly although the model with all instruments seems marginally better in relative
terms. We also consider the bias and MSE of estimation. For both measures,
mRMSC outperforms the other criteria except for the cases of weak identification
where, again, all of them perform poorly with the model with all instruments
having a slight edge followed by models selected by the Donald and Newey’s
criterion.

For further relation to the literature, it is worth mentioning the quasi-Bayesian
model selection method recently proposed by Inoue and Shintani (2018). This
method aims to select the most parsimonious model among those with the largest
quasi-likelihood. Even though their approach can be adapted to moment selection,
our goal differs from theirs as our quest is to find, among the models with
maximum information about a parameter of interest, the one with the smallest
number of moment restrictions.

The rest of the article is organized as follows: Section 2 introduces the setup
and existing asymptotic results on inference on moment condition models with
mixed strength. Section 3 analyzes the performance of RMSC in this setting and
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reports simulation results exposing some evidence of inconsistency of this method.
mRMSC is introduced in Section 4 along with its consistency and post-selection
properties. Relevant choices of penalty functions are also discussed. Simulation
results are reported in Section 5, whereas Section 6 concludes. Lengthy proofs
are relegated to Appendix B. The Supplementary Material of this article provides
further simulation results.

Throughout the article, |a| denotes the number of nonzero entries or the
determinant of a if a is a vector or a square matrix; ‖a‖ denotes the Frobenius
norm of the matrix a, i.e., ‖a‖ = √

trace(aa′); a ∨ b denotes max(a,b) and a ∧ b
denotes min(a,b).

2. SETUP, EXAMPLES, AND EXISTING RESULTS

Let us consider the sample {YtT : t = 1, . . . ,T}, (T ≥ 1), a triangular array with
common distribution PT , described by the population moment condition

E(φ(YtT,θ0)) = 0, (1)

where φ(·,·) is a known R
k-valued function, θ0 is the parameter value of interest,

which is unknown but lies in � a subset of Rp, and E(·) denotes expectation taken
under PT—we do not explicitly mention its dependence on T for simplicity.

The moment condition model (1) is said to globally identify θ0 if

E(φ(YtT,θ)) = 0, θ ∈ � ⇔ θ = θ0. (2)

This property plays an important role in the standard theory of GMM of Hansen
(1982) to claim the consistency of the GMM estimator. It is also known that
moment condition models are not always so strong at identifying the parameter
value of interest. In particular, various levels of identification strengths may be
expected from the components of the estimating function as stressed by Hahn and
Kuersteiner (2002), Antoine and Renault (2009, 2012), Caner (2009), Andrews
and Cheng (2012), and Han and McCloskey (2019), among others.

The strong/point identification condition in (2) can be challenged in at least two
ways. One may have the configuration where

E(φ(YtT,θ)) = 0, ∀θ ∈ �,

reflecting the fact that the moment restrictions are uninformative about the true
parameter value θ0. Another possibility is that, instead of being nil over �,
E(φ(YtT,θ)) is local to 0:

E(φ(YtT,θ)) = ρ(θ)

Tδ
, ρ(θ) ∈ R

k, δ > 0,

with ρ(θ0) = 0. This configuration fits into the setting of weak or nearly weak
identification (see Antoine and Renault, 2009).

When 0 < δ < 1
2 , the moment condition model is referred to as nearly weak

and as weak when δ = 1
2 . The main difference between these two settings is that
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consistent estimation is possible in nearly weak models and not in weak models. Of
particular interest are configurations where the moment restrictions carry different
levels of information about the parameters of interest.

Along this line, we consider the estimating function φ(·) to be partitioned into
subvectors with various strengths of identification. Specifically, we assume that

φ ≡ (φ′
1,φ

′
2)

′ ∈ R
k1 ×R

k2 : E(φi(YtT,θ)) = ρi(θ)

Tδi
, i = 1,2, and 0 ≤ δ1 ≤ δ2 <

1

2
.

(3)

In this representation, φ1 has the potential to more strongly identify θ0—or
some of its components—than φ2. Although this moment condition model is not
informative about θ0 in the limit if 0 < δ1, Antoine and Renault (2009, 2012) show
that consistent estimation is possible under mild conditions. Standard identification
features of moment condition models pertain to the case δ1 = δ2 = 0.

For simplicity of exposition, we maintain throughout that the moment functions
exhibit either one of two identification strengths. Nevertheless, our results extend
to more general settings as addressed by Appendix C (see also Remark 3).

Two examples of moment condition models where various levels of identifica-
tion strengths may be expected from the components of the estimating function
are presented below. Further examples of such models are detailed in Antoine and
Renault (2012) and Han and McCloskey (2019).

Example 1. (Linear IV model with nearly weak instruments). Consider the
classical linear IV model:

Y = Xθ +U, (4)

X = Z�T +V, (5)

with Y = (y1, . . . , yT)′ the T-vector of realizations of the dependent variable;
X = [x1, . . . , xT ]′ the (T,p)-matrix of p explanatory variables, some of which may
be endogenous; Z = [z1, . . . , zT ]′ the (T,k)-matrix of IVs; U = (u1, . . . , uT)′ and
V = [v1, . . . , vT ]′ are T-vector and (T,p)-matrix of errors, respectively; and θ and
�T the p-vector and (k,p)-matrix of parameters, respectively. Suppose that

�T = L
−1
T C ≡

(
T−δ1 C1

T−δ2 C2

)
, with LT =

(
Tδ1 Ik1 0

0 Tδ2 Ik2

)
,

for some 0 ≤ δ1 ≤ δ2 < 1
2, and Ci, (ki,p)-matrix for i = 1,2; and k1 + k2 = k.

Partition Z = [Z1
... Z2] according to the partition of �T , i.e., Zi, (T,ki)-matrix for

i = 1,2. Thus, we can write the system (4) and (5) as

Y = Xθ +U, (6)

X = Z1
C1

Tδ1
+Z2

C2

Tδ2
+V ≡ Z1�1T +Z2�2T +V . (7)
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When δ1 = δ2, the instruments in Z1 and Z2 have equal strength, whereas those in Z1

are stronger than those in Z2 if δ1 < δ2. Suppose that {wt ≡ (yt,xt,zt) ∈R×R
p ×R

k :
t = 1, . . . ,T} is a sample of independent and identically distributed random vectors
with finite second moments, and E(ztut) = 0, E(ztv′

t) = 0 for all t. Then, the true
parameter θ0 solves the moment condition

E
(
zt(yt − x′

tθ)
) = 0. (8)

Specifically, letting

	 ≡
(

	11 	12

	21 	22

)
=

(
E(z1tz′

1t) E(z1tz′
2t)

E(z2tz′
1t) E(z2tz′

2t)

)
,

where zt ≡ (z′
1t,z

′
2t)

′ ∈ R
k1 ×R

k2 , we can write

E[zt(yt − x′
tθ)] =

(
E[z1t(yt − x′

tθ)]
E[z2t(yt − x′

tθ)]

)
=

(
T−δ1ρ1(θ)+T−δ2ν1(θ)

T−δ2ρ2(θ)+T−δ1ν2(θ)

)
with (9)

ρ1(θ) = 	11C1(θ0 − θ), ν1(θ) = 	12C2(θ0 − θ),

ρ2(θ) = 	22C2(θ0 − θ), ν2(θ) = 	21C1(θ0 − θ).

As indicated in Antoine and Renault (2009), we see that if the instruments z1t and
z2t are orthogonal, i.e., if 	12 = 	′

21 = 0, (9) becomes

E[φi(wt,θ)] = T−δiρi(θ), t = 1, . . . ,T, i = 1,2, (10)

which has the form in (3) with φi(wt,θ) = zit(yt − x′
tθ) and ρi(θ) given in (9),

i = 1,2.

Example 2. (Kernel Smoothing; Antoine and Renault, 2012). Let (Xt,Yt),

t = 1, . . . ,T , be the observed sample on a stationary process with stationary
distribution (X,Y) . Let mT(θ) be a Nadaraya–Watson estimator of the conditional
expectation E [g(Y,θ)|X = x], where g is a known function of an unknown param-
eter θ of interest. Letting hT = T−2δ1 for a suitably chosen 0 < δ1 < 1

2 , denote the
bandwidth sequence,

√
ThT {mT(θ)−−−E [g(Y,θ)|X = x]} is pointwise asymp-

totically Gaussian with zero mean and under further mild conditions may, as a
function of θ , converge to a Gaussian process. Suppose now that for inference
about the true value θ0 of θ , the estimating equation E [g(Y,θ0)|X = x] = 0 is valid
for a given value x but may not be uniformly valid over all the support of X.1 Then,

√
T

[
φ̄T(θ)− ρ(θ)

Tδ1

]

1Such models appear in the applied finance literature. We refer to Gagliardini, Gourieroux, and Renault (2011) and
Antoine and Renault (2012, Exam. 1, p. 351) for more details about this example.
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is asymptotically Gaussian, where ρ(θ) = E[g(Y,θ)|X = x], and φ̄T(θ) ≡√
hTmT(θ). This property of φ̄T(θ) gives rise to the moment condition:

E
(
φ̄T(θ)

) = ρ(θ)

Tδ1
, (11)

where φ̄T(θ) is a sample mean of a double array given by

φ̄T(θ) = 1

T

T∑
t=1

φt,T(θ) where φt,T(θ) = √
hTK

(
xt − x

hT

)
g(yt,θ)

/ T∑
s=1

K

(
xs − x

hT

)
and K is a kernel function. Euler optimality conditions are fulfilled for the true
unknown value θ0 of θ ensuring that ρ(θ0) = 0.

Suppose now that another conditional expectation is informative about θ . The
same reasoning as above leads to additional moment restrictions similar to (11)
with a possibly different degree of smoothness δ2. We then end up with vectorial
functions φT(θ) and ρ(θ) such that

E
(
φ̄T,i(θ)

) = ρi(θ)

Tδi
, i = 1,2,

which has the form in (3).

Returning to the general framework, the following assumption is made to
obtain consistent estimators for θ0 from model (1) under the mixed identification
framework in (3). We let φ̄T(θ) = T−1 ∑T

t=1 φ(YtT,θ).

Assumption 1. (i) ρ ≡ (ρ ′
1,ρ

′
2)

′ ∈ R
k1 × R

k2 is continuous on the compact
parameter set � ⊂ R

p such that ρ(θ) = 0 ⇔ θ = θ0.
(ii) supθ∈�

√
T
∥∥φ̄T(θ)−E(φ(YtT,θ))

∥∥ = OP(1), under PT .

Assumption 1(i) imposes global identification of θ0 by the suitably inflated
estimating moment function, whereas part (ii) of the assumption requires that
the sample mean of the estimating function accumulates information about its
population mean at a fast rate

√
T . Note that this is the standard rate of convergence

of sample mean guaranteed by the functional central limit theorem for triangular
arrays. See, e.g., Ziegler (1997). Under Assumption 1, consistent estimation is
possible so long as the rate of accumulation of information outweighs the rate of
dilution of information.

Let the GMM estimator θ̂T be defined by

θ̂T = argmin
θ∈�

φ̄T(θ)′WT φ̄T(θ), (12)

where WT is a sequence of almost surely symmetric positive definite matrices
converging in probability to W, a symmetric positive definite matrix. Under
Assumption 1, Antoine and Renault (2009, 2012) show that

ρ(θ̂T) = OP

(
Tδ2− 1

2

)
. (13)
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Hence, δ2 < 1
2 is sufficient condition to ensure that θ̂T converges in probability to

θ0, especially if we maintain that the parameter set � is compact. Note, however,
that δ2 < 1

2 is not a necessary condition for consistency in the sense that a subset
of the estimating vector can even be identically 0 and consistent estimation would
still be possible. Although, for this, it is important that δ1 < 1

2 and ρ1(θ) = 0 is
uniquely solved by θ = θ0.

Under further regularity conditions, the GMM estimator is asymptotically
normally distributed. To introduce these conditions and the main result due to

Antoine and Renault (2012), we introduce some notation. Let s1 = Rank
(

∂ρ1
∂θ ′ (θ0)

)
that we assume strictly smaller than p, and let R = (R1

...R2) be a (p,p)-nonsingular
matrix such that R1 is (p,s1)-full-column-rank matrix and the s2 = p− s1 columns
of R2 span the null space of ∂ρ1

∂θ ′ (θ0). Define

J =
(

∂ρ1
∂θ ′ (θ0)R1 0

0 ∂ρ2
∂θ ′ (θ0)R2

)
and �T =

(
T

1
2 −δ1 Is1 0

0 T
1
2 −δ2 Is2

)
. (14)

The following assumptions are made.

Assumption 2. (i) θ0 is interior to � and φ(YtT,θ) is continuously differen-
tiable on �.

(ii)
√

Tφ̄T(θ0)
d→ N(0,
), under PT .

(iii) There exists C = (C′
1

... C′
2)

′ a full-column-rank (k,p)-matrix such that, for
i = 1,2,

E

(
∂φi(YtT,θ0)

∂θ ′

)
= Ci

Tδi
+o(T−δi), and

√
T sup

θ∈Nθ0

∥∥∥∥∂φ̄iT(θ)

∂θ ′ −E

(
∂φi(YtT,θ)

∂θ ′

)∥∥∥∥ = OP(1),

under PT , where Nθ0 is a neighborhood of θ0.

Assumption 3. (i) φ1(YtT,θ) is linear in θ or δ2 < 1
4 + δ1

2 .
(ii) θ �→ φ(YtT,θ) is twice continuously differentiable almost everywhere in a

neighborhood Nθ0 of θ0 and, with i = 1,2, we have

∀k : 1 ≤ k ≤ ki, Tδi
∂2φ̄iT,k

∂θ∂θ ′ (θ)
P→ Hi,k(θ), under PT,

uniformly over Nθ0 , where Hi,k(θ) are (p,p)-matrix functions of θ .

Assumptions 2 and 3 are standard and impose asymptotic normality for the
sample mean φ̄T(θ) at θ = θ0 as well as regularity conditions on its first- and
second-order derivatives that are useful for its Taylor series expansions. Although
immaterial when φ1 is linear in the parameter, the condition δ2 < 1

4 + δ1
2 in

Assumption 3(i) implies that the Jacobian of the moment function is big enough to
ensure that the first-order terms in the expansion of φ̄T(θ̂T) around θ0 dominate the
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higher-order terms. Note also that under some dominance conditions, the matrix
C in Assumption 2 is equal to ∂ρ(θ0)/∂θ ′. We have the following result.

Theorem 2.1 (Antoine and Renault, 2009, 2012). If (3) holds along with
Assumptions 1–3 and 0 < s1 < p, then:

(i) for any estimator θ̃T of θ0 such that θ̃T − θ0 = OP(Tδ2− 1
2 ), under PT ,

√
T

∂φ̄T

∂θ ′ (θ̃T)R�−1
T

P→ J, under PT, (15)

(ii)

�TR−1(θ̂T − θ0)
d→ N(0,(J′WJ)−1J′W
WJ(J′WJ)−1), under PT, (16)

where θ̂T is the GMM estimator defined by (12) and s1 = Rank(∂ρ1(θ0)/∂θ ′).

Theorem 2.1 effectively provides the asymptotic distribution of η̂T = R−1θ̂T ,
a linear function of θ̂T with components converging with a specific rate of

convergence. In particular, the first s1 components of η̂T converge at T
1
2 −δ1 , and

hence are faster than the remaining s2 = p− s1 components which converge at rate

T
1
2 −δ2 . In general, since θ̂T is typically a linear function of all components of η̂T ,

we expect that the slower rate of convergence would prevail for each component

of θ̂T . More specifically, (ii) implies that θ̂T − θ0 = OP(Tδ2− 1
2 ).

Remark 1. Note that this result holds in the extreme cases where s1 = 0 and
s1 = p. In these cases, R = Ip and for s1 = 0,

J =
(

0

∣∣∣∣ ∂ρ ′
2

∂θ
(θ0)

)′
and �T = T

1
2 −δ2 Ip

and for s1 = p,

J =
(

∂ρ1

∂θ ′ (θ0)

∣∣∣∣ 0

)′
and �T = T

1
2 −δ1 Ip.

In the case s1 = p, first-order local identification is ensured by the moment
restrictions determined by φ1, which also determine the asymptotic distribution
of the GMM estimator. Let W11 be the limit weighting matrix for estimation
based only on φ1. If W11 matches the upper-left (k1,k1)-submatrix of W, φ2

appears redundant in the sense that, given φ1, the inclusion of the weaker moment
conditions in φ2 does not improve inference about θ0. In the case where s1 = 0, it
is φ2 that ensures local identification and φ1 may turn out to be the irrelevant set
of moment restrictions.

It is not hard to see that the asymptotic variance in (16) is smallest for the choice
of W = 
−1 where it is equal to V∗ = (

J′
−1J
)−1

. Dovonon et al. (2022) actually
show that V∗ stands as the semiparametric efficiency bound for the estimation
of η0 = R−1θ0. The properly scaled two-step efficient GMM estimator using a
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sequence of weighting matrices WT (converging in probability to 
−1) has V∗ as
asymptotic variance, and they further show that this estimator is asymptotically
minimax optimal with respect to a large class of loss functions. We next revisit our
comments in Remark 1 in the setting of efficient GMM estimation.

Remark 2. In Remark 1, consider again the case s1 = p. We observe that if
estimation involves optimal weighting matrices, W11 does not always match the
upper-left block of W = 
−1 and efficiency gain becomes possible when the
weaker estimating function φ2 is added. To see this, consider the necessary and
sufficient condition for efficiency gain derived by Breusch et al. (1999, Thm. 1) in
a general GMM inference setting:

�2 −
21

−1
11 �1 �= 0, (17)

with �i = E(∂φi(YtT,θ0)/∂θ ′) and 
11 and 
21 are suitable upper-left and lower-
left submatrices of 
.

When �2 = 0, this condition boils down to2


21

−1
11 �1 �= 0.

In particular, when k1 = p ( just-identification by φ1) and �2 = 0, equation (17) is
equivalent to 
21 �= 0, which is the condition derived by Antoine and Renault
(2017). In general, if φ1 is overidentifying, this condition is necessary but not
sufficient for efficiency gain.

In the context of linear IV model (Example 1), given the moment restriction
E(z1tut) = 0, the necessary and sufficient condition that E(z2tut) = 0 induces
efficiency gain as per (17) can be written:

E(z2tx
′
t)−	21	

−1
11 E(z1tx

′
t) �= 0.

We can show—see also Hall, Inoue, and Shin, 2008, p. 499—that this condition is
equivalent to �2T �= 0 and this, regardless of the canonical correlations between
z1t and z2t. In particular, if �2T vanishes faster than �1T and z1t identifies θ0,
then including z2t would not improve efficiency. This claim is confirmed by
Proposition 3.1(ii) in Section 3, which shows that the asymptotic distribution of
the efficient GMM estimator is unchanged whether or not the second (weaker) set
of instruments is included for inference.

Regarding inference about θ0 within the GMM framework, one may expect, in
the light of Theorem 2.1, that knowing s1, δi’s, R, and the moment function’s par-
tition in (3) is essential. Interestingly, however, Antoine and Renault (2009, 2012)
have shown that such knowledge is not required. In particular, inference about θ0

2In our framework of mixed identification strength, since �2 is of smaller magnitude than �1, condition (17) amounts
to 
21


−1
11

∂ρ1(θ0)
∂θ ′ �= 0.
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using the two-step efficient GMM estimator can validly be carried out using the
standard formula. Specifically, the standard GMM inference is robust to the sorts
of deviations encapsulated in the conditions of Theorem 2.1. (See Antoine and
Renault (2009, p. S151).)

This makes relevant the question of moment selection in the context of nearly
weak moment restrictions, which is the focus of this paper. Below, we first consider
the relevant moment selection methodology introduced by Hall et al. (2007) and
investigate its performance in the presence of nearly weak moment equalities. We
then propose an mRMSC that robustly selects the best model even when this model
does not enjoy a strong identification property.

3. PERFORMANCE OF THE STANDARD RELEVANT MOMENT
SELECTION PROCEDURE

This section investigates the performance of RMSC model selection procedure
when the best model might not be strongly identifying. This is done through Monte
Carlo simulations of IV models, and we provide some intuition about potential
shortcomings that paves the way for an mRMSC that we introduce in the next
section. Before introducing the simulation setup, let us first introduce the RMSC.

RMSC is a penalized entropy measure that is minimized over candidate models
to obtain the most relevant one. Let φ denote the estimating function of the moment
condition model in (1) which is supposed to have standard identification properties.
RMSC uses the entropy of the asymptotic distribution of the efficient estimator
θ̂T(φ) of θ0 in (1) which, up to a constant, is

entθ (φ) ≡ 1

2
ln |V(φ)| = −1

2
ln
∣∣G(φ)′
(φ)−1G(φ)

∣∣,
where V(φ) = (

G(φ)′
(φ)−1G(φ)
)−1

, G(φ) = E(∂φ(YtT,θ0)/∂θ ′), 
(φ) =
limT→∞ Var(

√
Tφ̄T(θ0)), with variance under PT . The sample estimate of entθ (φ)

yields RMSC:

RMSC(φ) = − ln
∣∣∣ĜT(φ)′
̂(φ)−1ĜT(φ)

∣∣∣+κ(|φ|,T) = 1

2
ln
∣∣∣V̂T(φ)

∣∣∣+κ(|φ|,T),

(18)

where ĜT(φ), 
̂(φ) and V̂T(φ) are consistent estimators of G(φ), 
(φ) and V(φ),
respectively and κ the penalty function. Throughout this section, we will consider
the BIC-type penalty function:

κ(k,T) = (k −p)
ln

√
τT√

τT
(19)

which has been identified by Hall et al. (2007) as the best performing one compared
to other alternatives including the Hannan-Quinn penalty. In (19), τT represents the
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rate of convergence of the estimator V̂T(φ). In particular,

V̂T(φ)−V(φ) = OP(τ−1
T ).

Under some regularity conditions, if the process {φ(YtT,θ0) : t = 1, . . . ,T} is at
most finite lag-dependent, τT = √

T but if the estimator V̂T(φ) involves a kernel
estimation of the long run variance, then τT = √

T/�T where �T is the kernel
bandwidth. See Andrews (1991).

Next, we shed some light on the performance of the RMSC procedure in the
presence of moment restrictions with mixed strength. We achieve this in the context
of the classical linear IV model of Example 1. For a larger perspective, it is worth
deriving the asymptotic properties of the two-stage least-squares estimator. We
maintain the following assumption

Assumption 4. (i) {wt ≡ (yt,xt,zt) ∈ R×R
p ×R

k : t = 1, . . . ,T} is a sample
of independent and identically distributed random vectors with finite second
moments.

(ii) C is full column rank and

	 ≡
(

	11 	12

	21 	22

)
=

(
E(z1tz′

1t) E(z1tz′
2t)

E(z2tz′
1t) E(z2tz′

2t)

)
is nonsingular.

(iii) E(ztut) = 0, E(ztv′
t) = 0,

1√
T

T∑
t=1

ztut
d→ N(0,σ 2

u 	), and
Z′V√

T
= OP(1),

where σ 2
u = E(u2

t ).

Assumption 4(i) restricts the sample to be independent and identically dis-
tributed. While this assumption may look restrictive it is only made for simpli-
fication purposes. The main points in this section continue to hold for stationary
and ergodic time-dependent data. Assumption 4(ii) is standard. Nonsingularity
of 	 imposes no linear duplication of instruments while the rank condition on
C amounts to the standard rank condition on E(ztx′

t). Assumption 4(iii) requires
homoskedasticity for ut and exogeneity for zt as well as some limit properties
useful to derive the asymptotic distribution of the estimators that we will consider.
We do not restrict the correlation between ut and vt which is typically different
from 0 in the presence of endogenous regressors.

The efficient GMM estimator of θ0 from the moment condition (8) is the two-
stage least-squares estimator:

θ̂T = (
X′PZX

)−1
X′PZY = θ0 + (

X′PZX
)−1

X′PZU. (20)

where PZ = Z(Z′Z)−1Z′. Its asymptotic distribution can be obtained readily from
Theorem 2.1 if the instruments are orthogonal. The following proposition gives
this distribution without such a restriction.
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To introduce this result, let s1 ≡ Rank(C1), and if 0 < s1 < p, let R = (R1
...R2) be

a (p,p)-nonsingular rotation matrix such that R′R = Ip and R2 a (p,p− s1)-matrix
satisfying C1R2 = 0.

Proposition 3.1. Under Assumption 4, the following statements hold.

(i) If 0 < s1 < p,

�T R′(θ̂T − θ0)
d→ N(0,V), with V = σ 2

u

[(
R′

1C′
1 0

0 R′
2C′

2

)
	

(
C1R1 0

0 C2R2

)]−1

.

(ii) If s1 = p,

T
1
2 −δ1(θ̂T − θ0)

d→ N(0,V), with V = σ 2
u (C′

1	11C1)
−1.

(iii) In cases (i) and (ii), the asymptotic variance is consistently estimated by

ṼT = σ̂ 2
u

(
�−1

T R′X′PZXR�−1
T

)−1
, and ṼT = σ̂ 2

u

(
T2δ1−1X′PZX

)−1
,

respectively, with σ̂ 2
u = (Y −Xθ̂T)′(Y −Xθ̂T)/T.

This proposition highlights the expected mixture of rate of convergence of
the GMM estimator when instruments have mixed strength. It also shows that if
the stronger instruments locally identify the parameter of interest, consistency is
achieved at a faster rate and the weaker IVs become irrelevant as they do not affect
the asymptotic variance. However, if the stronger set does not identify the true
parameter in all directions (this is the case for instance if we have two endogenous
variables and only one stronger IV), the weaker set of IVs appears relevant to
estimate the remaining directions, albeit at a slower rate of convergence.

The linear IV model offers a suitable framework to investigate the performance
of the RMSC procedure in the presence of moment restrictions with nonstandard
or mixed strength. We consider the following data generating process (DGP).

Y = Xθ +U, X = z1π1T + z2π2T +V, πiT = ci

Tδi
, i = 1,2.

The instruments z1,z2 ∈R
T are independent with common distribution N(0,IT) and

are independent of U and V which lie in R
T with common distribution N(0,IT)

and Cov(ut,vt) = ρ for all t = 1, . . . ,T . We consider cases of equal strength for
the instruments with δ1 = δ2 = 0,0.2,0.3,0.4 and cases of mixed strength with
(δ1,δ2) = (0,0.4),(0.1,0.4),(0.2,0.4),(0.3,0.4).

We then consider the case of one endogenous variable and set θ0 = 0.1 and
c1 = c2 = 1.48 and the case of two endogenous variables with θ0 = (0.1,0.1)′,
c1 = (1.48,0) and c2 = (0,1.48).

We include four extra instruments, z3,z4,z5,z6, independent of each other and of
z1,z2, U and V with common distribution N(0,IT) and proceed to select the best set
of instruments using RMSC. The RMSC of each of the 63 (57) combinations of
IV has been assessed in the case of the models with 1 (2) endogenous variable(s)
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Figure 1. Proportion of best model selection (Hit rate) by RMSC for models with one and two
endogenous variables. Sample size T = 100, 200, 500, 1,000, 5,000, 10,000, 20,000, 50,000, 100,000;
number of replications: 10,000.

and the best model is the one with the lowest RMSC. For a given candidate set of
k instruments Z, the RMSC is:

RMSC = ln

∣∣∣∣∣σ̂ 2
u

(
X′PZX

T

)−1
∣∣∣∣∣+ (k −p)

ln
√

T√
T

.

In the case of one endogenous variable, if δ1 < δ2 only z1 is relevant while all the
other IV are redundant and if δ1 = δ2 both z1 and z2 determine the best set of IV
while all the others are redundant. In the case of two endogenous variables, z1 and
z2 constitute the best set of IV regardless of the values of δ1 and δ2.

We consider sample sizes T = 100, 200, 500, 1,000, 5,000, 10,000, 20,000,
50,000, 100,000. We include such large sample sizes because of possibilities of
slow rate of convergence. Figure 1 plots the proportion of correct model selection
(hit rate) by sample size. The number of Monte Carlo replications is 10,000
throughout.

The results suggest that RMSC consistently selects the best model as the
sample size increases in cases where the instruments are relatively strong (low δi).
However, the failure of RMSC is striking in models with moderately large to large
values of δi. The probability of selecting the best model does not seem to converge
to 1 as the sample size grows. Specifically, for cases of δ1 = δ2 = 0.3, the best
model is selected about 50% of the time for sample sizes as large as 50,000 or
above. The selection procedure also fails to converge for (δ1,δ2) = (0.2,0.4) in
models with one endogenous variable even though the sole relevant instrument in
this configuration seems relatively strong. Also striking is the fact that the hit rate
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seems to decrease with sample size in many instances of nearly weak instruments.
This is the case when δ1,δ2 ≥ 0.3. Finally, the case of two endogenous variables
and δ1 < δ2 appears to be the most difficult for RMSC to handle since the hit rate
drops with the sample size for all combinations of instruments’ strength including
when a strong IV (δ1 = 0) is present.

The failure of RMSC can be related to the fact that the information part of
the criterion diverges to infinity under nearly weak identification as we can see
from Proposition 3.1(iii). This makes the penalty term inappropriate to balance out
effectively the noise associated with the selection procedure. Also of importance
is the fact that the entropy or the asymptotic variance has to be estimated at a rate
at least as fast as

√
T for consistency to be guaranteed. (See Assumption 4 of Hall

et al. (2007).) This is not guaranteed at all in this simulation exercise. We are rather
certain that the entropy cannot be estimated at such a fast rate and can even have a
different rate of convergence depending on the set of instruments being assessed.

Accounting for these shortcomings of RMSC, we further analyze its properties
in moment condition models with mixed identification strength. We then propose
a modified version of this criterion which robustly and consistently selects the best
model regardless of the identification strength.

4. A ROBUST RELEVANT MOMENT SELECTION PROCEDURE

In this section, we propose a moment selection method to consistently select
the smallest (in terms of number of moment restrictions) most relevant model
while accounting for the possibility of mixed identification strength of the moment
restrictions. We first motivate and introduce a new criterion which is a modified
version of RMSC with some robustness properties. We then outline the conditions
under which this criterion delivers consistent selection of the best model. The
section ends with a discussion on the robustness of the mRMSC.

4.1. The Selection Criterion

The problem that we address is one where we have a finite but possibly large
number of moment candidate restrictions available to carry out inference about a
p-vector parameter θ0. These restrictions possibly do not have the same identifica-
tion strength and our goal is to propose a criterion useful to select the best and most
relevant moment condition model. As in Hall et al. (2007), we define this model as
one from which it is impossible to improve the inference about θ0 by adding other
moment restrictions. Adding to the difficulty of the problem, we do not know what
are the strengths of the moment restrictions a priori and could not even provide a
systematic ranking of them.

To simplify, we assume that the available moment restrictions fit into two
categories of strengths and that all the candidate models can be expressed as (3)
with 0 ≤ δ1 ≤ δ2 < 1

2 . As in the previous section, we refer to a generic candidate
model by φ, the vector of the estimating functions that it contains. We shall
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focus on candidate models φ with partition (φ′
1,φ

′
2)

′ satisfying the conditions of
Theorem 2.1. Note that φ2 may be empty if all the components of φ have the
same strength. The most restrictive of these assumptions may be Assumption 1(i).
However, we will show that the candidate models for which this condition fails
are ruled out by the proposed selection procedure and as a result it makes sense to
consider that this condition holds without loss of generality.

As established by Dovonon et al. (2022), the efficiency bound on the estimation
of R(φ)−1θ0 by φ is

Vθ (φ) = (
J(φ)′
(φ)−1J(φ)

)−1
,

where

J(φ) =
(

∂ρ1
∂θ ′ (θ0)R1(φ) 0

0 ∂ρ2
∂θ ′ (θ0)R2(φ)

)
and

�T(φ) =
(

T
1
2 −δ1(φ)Is1(φ) 0

0 T
1
2 −δ2(φ)Is2(φ)

)
,

ρi(θ)/Tδi(φ) = E(φi(θ)), (i = 1,2), s1(φ) = Rank
(
∂ρ1(θ0)/∂θ ′), R(φ) ≡(

R1(φ)
... R2(φ)

)
is a (p,p)-rotation matrix satisfying R(φ)′R(φ) = Ip, and R2(φ)

is a (p,s2(φ))-matrix with column vectors in the null space of ∂ρ1
∂θ ′ (θ0). (See (3) for

more details.)
This bound happens to be the asymptotic variance of the efficient GMM

estimator

θ̂ (φ) ∈ argmin
θ∈�

φ̄T(θ)′
̂(φ)−1φ̄T(θ), (21)

where 
̂(φ) is a consistent estimator limT→∞ Var(
√

Tφ̄T(θ0)) ≡ 
(φ) and as
previously, φ̄T(θ) = 1

T

∑T
t=1 φ(YtT,θ).

Recall also from Theorem 2.1 that different candidate models may lead to
different rates of convergence of the GMM estimator or equivalently to different
rates of accumulation of information. In that respect, letting φ( j) ( j = 1,2) be two
candidate models, θ̂T(φ(1)) may converge faster than θ̂T(φ(2)) but with a larger
information bound. In such a case, it is natural to prefer φ(1) over φ(2).

Hence, as a matter of fact, any relevant criterion in the current framework
shall account for (i) the amount of information and (ii) the speed of information
gathering which should be of first-order importance.

To account for the efficiency bound, we will follow Hall et al. (2007), who
consider the entropy of the asymptotic distribution of the efficient GMM estimator.
This distribution being Gaussian, the entropy is given by

entθ (φ) = 1

2
p(1+ ln(2π))− 1

2
ln
[∣∣J(φ)′
(φ)−1J(φ)

∣∣] .
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However, the dependence of J(φ) on the choice of parameter rotation matrix R(φ)

raises the question of invariance of the entropy. The following proposition shows
that regardless of the rotation matrix chosen, entθ (φ) is unchanged. Hence, even
though the asymptotic variance may depend on the choice of rotation, the entropy
is rotation-invariant.

Proposition 4.1. Let D =
(

D1

D2

)
be a (k,p)-matrix of rank p, and let s1 denote

the rank of D1. Assume that 0 < s1 < p, and let

R = {
R = (R1

... R2) ∈ R
p×s1 ×R

p×p−s1 : R′R = Ip, and D1R2 = 0
}

and, for each R ∈ R, let

J(R) =
(

D1R1 0
0 D2R2

)
.

Then, for any R,S ∈ R and any arbitrary (k,k)-matrix V, we have∣∣J(R)′VJ(R)
∣∣ = ∣∣J(S)′VJ(S)

∣∣ .

Proof. Let δ1,δ2 ∈ R such that δ1 < δ2 and R ∈ R. Let

DT =
(

T−δ1 D1

T−δ2 D2

)
and �T =

(
Tδ1 Is1 0

0 Tδ2 Ip−s1

)
.

It is not hard to see that the sequence DTR�T → J(R) as T → ∞. Hence, by conti-
nuity of the determinant function of a matrix, |�′

TR′D′
TVDTR�T | → |J(R)′VJ(R)|.

Note that |�′
TR′D′

TVDTR�T | = |�T |2 · |R|2 · |D′
TVDT | = |�T |2 · |D′

TVDT | and therefore
the sequence of determinants does not depend on R ∈ R. As a consequence, the
limit |J(R)′VJ(R)| is also unrelated to R ∈ R and this concludes the proof. �

The information measure entθ (φ) has the following additional properties that are
worth highlighting. If two candidate models φ(1) and φ(2) are such that Vθ (φ

(2))−
Vθ (φ

(1)) is nonzero and positive semidefinite, then entθ (φ(1)) < entθ (φ(2)). This
follows readily by using Magnus and Neudecker (2002, Thm. 22). In addition,
following the definition of Hall et al. (2007), we say that an estimating function φ(2)

is irrelevant (or redundant) given the estimating function φ(1) if Vθ (φ) = Vθ (φ
(1)),

with φ = (φ(1)′,φ(2)′)′. Hence, by definition, adding irrelevant (or redundant)
moment restrictions does not change the level of entropy.

Thanks to these properties, the quest for the optimal model is consistent with
the minimization of entropy as one should expect. However, if the limit amount
of information about the true parameter value θ0 plays an important role in the
determination of the optimal model, this information is as mentioned only of
second-order importance to the rate at which this information is gathered.

The setting of Hall et al. (2007) accounts only for cases where that rate is not
heterogeneous for the best model in the sense that all directions of the parameter
space are estimated at the same standard rate

√
T . In this case, the effect of
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the rate can be ignored in the selection process and, as they point out in their
Corollary 1(iii), any model yielding estimators that converge more slowly than
the standard rate would have entropy equal to infinity and therefore would not be
selected. Our framework departs from theirs by the fact that the best model may
actually not only yield estimators converging at a slower rate than standard, but
there are also possibilities of having estimators converging at different rates in
various directions.

For our purpose, the rate of convergence needs to be accounted for in the defini-
tion of a meaningful selection criterion. A natural summary indicator for the rates
of convergence from φ is the weighted average of those rates of convergence
with weights given by the number of directions in the parameter space that they
characterize. That is,

a(φ) ≡ 1

p

(
s1(φ)

[
1

2
− δ1(φ)

]
+ s2(φ)

[
1

2
− δ2(φ)

])
.

(The rates of convergence are given by the scaling matrix �T(φ) defined above.)
In the context of only two possible rates of convergence—say δi(φ) = δi (i = 1,2)

for all φ—two models φ(1) and φ(2) can be compared along the number of fast
converging directions that they estimate and the best model would be the one with
the largest s1. Since in this case s2(φ) = p− s1(φ), it is not hard to see that

s1(φ
(1)) ≥ s1(φ

(2)) ⇔ a(φ(1)) ≥ a(φ(2)).

This further validates the choice of a(φ) as the summary measure of the rates.

Remark 3. In the occurrence of mixed rate estimation involving more than two
directions (see Theorem 2.1), direct comparison of two models using the analog of
a(·) may look problematic as this function no longer provides a natural ordering
of the models. Nonetheless, this analog a(φ) is maximized at φ = φmax, the largest
model available, which also yields the best estimation rates. Hence, so long as a(φ)

is the dominant term of the selection criterion, the best model selected shall be one
that matches a(φmax). Lemma C.1 in Appendix C establishes that a(φ) cannot be
maximum without yielding the best estimation rates as well. The intuition is that
estimation rates from φmax are determined by its strongest elements. As a result,
a(φ) cannot have maximum value if, for instance, the number of fastest estimation
directions by φ does not match that of φmax. One can proceed iteratively to claim
that the map of rates for the estimator from φmax is the same as that of any φ such
that a(φ) = a(φmax). This general case is formally studied in Appendix C.

These points make a(φ) a compelling summary of rates of convergence as far
as model selection is concerned. As a result, the information-related part of the
selection criterion that we shall consider is

ιθ (φ) = −a(φ)+νT · entθ (φ). (22)

The sequence νT depends on the sample size T and shall converge to 0 as T grows
to infinity so that the rate component dominates the entropy component as one
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should expect. Nevertheless, νT shall not converge too fast as this would destroy
the valuable information encapsulated in the entropy function. In fact, entθ (φ) is
the component that ranks candidate models with the same rate component a(φ).
For example, recall that candidates φ that estimate the whole parameter vector
θ0 ∈ R

p at rate
√

T are those with s1(φ) = p and δ1(φ) = 0. For them, s2(φ) = 0
and the leading term reaches its minimum value possible. The comparison of such
candidate models is solely based on their entropies.

The natural question now is about the sample evaluation of ιθ (φ). This question
is of particular importance since, for a given model φ, si(φ) and δi(φ) (i = 1,2)
are unknown. Interestingly, ιθ (φ) can be mimicked by starting off with a naive
estimator of the asymptotic variance Vθ (φ). Recall that, as claimed by (15), under
some regularity conditions,

√
T

∂φ̄T

∂θ ′ (θ̂T(φ))R(φ)�T(φ)−1

converges in probability to J(φ). Hence,

V̂θ (φ) ≡
((√

T
∂φ̄T

∂θ ′ (θ̂T (φ))R(φ)�T (φ)−1
)′


̂(φ)−1
(√

T
∂φ̄T

∂θ ′ (θ̂T (φ))R(φ)�T (φ)−1
))−1

(23)

consistently estimates the asymptotic variance Vθ (φ) = (J(φ)′
(φ)−1J(φ))−1.
Then, taking the determinant of V̂θ (φ), entθ (φ) can be estimated by

êntθ (φ) = 1

2
p(1+ ln(2π))− (s1(φ)δ1(φ)+ s2(φ)δ2(φ)) lnT

− 1

2
ln

∣∣∣∣∂φ̄′
T

∂θ
(θ̂T(φ))
̂(φ)−1 ∂φ̄T

∂θ ′ (θ̂T(φ))

∣∣∣∣ .

The choice of νT = 1/(p lnT) arises naturally for the definition of ιθ (φ), which
then can be estimated by ι̂θ (φ) given by

ι̂θ (φ) ≡ −a(φ)+νT · êntθ (φ)

= −1

2
+ 1+ ln(2π)

2lnT
− 1

2p lnT
ln

∣∣∣∣∂φ̄′
T

∂θ
(θ̂T(φ))
̂(φ)−1 ∂φ̄T

∂θ ′ (θ̂T(φ))

∣∣∣∣ .

The information-related part of the selection criterion can therefore effectively be
considered as

− 1

lnT
ln

∣∣∣∣∂φ̄′
T

∂θ
(θ̂T(φ))
̂(φ)−1 ∂φ̄T

∂θ ′ (θ̂T(φ))

∣∣∣∣ .

The resulting family of information criterion for model selection that we label
mRMSC takes the form:

mRMSC(φ) = − 1

lnT
ln
∣∣∣Îθ,T (φ)

∣∣∣+κT, with Îθ,T (φ) = ∂φ̄′
T

∂θ
(θ̂T (φ))
̂(φ)−1 ∂φ̄T

∂θ ′ (θ̂T (φ)),

(24)
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where κT is the usual penalty term aiming to filter out noise without impacting
consistent selection of the correct model. The choice of κT will be discussed in
the next section. Despite the similarities, there are some key differences between
mRMSC and RMSC. (a) The term appearing in the logarithm is not an estimator of
the asymptotic variance of the efficient GMM estimator in general. This is the case
only when estimation is done at the standard rate

√
T . (b) The information-related

part is scaled down by the inverse of lnT . This makes the rate component useful for
moment selection in situations of interest where convergence is slower. Without
scaling, this information-related term in mRMSC would explode and standard
penalization components would not be as effective at excluding redundant moment
restrictions as illustrated in Section 3.

4.2. Consistency

We now show that the proposed criterion leads to consistent selection of the
relevant model. We follow Andrews (1999) and Hall et al. (2007) by relying on
the following notation. Let φmax(·) ∈ R

kmax be the vector of all available candidate
moment restrictions. Let the selection vector c ∈ R

kmax with entries 0’s and 1’s
denote the components of φmax(·) included in a particular moment condition
model. Any subvector φ(·) of the set of candidates φmax(·) is identified by a
unique selection vector c with cj = 1 if and only if φ(·) contains the jth element
of φmax(·). |c| = c′c represents the number of moment restrictions in φ(·) and
write φ(·) = φmax(·,c). The set of all possible selection vectors is denoted C and
defined as

C = {
c = (c1, . . . ,ckmax)

′ ∈ R
kmax : cj = 0,1 for j = 1, . . . ,kmax and |c| ≥ p

}
.

For notational simplicity, the statistics of interest are now indexed by c and so θ̂T(c)
denotes the GMM estimator based on φ ≡ φmax(·,c), Vθ (c) its asymptotic variance
and R(c) the rotation matrix in which it is expressed, and Îθ,T(c) the estimated
information matrix (see (24)).

We maintain the following assumption on φmax.

Assumption 5. (i) φmax(·) satisfies (3), that is, φmax ≡ (φ′
max,1,φ

′
max,2)

′ ∈
R

k1 ×R
k2 :

E
(
φmax,i(YtT,θ)

) = ρmax,i(θ)

Tδi
,

i = 1,2, 0 ≤ δ1 ≤ δ2 < 1
2 and ρmax(·) is an R

kmax -valued function defined on
the compact parameter set � ⊂ R

p.
(ii) ρmax ≡ (ρ ′

max,1,ρ
′
max,2)

′ ∈R
k1 ×R

k2 is continuous on � and satisfies over �:
[ρmax(θ) = 0 ⇔ θ = θ0].

(iii) sup
θ∈�

√
T
∥∥φ̄max,T(θ)−E(φmax(YtT,θ))

∥∥= OP(1) under PT , with φ̄max,T(θ) =
1
T

T∑
t=1

φmax(YtT,θ).
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(iv) θ0 belongs to the interior of �, and θ �→ φmax(Y,θ) is twice continuously
differentiable almost everywhere in a neighborhood Nθ0 of θ0.

(v) ∂ρmax
∂θ ′ (θ0) is full column rank, and, for i = 1,2, E

(
∂φmax,i(YtT,θ0)

∂θ ′
)

=
T−δi ∂ρmax,i

∂θ ′ + o(T−δi) and
√

T sup
θ∈Nθ0

∥∥∥ ∂φ̄max,T (θ)

∂θ ′ −E

(
∂φmax(YtT,θ)

∂θ ′
)∥∥∥ = OP(1)

under PT , with φ̄max,i,T(θ) = 1
T

T∑
t=1

φmax,i(YtT,θ).

(vi) θ �→ φmax,1(Y,θ) is either linear or δ2 < 1
4 + δ1

2 .
(vii) For all k, 1 ≤ k ≤ ki(i = 1,2),

Tδi
∂2φ̄k

max,i,T(θ)

∂θ∂θ ′
P→ Hmax,i,k(θ)

under PT , uniformly over Nθ0 , where Hmax,i,k is a (p,p)-matrix function of
θ and φ̄k

max,i,T(θ) is the kth component of φ̄max,i,T(θ).

(viii) 
(φmax) = limT→∞ Var(
√

Tφ̄max,T(θ0)) is positive definite, with variance
taken under PT .

Assumption 5 is a partial collection of Assumptions 1–3 omitting Assump-
tion 2(ii). Note that this latter is useful to establish asymptotic normality of the
GMM estimator but not crucial to obtain consistent selection of moments. The
parts of Assumptions 1–3 highlighted by Assumption 5 are those useful to establish
the consistency of the GMM estimator and the Jacobian matrix of the sample mean
of the estimating function.

Since all the components of φmax(·) are valid estimating functions, inference
based on the whole vector φmax(·) would lead to asymptotic efficiency. However,
a plurality of moment restrictions has an adverse consequence of damaging finite-
sample properties of GMM inference. Simulation cases have been reported by Hall
and Peixe (2003), showing the negative effect of redundant moment restrictions on
inference. Formal analysis have also been carried out by Newey and Smith (2004),
showing that larger moment condition models inflate finite-sample bias. In this
regard, researchers are motivated to select from φmax(·), the minimal set of relevant
moments that achieves the same asymptotic efficiency as φmax. We next introduce
a formal definition of relevance that accounts for the possibility of mixed rate of
convergence.

Letting c be a selection vector, we write c = (c′
1,c

′
2)

′ ∈ R
k1 ×R

k2 and let s1(c)
be the rank of the Jacobian matrix of ρmax,1(c1) at θ0 and s2(c) = p− s1(c).

Definition 1. A subset of moment restriction characterized by cr ∈ C is said
to be relevant if the following two properties hold:

(i) s1(cr)δ1 +s2(cr)δ2 = s1(ιmax)δ1 +s2(ιmax)δ2 and Vθ (ιmax) = Vθ (cr), where ιmax

is a kmax-vector of 1’s.
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(ii) For any decomposition cr = cr,1 + cr,2 of cr with cr,1,cr,2 ∈ C , either one of
the following holds:
(ii.a) s1(cr)δ1 + s2(cr)δ2 < s1(cr,1)δ1 + s2(cr,1)δ2,

(ii.b) s1(cr)δ1 + s2(cr)δ2 = s1(cr,1)δ1 + s2(cr,1)δ2 and Vθ (cr,1) − Vθ (cr) is
positive semidefinite.

This definition is of the same flavor as Definition 2 of Hall et al. (2007) while
accounting explicitly for the rate of convergence. In particular, asymptotic vari-
ances can be compared only when rates of convergence are of the same magnitude.
Consistent with our presentation so far, the definition implicitly assumes that the
moment function E(φmax(YtT,θ)) partitions at most into two components with
specific rate of convergence to 0 that are T−δ1 and T−δ2 , respectively. The general
case is studied in Appendix C.

Nevertheless, because of the dependence of Vθ (c) on the choice of rotation
matrix R(c), the statement Vθ (ιmax) = Vθ (cr) requires some clarification. We

recall that R(ιmax) ≡ (R1(ιmax)
... R2(ιmax)) is such that R(ιmax)R(ιmax)

′ = Ip with
the columns of R2(ιmax) spanning the null space of ∂ρmax,1(θ0)/∂θ ′.

Under the condition s1(cr)δ1 + s2(cr)δ2 = s1(ιmax)δ1 + s2(ιmax)δ2, which is
actually equivalent to s1(cr) = s1(ιmax), Lemma B.1 in Appendix B claims that
R2(ιmax) also span the null space of ∂ρmax,1(θ0,c)/∂θ ′. Hence, the asymptotic
distributions of θ̂T(cr) and θ̂T(ιmax) can be explored in terms of the same rotation
and their asymptotic variances shall be compared under this rotation. Vθ (ιmax) and
Vθ (cr) in Definition 1(i) are expressed in terms of that common rotation. Similar
arguments can be made about the variance comparison in Definition 1(ii.b) as well.

We base the determination of cr, the selection vector corresponding to the
relevant set of moment conditions on the mRMSC introduced by (24) with a penal-
ization term κT , a function of sample size, and the size of the estimating function.
Note that parsimony is sought relative to the number of moment restrictions and
not the number of parameter estimates, which is always p. Specifically, we write

mRMSC(c) = − 1

lnT
ln
∣∣∣Îθ,T(c)

∣∣∣+κ(|c|,T),

where Îθ,T(c) is given by (24) with φ(·) = φmax(·,c). To estimate cr, consider the
value ĉT of c minimizing mRMSC(c) over C :

ĉT = argmin
c∈C

mRMSC(c).

Our next assumption pertains to the set of selection vectors. Let

Ceff = {c ∈ C : s1(c)δ1 + s2(c)δ2 = s1(ιmax)δ1 + s2(ιmax)δ2 and Vθ (c) = Vθ (ιmax)}
and

Cmin = {c ∈ Ceff : |c| ≤ |c̄| for all c̄ ∈ Ceff} .

Assumption 6. (i) cr satisfies Definition 1 and Cmin = {cr}; (ii) ∀c ∈ C ,
ρmax(θ,c) = 0 ⇔ θ = θ0, and Rank(∂ρmax(θ0,c)/∂θ ′) = p; (iii) 
̂(c) converges in
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probability, under PT , to 
(c) ≡ limT→∞ Var(
√

Tφ̄max,T(θ0,c)), positive definite,
with variance taken under PT ; (iv) V̂θ (c) = Vθ (c) + OP(τ−1

T,c) under PT , where
τT,c → ∞ as T → ∞; and (v) ∀ c ∈ C and c̃,c̄ ∈ C : |c̄| > |c̃|, min(τT,c̃,τT,c̄) ·
ln(T) · (κ(|c̄|,T)−κ(|c̃|,T)) → ∞ and lnT ·κ(|c|,T) → 0 as T → ∞.

This assumption is similar to Assumption 4 of Hall et al. (2007) that we
adapt to our configuration. Part (i) is an identification condition for cr allowing
for its consistent estimation. Part (ii) may look restrictive by imposing that all
candidate models extracted from φmax must globally identify θ0 and must also
identify θ0 locally at first order. This, indeed, need not be the case. However, it
turns out that consistency of model selection within that category of models is
the most relevant. As we show in Theorem 4.3, potential nonidentifying and/or
rank deficient candidate models are strongly outscored by cr in terms of minimum
mRMSC, at the limit.

Parts (iv) and (v) relate the rate of accumulation of information about θ0 to the
penalty term. These conditions allow the selection mechanism to favor, with large
probability as the sample size grows, the less sophisticated model of two with
comparable levels of information about θ0. The convergence rate τT,c is tagged to
the model choice c to stress the dependence of rate of estimation on the model
under consideration.

In standard problems, the asymptotic variance is estimated at the rate τT = √
T in

the presence of cross-sectional data, whereas for weakly dependent data, this rate
is slower (τT = √

T/�T , where �T is a bandwidth parameter; see Andrews, 1991).
These rates arise when the parameter itself is estimated at the rate

√
T , which is not

the case in our setting. Proposition 4.5 derives the order of magnitude of V̂θ (c)−
Vθ (c) when the parameter is nearly weakly identified. Typically, τT = o(

√
T) with

cross-sectional data and τT = o(
√

T/�T) for weakly dependent data. The choice of
penalty terms will be discussed after the following consistency result.

Theorem 4.2. If Assumptions 5 and 6 hold, then ĉT converges in probability to
cr as T → ∞.

An extension of this result to the case of more than two identification strengths is
given by Theorem C.1 in Appendix C. For completeness, we now analyze mRMSC
when C contains candidate models that violate Assumption 6(ii). This is the case
when point identification fails or when the Jacobian matrix of the moment function
is rank-deficient.

For a candidate model c, failure of point identification implies that θ̂T(c) is not
consistent. If ρmax(θ,c) = 0 is solved by a continuum of values around θ0, then the
Jacobian matrix of the moment function is necessarily rank-deficient at θ0.

In addition, point identification may hold while the Jacobian matrix is rank-
deficient at θ0. In this case, θ̂T(c) is consistent, but the first-order local approxima-
tion of the moment function fails to identify θ0. Dovonon and Renault (2013, 2020),
Dovonon and Hall (2018), Lee and Liao (2018), Han and McCloskey (2019), and
Dovonon and Atchadé (2020), among others, have studied the behavior of the
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GMM estimator in this condition. The expected outcome in this setting is that,

overall, θ̂T(c) converges at a slower rate than T
1
2 −δ2 .

We shall examine rank deficiency in these two scenarios. Common to both is

that si(c) directions of the parameter are estimated at the rate T
1
2 −δi (i = 1,2)

with s1(c) = Rank
(

∂ρmax,1(θ0,c1)

∂θ ′
)

and s1(c)+ s2(c) = Rank
(

∂ρmax(θ0,c)
∂θ ′

)
< p. The

remaining directions are estimated at a slower rate in the latter scenario, whereas
inconsistent in the former.

Another possibility is that the moment function is solved at isolated points
including θ0. In this case, we can claim that there is point identification relative
to a smaller parameter set around θ0. The full-rank Jacobian matrix of the moment
function at θ0 then fits into Theorem 4.2, whereas the rank-deficient Jacobian
matrix at θ0 fits into the second scenario discussed above. The following result
extends Theorem 4.2 and shows that ĉ is consistent for cr even if C includes
candidate models with identification issues.

Assumption 7. Let c = (c′
1,c

′
2)

′ ∈R
k1 ×R

k2 be a vector of 1’s and 0’s such that:

(i.a) [ρmax(θ,c) = 0 ⇔ θ = θ0] and Rank
(
∂ρmax(θ0,c)/∂θ ′) < p, or (i.b)

ρmax(θ,c)= 0 on a continuum set containing θ0 and, as T → ∞, ∂ρmax(θ̂T(c),c)/∂θ ′
converges in probability (PT ) to M with rank q < p.

(ii) For any vector r in the null space of ∂ρmax,1(θ0,c1)/∂θ ′ (in the setting of (i.a))
or the null space of M (in the setting of (i.b)), [∂ρmax,1(θ̂T(c),c1)/∂θ ′]r =
oP(Tδ1−δ2), under PT .

(iii) 
̂(c)−1 = OP(1), under PT .

(iv) supθ∈�

∥∥∥ ∂φ̄T
∂θ ′ (θ,c)−L

−1
T

∂ρmax
∂θ ′ (θ,c)

∥∥∥ = OP(T− 1
2 ) under PT ; LT =(

Tδ1 Ik1(c) 0
0 Tδ2 Ik2(c)

)
.

Under Assumption 7(i.a), θ0 is consistently estimated by θ̂T(c) and ∂ρmax

(θ̂T(c),c)/∂θ ′ converges in probability to ∂ρmax(θ0,c)/∂θ ′. The rank deficiency
of the latter implies that of the former in the limit. The second part of Assump-
tion 7(i.b) is not particularly restrictive, even though under its first part, θ0

is not consistently estimable. Indeed, thanks to Lemma A.4 of Antoine and
Renault (2009), ρmax(θ̂T(c),c) converges to 0 in probability so that θ̂T(c) solves
ρmax(θ,c) = 0 in the limit. Under a mere differentiability assumption, the Jacobian
matrix of ρmax(θ,c) at any accumulation point θ∗ ∈ N, the set of solutions of this
equation, is rank deficient. Under the first part of Assumption 7(i.b), N is a contin-
uum set and the fact that θ̂T(c) lies on the closure of N in the limit implies that the
Jacobian matrix at θ̂T(c) is rank-deficient in the limit. This provides a motivation
to the second part of the assumption. Of course, if ρmax(θ,c) is linear in θ , the first
and second parts of Assumption 7(i.b) are trivially redundant. Assumption 7(ii) is
useful to control the remainder of the expansion of the estimated Jacobian matrix.

Note that if ρmax(θ,c) is linear in θ , [∂ρmax,1(θ̂T(c),c1)/∂θ ′]r = OP(T− 1
2 ) in both
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(i.a) and (i.b). Assumption 7(iii) is standard, whereas Assumption 7(iv) is guaran-
teed by the functional central limit theorem.

Theorem 4.3. Let c = (c′
1,c

′
2)

′ ∈ C failing identification as in Assumption 7.
If (i) Assumption 5 holds, (ii) there exists cr satisfying Definition 1, and (iii) for
γ = c,cr, lnT ·κ(|γ |,T) = o(1), then

(mRMSC(cr)−mRMSC(c)) lnT = a0 +a1 lnT +a1T +oP(1),

where a0 is a constant, a1 is a nonpositive constant, and a1T is a random sequence
diverging to −∞ as T → ∞. Consequently,

mRMSC(cr) < mRMSC(c)

with probability approaching 1 as T → ∞.

Remark 4. This result shows that candidate models that fail identification as
indicated by Assumption 7 are dominated by the relevant model cr in terms
of mRMSC and cannot be picked. Meanwhile, Theorem 4.2 shows that any
candidate model that satisfies identification properties as in Assumption 6(ii) is
also dominated by cr. These two results show that mRMSC is consistent in a wide
range of candidate model configurations. It is not hard to see that Theorem 4.3
covers models that are completely uninformative about the true parameter value θ0.
This is the case if ρmax(θ,c) = 0 for all θ in the parameter set.

Remark 5. The consistency of mRMSC is established under the condition that
the GMM estimator from the estimating function φmax is consistent and asymptot-
ically normal. If this condition fails—which is the case if φmax is uninformative
about θ0 or δ2 ≥ δ1 ≥ 1

2 —mRMSC is not guaranteed to behave well. Actually,
simulation results in Section 5 show that it behaves very poorly as does the RMSC
and the MSE criterion of DN. Hall et al. (2008) have studied the behavior of RMSC
in the condition where all candidate models are weak. They advocate a two-step
procedure in which standard identification of φmax is first tested following, e.g.,
the approach of Stock and Yogo (2005) and, only if identification is maintained,
can the researchers proceed with RMSC for relevant model selection. Following
them, we shall advocate a two-step procedure as well. Antoine and Renault (2020)
have recently proposed a test to investigate whether a moment restriction is strong
enough to warrant consistent and asymptotically normal GMM estimation. We
recommend to first apply this test to φmax and only when there is indication
of consistency and asymptotic normality that one can apply mRMSC for model
selection.

The next result addresses the efficiency of inference post-selection. For this, let
us consider the partition C = C0

⋃
C1, where C0 and C1 are the subsets of elements

c ∈ C such that Rank(∂ρmax(θ0,c)/∂θ ′) = p and Rank(∂ρmax(θ0,c)/∂θ ′) < p,
respectively. We have the following result.

Proposition 4.4. If: (i) Assumption 5 holds and
√

Tφ̄max,T(θ0)
d→ N(0,
(φmax)),

under PT; (ii) Assumption 6 holds with C replaced by C0; and (iii) any c ∈ C1
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satisfies Assumption 7. Then, ĉT converges in probability to cr and, letting
φ̂ = φmax(·,ĉT), we have

�T(φ̂)R(φ̂)−1
(
θ̂T(φ̂)− θ0

)
d→ N(0,Vθ (cr))

under PT , where θ̂T(φ̂) is defined by (21).

4.3. Choice of Penalty Function and Robustness

The conditions in Assumption 6(iii) and (iv) are particularly crucial for the
consistency of the model selection procedure and provide some guidelines for
the choice of penalty function. It appears important to know the rate of convergence
of the estimator of asymptotic variance used and then select the penalty function
κ(·,T) in such a way that Assumption 6(iv) holds. The following proposition gives
the rate of convergence of the asymptotic variance estimator V̂θ (φ) given by (23)
for a model candidate φ. We consider the case where cross-sectional independent
and identically distributed data are involved and the case of weakly dependent time
series data.

In the case of cross-sectional data, the estimator of the long-run variance is the
sample variance given by


̂iid(φ) = 1

T

T∑
t=1

φtT(θ̂T(φ))φtT(θ̂T(φ))′, φtT(θ) = φ(YtT,θ),

whereas in the case of time series data, one shall rely on 
̂hac(φ), any heteroskedas-
ticity and autocorrelation consistent estimator of the long-run variance. See, e.g.,
Andrews (1991). We let �T denote the kernel bandwidth of this estimator,

ntT(θ) = vec

(
∂φtT

∂θ ′ (θ)

)
φtT(θ)′, and mtT = φtT(θ0)φtT(θ0)

′,

where vec(·) is the standard matrix vectorization operator. We have the following
result.

Proposition 4.5. Assume that the model φ satisfies (3) and that Assumptions
1–3 hold.

(i) If {YtT : t = 1, . . . ,T} are independent and identically distributed, 1
T

∑T
t=1 ntT(θ)

converges uniformly in probability to a function n(θ) in a neighborhood of θ0,
and 1√

T

∑T
t=1(mtT −E(mtT)) = OP(1) under PT , then

V̂θ (φ)−Vθ (φ) = OP

(
T(− 1

2 −δ1+2δ2)∨(δ1−δ2)
)

under PT . If, in addition, the model is linear in θ , V̂θ (φ) − Vθ (φ) =
OP(T(− 1

2 +δ2)∨(δ1−δ2)) under PT .
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(ii) If {YtT : t = 1, . . . ,T} is a weakly dependent time series process, δ2 < 1
6 ,

�T ∼ Ta, with a ∈ (2δ2,
1
2 −δ2) such that the condition (ii) of Proposition A.1 in

Appendix A is satisfied, and, in addition, all the conditions of that proposition
hold with δ = δ2, then

V̂θ (φ)−Vθ (φ) = OP

(
T(δ1−δ2)∨(− 1

2 (1−a))
)

under PT .

This proposition shows that the rate of convergence of V̂θ (φ) depends on the
identification strength of the model under consideration. In the case of cross-
sectional data, the requirement in Assumption 6(v) translates into

(lnT)T( 1
2 −δ2)∨(δ2−δ1)(κ(|c̃|,T)−κ(|c̄|,T)) → ∞,

as T → ∞ and c̃,c̄ ∈ C such that |c̄| > |c̃|. Since δ1,δ2 can take any arbitrary value
in [0, 1

2 ), the commonly used penalty functions, such as the BIC-type information
criterion (κ(|c|,T) = (|c|−p) ln

√
T/

√
T) and the Hannan–Quinn type of criterion

(κ(|c|,T) = (|c| − p)b ln(ln
√

T)/
√

T, b > 2), would not fulfill this requirement
since we can always find some values of δ1 and δ2 in [0, 1

2 ) that make these criteria
violate the condition.

A natural choice of penalty function to consider is

κ(|c|,T) = h(|c|,p)

(lnT)1+α
, for some α > 0, (25)

and h(|c|,p) a nonnegative and strictly increasing function of |c| for all values of p.
Examples of function h include

h(|c|,p) = 1− p

|c| and h(|c|,p) = |c|−p.

Thanks to (24), the mRMSC is given by

mRMSC(φ) = 1

lnT
ln

∣∣∣∣∣
(

∂φ̄′
T

∂θ
(θ̂T(φ))
̂(φ)−1 ∂φ̄T

∂θ ′ (θ̂T(φ))

)−1
∣∣∣∣∣+ h(|c|,p)

(lnT)1+α
.

Obviously, since T is the same across the models under assessment in the selection
procedure, we can simply write

mRMSC(φ) = ln

∣∣∣∣∣
(

∂φ̄′
T

∂θ
(θ̂T(φ))
̂(φ)−1 ∂φ̄T

∂θ ′ (θ̂T(φ))

)−1
∣∣∣∣∣+ h(|c|,p)

(lnT)α
, (26)

for some α > 0 and h(|c|,p) is as introduced above.
It is not hard to see that such a penalty function satisfies the requirements in

Assumption 6(iv) regardless of the values of δ1 and δ2 and therefore leads to
consistent selection of the best model. This penalty function also works when the
data are time series as this can be seen from the order of magnitude derived in
Proposition 4.5(ii) for the asymptotic variance estimator.
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While the best choice of α in (25) may be of independent interest that we
shall pursue in future work, it is of interest to mention that α > 0 is important
as a condition to ensure that the penalty function is smaller than the information
component. Moreover, note that the higher α, the less “bad” models are penalized.
Since the mixed identification framework is one where signals are by definition
weak, it is even more important to exercise higher penalty on “bad” models to
obtain consistent selection. In the simulation results reported in the next section,
we have set α = 0.1 and use h(|c|,p) = 1− p

|c| .
3

5. SIMULATION RESULTS

In this section, we study the finite-sample performance of the proposed selection
criterion (mRMSC) and the post-selection properties of the GMM estimator (bias,
MSE, and coverage rate of confidence sets) through a Monte Carlo experiment.
For this purpose, we use the same simulation setup of Section 3 but increase the
set of candidate instruments to 12 (i.e., z1,z2, . . . ,z12). For clarity, the analysis on
the performance of the selection criterion (mRMSC) is separated from that on the
post-selection properties of the GMM estimator.

5.1. Performance of the mRMSC

In this section, we compare the finite-sample performance of the proposed
mRMSC with existing methods in the literature, namely, the RMSC of Hall et al.
(2007) and the MSE-based criterion of DN. Since entropy-based selection criteria
(mRMSC and RMSC) are conceptually different from the MSE type-selection
criteria, the inclusion of the DN criterion is useful to determine which types of
criteria perform the best, at least from the finite-sample perspective.

Figure 2 contains the results for both the model with one endogenous regressor
( p = 1; Figure 2a) and the model with two endogenous regressors ( p = 2;
Figure 2b). Each subfigure shows, for a combination of identification strengths
(i.e., the values of δi,i = 1,2), the plots of the proportion of best model selection (hit
rate) by sample size. Specifically, the first two rows in Figure 2a,b report the results
where the two instruments z1 and z2 have different identification strength (δ1 < δ2),
whereas the last row contains the plots of the hit rates where both instruments z1

and z2 have equal identification strength (i.e., δ1 = δ2). As part of this, we include
the case δ1 = δ2 = 0.5 to assess selection performance when the sample moment
of the estimation function does not accumulate sufficient information to allow for
consistent point estimation as the sample size grows (see, e.g., Staiger and Stock,
1997). Three main results stand out from this exercise.

3The post-selection cross-validation prediction performance of mRMSC is assessed for different values of α in
Appendix S2 of the Supplementary Material. The best performance is reached for α ∈ [0.1,1.0], which motivates
our choice for α = 0.1.
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Figure 2. Hit rate of mRMSC, RMSC, and DN. Sample size T = 100, 200, 500, 1,000, 5,000, 10,000,
20,000, 50,000, 100,000; number of replications: 5,000.
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First, with the exception of the Staiger and Stock (1997) weak identification
setup (δ1 = δ2 = 0.5), the hit rate of mRMSC increases to 1 in all cases as the
sample size grows except for very few cases where its convergence is expectedly
very slow. This confirms the consistency result for mRMSC established by
Theorems 4.2 and 4.3. While mRMSC displays evidence of consistency through-
out, there are many instances where the hit rate of RMSC and DN drops to 0 or
plateaus way below 1.0, highlighting the limitation of these criteria at consistently
selecting the correct model when operating on models with poor identification
strength. Looking specifically at the DN criterion, the hit rate is almost flat at
0 in all cases considered, including when standard strong identification holds
(δ1 = δ2 = 0). This is because DN is not based on maximizing the entropy
of GMM estimator asymptotic distribution and does not penalize larger models
either. As a result, the DN criterion always tends to select models that include
irrelevant instruments (see Tables 1 and 2). Regarding RMSC, the cases where the
hit rate drops to 0 or plateaus way below 1.0 are seen clearly in the subfigures
“δ1 = 0.3, δ2 = 0.4” and “δ1 = δ2 = 0.3” of Figure 2a. The lackluster performance
of RMSC and DN is more pronounced in models with two endogenous regressors
(Figure 2b). In this case, RMSC seems to be consistent only when the model is
strongly identified (i.e., “δ1 = δ2 = 0”) or close to being so (e.g., “δ1 = 0,δ2 = 0.2”
or “δ1 = 0.1,δ2 = 0.2”), whereas DN almost never selects the correct model
even when identification is strong. Clearly, DN seems to be the least-performing
criterion in selecting the correct model. In both Figure 2a (model with one
endogenous regressor) and Figure 2b (model with two endogenous regressors),
the hit rate of all selection criteria is almost flat at 0 when δ1 = δ2 = 0.5, the weak
identification framework.

Second, when θ is strongly identified, RMSC performs slightly better than
mRMSC for small sample sizes T = 100, 200 when p = 1 (subfigure “δ1 = δ2 = 0”
in Figure 2a), but this gap vanishes in models with two endogenous regressors
(subfigure “δ1 = δ2 = 0” in Figure 2b). As the sample size increases, the proportion
of correct model selection of both mRMSC and RMSC approaches quickly 1.0.
See, e.g., the subfigures “δ1 = δ2 = 0” in Figure 2a,b.

Third, as the identification strength deteriorates, that is, δ1 = δ2 = 0.3 or δ2 >

δ1 ≥ 0.3 in Figure 2a, mRMSC expectedly outperforms RMSC. This dominance of
mRMSC is even more pronounced and systematic in models with two endogenous
variables (see all subfigures “δ1 = 0,δ2 ≥ 0.3,” “δ1 = 0.1,δ2 ≥ 0.3,” and “δ1 = δ2 =
0.3” in Figure 2b). Overall, this simulation exercise illustrates that our mRMSC
performs well even with moderately large to large values of δi (i = 1,2), whereas
the RMSC and the DN fail to handle these cases, as per their declining hit rate as
T increases for high values of δi.

While Figure 2 focuses only on hit rates, more results are presented by
Tables 1 and 2, which show in detail the empirical selection probabilities of the
candidate models. These tables contain the results of RMSC, DN, and mRMSC
for sample sizes T = 100, 1,000, 5,000, 50,000. The results with one endogenous
regressor ( p = 1) are presented in Table 1, whereas those with two endoge-
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Table 1. Empirical selection probabilities: One endogenous regressor ( p = 1), T = 100, 1,000, 5,000, 50,000.

T = 100 T = 1,000

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

δ1 < δ2

RMSC 0 0.2 0.79 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 0.30 0.00 0.67 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 0.97 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.3 0.68 0.00 0.28 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.87 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.09 0.02 0.12 0.22 0.09 0.08 0.01 0.09 0.28 0.00 0.05 0.00 0.13 0.13 0.01 0.21 0.12 0.03 0.31 0.00

mRMSC 0 0.2 0.98 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 0.65 0.02 0.27 0.00 0.00 0.02 0.01 0.00 0.03 0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.3 0.91 0.00 0.05 0.00 0.00 0.01 0.00 0.00 0.03 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.17 0.04 0.02 0.02 0.01 0.01 0.01 0.04 0.68 0.01 0.46 0.03 0.04 0.01 0.00 0.02 0.02 0.02 0.39 0.01

DN 0 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.33

0.1 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.33

0 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.33

(Continues)
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Table 1. Continued

T = 100 T = 1,000

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

0.1 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32

0 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.28

0.3 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.84 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.81 0.18

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.07 0.06 0.23 0.15 0.14 0.11 0.01 0.04 0.20 0.00 0.01 0.01 0.41 0.02 0.02 0.33 0.10 0.01 0.09 0.00

0.5 0.5 0.01 0.01 0.02 0.10 0.10 0.04 0.01 0.32 0.38 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.06 0.20 0.69 0.00

mRMSC 0 0 0.07 0.07 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.13 0.13 0.04 0.01 0.01 0.02 0.02 0.02 0.61 0.01 0.18 0.18 0.26 0.00 0.00 0.05 0.03 0.00 0.30 0.00

0.5 0.5 0.03 0.02 0.00 0.01 0.01 0.00 0.01 0.10 0.80 0.02 0.02 0.03 0.00 0.01 0.01 0.00 0.01 0.12 0.80 0.02

DN 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.33

0.3 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.80 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.26

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.76 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.79 0.16

(Continues)
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Table 1. Continued

T = 5,000 T = 50,000

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

δ1 < δ2

RMSC 0 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.3 0.95 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.04 0.00 0.13 0.08 0.00 0.25 0.19 0.00 0.30 0.00 0.02 0.00 0.13 0.04 0.00 0.27 0.25 0.00 0.30 0.00

mRMSC 0 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.79 0.01 0.06 0.00 0.00 0.01 0.01 0.00 0.11 0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DN 0 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.31

0.1 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.31

0 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.31

0.1 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.31

0 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.30

0.3 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.28

(Continues)
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Table 1. Continued

T = 5,000 T = 50,000

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.00 0.00 0.45 0.00 0.00 0.38 0.13 0.00 0.04 0.00 0.00 0.00 0.45 0.00 0.00 0.39 0.13 0.00 0.03 0.00

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.15 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.90 0.00

mRMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.14 0.14 0.61 0.00 0.00 0.03 0.01 0.00 0.06 0.00 0.05 0.04 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.5 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.11 0.81 0.02 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.10 0.82 0.03

DN 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.32

0.3 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.31

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.78 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.79 0.16

Notes: “z1 + z2” denotes models with the two instruments z1 and z2; “zj+I” ( j = 1,2) denotes models with zj + 1 irrelevant (i.e., completely unrelated) instrument;
“z1 + z2 + I” denotes models with the two instruments z1 and z2 + 1 irrelevant instrument; “z1 + z2 + 2I” denotes models with the two instruments z1 and z2
+ 2 irrelevant instruments; “All I” denotes models with irrelevant instruments only; “zj + more I” denotes models with zj ( j = 1,2) + more than one irrelevant
instrument; “All” denotes model with all instruments. The highlighted columns correspond to the best subset of instruments. This subset depends on the combination
of strengths(δ1,δ2) and the number p of estimated parameters.
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Table 2. Empirical selection probabilities: Two endogenous regressors ( p = 2), T = 100, 1,000, 5,000, 50,000.

T = 100 T = 1,000

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

δ1 < δ2

RMSC 0 0.2 0.56 0.00 0.00 0.34 0.08 0.00 0.02 0.00 0.89 0.00 0.00 0.10 0.01 0.00 0.00 0.00

0.1 0.2 0.47 0.00 0.00 0.38 0.13 0.00 0.03 0.00 0.87 0.00 0.00 0.12 0.01 0.00 0.00 0.00

0 0.3 0.22 0.01 0.00 0.40 0.24 0.00 0.12 0.00 0.21 0.00 0.00 0.37 0.28 0.00 0.14 0.00

0.1 0.3 0.18 0.01 0.00 0.38 0.28 0.00 0.15 0.00 0.20 0.00 0.00 0.36 0.28 0.00 0.16 0.00

0 0.4 0.08 0.01 0.00 0.30 0.29 0.00 0.31 0.00 0.03 0.00 0.00 0.15 0.30 0.00 0.53 0.00

0.3 0.4 0.01 0.00 0.00 0.08 0.22 0.02 0.67 0.00 0.00 0.00 0.00 0.02 0.10 0.00 0.87 0.00

mRMSC 0 0.2 0.61 0.00 0.00 0.10 0.05 0.00 0.24 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 0.49 0.00 0.00 0.07 0.04 0.00 0.38 0.02 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 0.24 0.00 0.00 0.08 0.07 0.00 0.58 0.02 0.64 0.00 0.00 0.09 0.06 0.00 0.22 0.00

0.1 0.3 0.18 0.00 0.00 0.05 0.04 0.00 0.68 0.05 0.63 0.00 0.00 0.08 0.06 0.00 0.23 0.00

0 0.4 0.09 0.01 0.00 0.05 0.05 0.00 0.76 0.03 0.16 0.01 0.00 0.10 0.08 0.00 0.66 0.01

0.3 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.15 0.03 0.00 0.00 0.01 0.01 0.00 0.83 0.12

DN 0 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.18

0.1 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.19

0 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.22

(Continues)
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Table 2. Continued

T = 100 T = 1,000

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

0.1 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.25

0 0.4 0.00 0.00 0.00 0.00 0.00 0.01 0.59 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.36

0.3 0.4 0.00 0.00 0.00 0.00 0.00 0.01 0.77 0.22 0.00 0.00 0.00 0.00 0.00 0.01 0.75 0.25

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.03 0.00 0.00 0.16 0.31 0.01 0.49 0.00 0.03 0.00 0.00 0.13 0.26 0.00 0.59 0.00

0.5 0.5 0.00 0.00 0.00 0.01 0.06 0.12 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.94 0.00

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.02 0.00 0.00 0.01 0.01 0.00 0.83 0.13 0.19 0.00 0.00 0.04 0.02 0.00 0.68 0.07

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.01 0.81 0.18 0.00 0.00 0.00 0.00 0.00 0.01 0.81 0.18

DN 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.21

0.3 0.3 0.00 0.00 0.00 0.00 0.00 0.01 0.78 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.19

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.02 0.79 0.19 0.00 0.00 0.00 0.00 0.00 0.02 0.80 0.18

(Continues)
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Table 2. Continued

T = 5,000 T = 50,000

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

δ1 < δ2

RMSC 0 0.2 0.98 0.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 0.97 0.00 0.00 0.03 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 0.19 0.00 0.00 0.36 0.27 0.00 0.17 0.00 0.17 0.00 0.00 0.34 0.28 0.00 0.21 0.00

0.1 0.3 0.19 0.00 0.00 0.35 0.28 0.00 0.18 0.00 0.17 0.00 0.00 0.34 0.28 0.00 0.21 0.00

0 0.4 0.01 0.00 0.00 0.06 0.18 0.00 0.75 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.94 0.00

0.3 0.4 0.00 0.00 0.00 0.01 0.05 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.98 0.00

mRMSC 0 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.3 0.92 0.00 0.00 0.04 0.01 0.00 0.03 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.3 0.91 0.00 0.00 0.04 0.01 0.00 0.04 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.4 0.21 0.00 0.00 0.10 0.09 0.00 0.59 0.00 0.33 0.00 0.00 0.13 0.08 0.00 0.45 0.00

0.3 0.4 0.10 0.00 0.00 0.03 0.03 0.00 0.77 0.08 0.28 0.00 0.00 0.09 0.06 0.00 0.55 0.02

DN 0 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.16

0.1 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.16

0 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.16

0.1 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.17

0 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.26

0.3 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.30

(Continues)
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Table 2. Continued

T = 5,000 T = 50,000

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I All I zj+more I All

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.02 0.00 0.00 0.11 0.24 0.00 0.63 0.00 0.02 0.00 0.00 0.09 0.21 0.00 0.68 0.00

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.03 0.96 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.90 0.09

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.64 0.00 0.00 0.06 0.03 0.00 0.26 0.02 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.02 0.80 0.18 0.00 0.00 0.00 0.00 0.00 0.02 0.80 0.19

DN 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.20

0.3 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.21

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.02 0.80 0.18 0.00 0.00 0.00 0.00 0.00 0.02 0.80 0.18

Notes: “z1 + z2” denotes models with the two instruments z1 and z2; “zj+I” ( j = 1,2) denotes models with zj + 1 irrelevant (i.e., completely unrelated) instrument;
“z1 + z2 + I” denotes models with the two instruments z1 and z2 + 1 irrelevant instrument; “z1 + z2 + 2I” denotes models with the two instruments z1 and z2 + 2
irrelevant instruments; “All I” denotes models with irrelevant instruments only; “zj + more I” denotes models with zj ( j = 1,2) + more than one irrelevant instrument;
“All” denotes model with all instruments. The highlighted columns correspond to the best subset of instruments. This subset depends on the combination of strengths
(δ1,δ2) and the number p of estimated parameters.
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nous regressors ( p = 2) are presented in Table 2. More specifically, each table
indicates, for each sample size, the empirical selection rates of all possible
models for a given criterion (RMSC, DN, or mRMSC) and given values of
δi (i = 1,2).

Considering first the case with one endogenous regressor (Table 1), we see that
when δ1 < δ2 (first part of the table for each sample size), mRMSC outperforms
RMSC even for relatively small sample sizes, and the latter dominates DN,
which almost never selects the correct model. For example, when T = 100 and
“δ1 = 0.1 < δ2 = 0.3,” RMSC only selects the relevant model (i.e., columns
“z1” in Table 1 for T = 100) 68% of the time, whereas mRMSC selects this
model 91% of the time. As the sample size increases to T = 50,000, these
empirical selection probabilities bounce to 100% for both RMSC and mRMSC.
The empirical selection probabilities of DN remain flat at 0 along T.

Furthermore, looking at columns “z1” in Table 1 for δ1 < δ2 (first part of the
table), it is obvious that the dominance of mRMSC is even more pronounced when
“δ1 = 0.3 < δ2 = 0.4” (i.e., when identification strength deteriorates) regardless of
the sample size, with this dominance becoming even more visible as the sample
size increases. For example, when “δ1 = 0.3 < δ2 = 0.4,” RMSC only selects
the relevant model 9% of the time when T = 100, whereas mRMSC selects
this model 17% of the time. As the sample size increases to T = 50,000, the
empirical selection probability for RMSC decreases drastically to 2%, whereas
that of mRMSC bounces to 99%. Clearly, we see that as identification weakens,
RMSC has a tendency to often select less relevant and less sparse models for
small samples (see the selection probabilities in columns “All I,” “z1+z2,” “z1+I,”
“z2+I,” and “zj+more” in Table 1 for T = 100) or less sparse models with at least
one of both instruments z1 and z2 (see, e.g., the selection probabilities in columns
“z1+z2” in Table 1 for T = 1,000, 5,000, 50,000). Meanwhile, mRMSC still has
an overall good performance in selecting the more relevant model. Now, when
δ1 = δ2 (second part of Table 1 for each sample size), both RMSC and mRMSC
perform relatively well in selecting the correct model (i.e., columns “z1+z2” of
the tables) even with moderate identification strength ( δ1 = δ2 ≤ 0.3), but RMSC
performs slightly better for sample sizes T = 100, 1,000, whereas this dominance
is reversed for larger sample sizes (T = 5,000, 50,000). As identification dete-
riorates (see the selection probabilities in columns “δ1 = δ2 = 0.3” in Table 1 for
T = 5,000, 50,000), mRMSC improves substantially over RMSC when T = 5,000,
50,000. However, all criteria become weaker in selecting the correct model when
identification is weak (see columns “δ1 = δ2 = 0.5” in Table 1).

We now consider the case with two endogenous regressors (Table 2) where
the most relevant model is column “z1+z2.” We see that for both “δ1 < δ2” and
“δ1 = δ2,” mRMSC outperforms RMSC in most combinations of identification
strength δi (i = 1,2), especially when the sample size increases (T = 1,000, 5,000,
50,000). Again, RMSC shows a tendency to often select less relevant models when
identification deteriorates (i.e., high values of δi,i = 1,2). In addition, the empirical
selection probabilities of the relevant model increase with the sample size for
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mRMSC for all combinations of identification strength used, whereas those of
RMSC often decrease as the sample size increases for high values of δi (i = 1,2).
This illustrates why the aggregate hit rate of RMSC decreases as the sample size
increases for high values of δi, as shown in Figure 2. Remarkably, DN never selects
the correct model even when identification is strong (δ1 = δ2 = 0).

5.2. Performance of Ppost-Selection Inference

We now investigate the bias, MSE, and coverage rate of confidence sets of the
GMM estimator post selection. In addition to the criteria under consideration,
namely, mRMSC, RMSC, and DN, we also analyze the performance of the (naive)
GMM estimator that uses all available instruments. This naive GMM model
corresponds to the estimating function φmax in Section 4.2. Its inclusion allows us
to illustrate the importance of moment selection in GMM models with relatively
poor identification strength, even when the set of moment conditions available is
not large.

For clarity, let us focus first on the bias and MSE of the post-selection GMM
estimator θ̂ . We consider both models with one endogenous regressor (p = 1)

and two endogenous regressors (p = 2). In the latter case, θ̂ = (θ̂1,θ̂2)
′ has two

components, so we shall show the bias and MSE results of both components.
Figures 3 and 4 report the results where the bias and MSE of the post-selection
estimators θ̂ (for p = 1) and θ̂1,θ̂2 (for p = 2) are plotted against the sample
size/100,000 with the various selection criteria for sample sizes T = 100, 200,
500, 1,000, 5,000, 10,000, 20,000, 50,000, 100,000.

Looking first at the plots of the bias in Figure 3, we see similar patterns in the
behavior of the GMM estimator for both p = 1 (Figure 3a) and p = 2 (Figure 3b,c).
Considering the case where p = 1 (Figure 3a), with the exception of the Staiger and
Stock (1997) weak identification setup (“δ1 = δ2 = 0.5”), the post-selection GMM
estimator with DN has the highest bias for most combinations of the identification
strength δi (i = 1,2). Both mRMSC and RMSC outperform the naive GMM
estimator except when identification is weak (“δ1 = δ2 = 0.5”). The dominance of
the naive estimator under weak identification is in line with the widely documented
weak IV literature (see, e.g., Chao and Swanson, 2005; Andrews and Stock, 2007).
For all the combinations of the identification strength δ1 = δ2 = 0.3 and δ1 <

δ2 ≤ 0.4 shown in Figure 3a, mRMSC dominates or performs as well as RMSC.
The dominance of the mRMSC is especially pronounced when δ1 = 0.3,δ2 = 0.4,
where the bias of the post-selection GMM estimator θ̂ with mRMSC vanishes as
the sample size increases, whereas the bias of that of the RMSC plateaus far away
from zero. Second, for the models with p = 2 (Figure 3b,c), the bias of the GMM
estimator θ̂1 (the strongest identified component of θ ) across various selection
criteria is quite similar to the results with p = 1 depicted in Figure 3a, with the
exception of subfigure “δ1 = δ2 = 0.3” where mRMSC’s dominance is even clearer.
Looking at the bias of θ̂2—the least identified component of θ (Figure 3c)—
we observe that in most cases the bias of the post-selection GMM estimator θ̂2

with mRMSC is smaller than the ones resulting from both RMSC and DN. While
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Figure 3. Bias of GMM post selection with mRMSC, RMSC, and DN, and GMM with full set of IVs.
Sample size T = 100, 200, 500, 1,000, 5,000, 10,000, 20,000, 50,000, 100,000; number of replications:
5,000.
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Figure 4. MSE of GMM post selection with mRMSC, RMSC, and DN, and GMM with full set
of IVs. Sample size T = 100, 200, 500, 1,000, 5,000, 10,000, 20,000, 50,000, 100,000; number of
replications: 5,000.
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the naive GMM estimation appears competitive at mitigating the bias of θ̂2 when
δ1 = δ2 = 0.5, it does not perform as well as mRMSC when 0.1 < δ1 < δ2 ≤ 0.4.
Interestingly, the post-selection GMM estimator with mRMSC performs as well
as the naive GMM estimator as the sample size increases in the rare cases where
the latter is competitive.

Let us now focus on the MSE results in Figure 4. Considering the model
with p = 1 (Figure 4a), we see that all selection criteria (mRMSC, RMSC, and
DN) perform quite similarly. In particular, when δ1 < δ2 ≤ 0.4 or δ1 = δ2 <

0.5, mRMSC and RMSC have a slight edge on DN when the sample size is
small. However, this advantage of mRMSC and RMSC disappears as the sample
size increases for a similar level of performance. When δ1 = δ2 = 0.5 (i.e.,
under weak identification), all the models perform poorly with the naive GMM
displaying the smallest MSE, followed by the post-selection GMM estimators with
DN, mRMSC, and RMSC, respectively. Considering now the model with p = 2
(Figure 4b,c), we observe again that the MSE results of θ̂1 are quite similar to those
in Figure 4a for p = 1. However, the MSE of the estimator θ̂2 (the estimator of the
weakest identified component) depicts a different picture. Indeed, there are many
instances in Figure 4c where the MSEs of the post-selection GMM estimators with
mRMSC and RMSC are smaller than that with DN, especially for small samples.
As identification deteriorates (see subfigures “δ1 = 0,δ2 = 0.4” and “δ1 = 0.3,
δ2 = 0.4”), post-selection GMM-RMSC is dominated by GMM-mRMSC, which
also matches both the naive GMM and GMM-DN as the sample size increases.

Aside the bias and MSE, one of the important properties of post-selection
inference is whether a given selection criterion leads to confidence sets with correct
coverage post selection. It is well known that standard selection methods based
on information criteria, such as Akaike information criterion (AIC) and BIC, do
not enjoy this property (see, e.g., Kabaila and Leeb, 2006). To investigate this
further, we consider both the models with p = 1 and p = 2 and explore the coverage
rate of Wald-type confidence intervals based on the post-selection or naive GMM
estimators θ̂ . As θ is a scalar when p = 1, we consider t-type confidence intervals
based on the post-selection or naive GMM estimator in that case. However, for
p = 2, θ̂ = (θ̂1,θ̂2)

′ ∈ R
2, so we shall consider Wald-type joint confidence sets

based on the post-selection or naive GMM estimator θ̂ . As in the previous sections,
we report the results across various selection criteria (mRMSC, RMSC, and DN),
along with the naive GMM estimator that utilizes all 12 available instruments.
Figure 5 shows the results, where the coverage rates are plotted against the sample
size. The nominal confidence level is set to 95%, but the results are not sensitive
to alternative choices of this significance level.

Considering first the model with p = 1 (Figure 5a), two main observations
stand out. First, when δ1 < δ2, the post-selection GMM-mRMSC outperforms or
performs as well as both the naive GMM and the GMM-RMSC and GMM-DN.
As identification deteriorates, the dominance of post-selection GMM-mRMSC
is visible (see, e.g., subfigures “δ1 = 0.3,δ2 = 0.4” in Figure 5a). In the latter
case, the coverage rate of confidence intervals from post-selection GMM-mRMSC
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Figure 5. Coverage rate of confidence sets at nominal level 95%: GMM post selection with mRMSC,
RMSC, and DN, and GMM with full set of IVs. Sample size T = 100, 200, 500, 1,000, 5,000, 10,000,
20,000, 50,000, 100,000; number of replications: 5,000.
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approaches 95% as the sample size increases, whereas naive GMM, GMM-RMSC,
and GMM-DN have coverage rates that plateau slightly above 85% even for a
sample size as large as T = 100,000. Second, when δ1 = δ2, with the exception
of the weak identification case (δ1 = δ2 = 0.5), GMM-mRMSC performs as well
as GMM-RMSC and both dominate GMM-DN and naive GMM, with greater
magnitude for small sample sizes (see, e.g., subfigure “δ1 = δ2 = 0.3” in Figure 5a).

Moving to models with two endogenous variables, p = 2 (Figure 5b), the
dominance of post-selection GMM-mRMSC is even more noticeable. With the
exception of the weak identification case (δ1 = δ2 = 0.5), the edge of GMM-
mRMSC on GMM-RMSC, GMM-DN, and the naive GMM is remarkable. For
example, when δ1 = 0.3,δ2 = 0.4, the coverage rate of the joint confidence
sets with GMM-RMSC, GMM-DN, and the naive GMM plateaus below 80%
as the sample size increases. Meanwhile, the coverage rate of joint confidence
sets with GMM-mRMSC continue to increase with the sample size. At many
instances in Figure 5b, GMM-RMSC outperforms both naive GMM and GMM-
DN, although it is not as competitive as GMM-mRMSC. Such results are shown
in all subfigures with δ1 = 0.3. Clearly, this simulation exercise illustrates the
overall good performance of our post-selection GMM-mRMSC compared with
post-selection GMM-RMSC and DN, as well as the naive GMM.

Note that while the DGP in Sections 5.1 and 5.2 imposes z1 to be uncorre-
lated z2, we report in the Supplementary Material experiment results for correlated
relevant instruments. These results are qualitatively the same as those reported in
Sections 5.1 and 5.2. (See Figures S1.1–S1.4 and Table S1.1 in the Supplementary
Material.) Moreover, note that Figures 3 and 4 may not visually distinguish the
methods because of their close performance magnitudes in many instances. To
provide more readability, the Supplementary Material includes tables of the bias,
MSE, and coverage rate of the joint confidence sets plotted in those figures. (See
Table S1.2 for correlated instruments and Table S1.3 for uncorrelated instruments
in the Supplementary Material.)

6. CONCLUSION

In this paper, we study model selection in moment condition models with mixed
identification strength that allow for consistent and asymptotically normal parame-
ter estimation. Our investigation reveals that standard model selection procedures,
such as the relevant model selection criterion of Hall et al. (2007), are inconsistent
in this setting as they do not explicitly account for the rate of convergence of
parameter estimation of candidate models which may vary. We introduce new
entropy-based relevant moment selection criteria, the mRMSC. Similar to RMSC,
mRMSC are evaluated using the two-step GMM estimator, which has linear
reparameterizations known to be efficient in this framework as well (see Dovonon
et al., 2022). In the case of the multivariate parameter, the asymptotic distribution
of this estimator is, in general, characterized by directions of fast convergence and
directions of slow convergence rate. The best or relevant model is the smallest
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model (in terms of number of moment restrictions) that delivers the same rate
of convergence and the same asymptotic variance as those obtained when all the
moment restrictions are used.

By construction, mRMSC first rewards the rate of estimation and then, for
models with the same rate, it rewards (negative) entropy. In addition, suitable
penalty terms are introduced that guarantee the consistency of the selection
procedure. Conditions under which mRMSC lead to consistent selection of the
best model are outlined, and we show that this new selection procedure is robust
to the presence of uninformative and weak models.

We illustrate the finite-sample performance of the proposed method through
Monte Carlo simulations. In addition to mRMSC and RMSC, we also consider
the MSE criterion of DN along with the moment condition model including all
the available instruments serving as a benchmark. In almost all the considered
Monte Carlo designs, mRMSC dominates the other selection criteria in terms of hit
rate. The post-selection performance is also investigated, revealing that mRMSC-
selected models produce confidence intervals with the best coverage probability
in most of the Monte Carlo designs. These models are also among those with the
smallest bias and MSE. Nevertheless, when all the available moment restrictions
are weak, mRMSC performs quite poorly as the other selection methods. In this
case, the model with all instruments performs marginally better than all the selected
ones although unreliably.

APPENDIX A. Convergence Rate of HAC Using Slow Estimators

As we have seen, under mixed strength identifying moment restrictions, the resulting

parameter estimator has a slow rate of convergence—OP(T
1
2 −δ). Standard theories for

HAC estimators of the long-run variance apply to
√

T-consistent parameter estimators. The
next proposition gives the rate of convergence of HAC estimators of the long-run variance,


, of φ(YtT,θ0): 
 = limT→∞ Var
(

1√
T

∑T
t=1 φ(YtT,θ0)

)
, with variance taken under PT ,

when estimators of θ0 based on the moment condition E(φ(YtT,θ0)) = 0 are available and
the components of φ have mixed identification strength for θ0. We know in this case that

standard estimators θ̂T are such that T
1
2 −δ(θ̂T − θ0) = OP(1) for some δ ≥ 0.

Let 
̂hac be the HAC estimator of 
 using the kernel function k(x) and bandwidth
parameter �T . (See Andrews (1991) for more explicit definitions.) We shall assume that
k(·) belong to the class K1, i.e., k(·) is symmetric, continuous at 0 and at all but a finite
number of other points, square integrable, and takes values in [−1,1], with k(0) = 1.

Let kq = limx→0
1−k(x)

|x|q (see Andrews, 1991, p. 824) and R( j) = E(φ(YtT,θ0)φ

(Yt−j,T,θ0)′), j ∈ Z, the autocovariance function of φ(YtT,θ0), which is assumed to be
covariance stationary, where we recall that E(·) stands for expectation taken under PT . We
have the following.

Proposition A.1. Assume that

(i) ztT = (
φtT (θ0)

′,vec[(∂/∂θ ′)φtT (θ0)−E(∂/∂θ ′)φtT (θ0)]′
)′

is fourth-order station-
ary with autocovariance function under PT (i.e., j �→ R( j) = E(ztT zt−j,T )) and
fourth-order cumulant function under PT not T dependent.
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(i) Assumptions B and C of Andrews (1991) hold with Vt(θ) replaced by φtT (θ), the
supremum supt≥1(·) in B(ii), B(iii), and C(ii) replaced by supT≥1 sup1≤t≤T (·), and
B(i) replaced by

T
1
2 −δ(θ̂T − θ0) = OP(1)

under PT for some δ ≥ 0.
(ii) 0 ≤ δ < 1

6 and there exists a ∈ (2δ, 1
2 − δ) such that

kq < ∞, and
+∞∑

j=−∞
|j|q‖R( j)‖ < ∞,

with some q ≥ 1−a
2a .

(iii) �T ∼ Ta.

Then,√
T

�T

(

̂hac −


)
= OP(1), under PT .

Proof of Proposition A.1. Let


T (θ0) =
T−1∑

j=−T+1

(
1− | j|

T

)
R( j), 
 =

+∞∑
j=−∞

R( j) with R( j) = E
(
φ(YtT,θ0)φ(Yt−j,T,θ0)

′) .

Note that 
 is the limit of 
T as T → ∞. We have

‖
T (θ0)−
‖ =
∥∥∥∥∥∥
∑

| j|≥T

R( j)− 1

T

∑
| j|≤T−1

| j|R( j)

∥∥∥∥∥∥ ≤
∑

| j|≥T

‖R( j)‖+ 1

T

∑
| j|≤T−1

| j|‖R( j)‖

≤
∑

| j|≥T

‖R( j)‖+ 1√
T

∑
| j|≤T−1

| j| 1
2 ‖R( j)‖.

Under the condition (ii) of the proposition, q ≥ 1
2 , and as a result, we also have

+∞∑
j=−∞

| j| 1
2 ‖R( j)‖ < ∞.

Thus, as T → ∞,
√

T
∑

| j|≥T ‖R( j)‖ → 0. Hence,
√

T ‖
T (θ0)−
‖ ≤ C for some C
positive and for T large enough. As a result,√

T

�T
‖
T (θ0)−
‖ → 0.

Therefore, to complete the proof, it suffices to show that√
T

�T

(

̂hac −
T (θ0)

)
= OP(1). (A.1)
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This is done by adapting the proof of Andrews (1991, Thm. 1(a) and (b)) to our setting

where T
1
2 −δ(θ̂T − θ0) = OP(1). Following him and without loss of generality, we assume

that 
’s are scalars.
Define 
̃(θ) similarly to 
̂hac but with θ̂T replaced by θ , and let 
̃ ≡ 
̃(θ0). By

definition, 
̂hac = 
̃(θ̂T ). Under our maintained assumptions, the conditions of Andrews
(1991, Thm. 1(a) and (b)) hold and a close consideration of his proof reveals that we only
need to show that√

T

�T
(
̂hac − 
̃) = oP(1)

under PT to conclude (A.1). Similar to Andrews (1991, eqn. (A.11)), a two-term Taylor
expansion gives√

T

�T
(
̂hac − 
̃) =

(
Tδ

√
�T

∂

∂θ ′ 
̃(θ0)

)
T

1
2 −δ(θ̂T − θ0)

+ 1

2
T

1
2 −δ(θ̂T − θ0)′

[
T2δ− 1

2√
�T

∂2

∂θ∂θ ′ 
̃(θ̄)

]
T

1
2 −δ(θ̂T − θ0)

≡ L′
1T T

1
2 −δ(θ̂T − θ0)+ 1

2
T

1
2 −δ(θ̂T − θ0)′L2T T

1
2 −δ(θ̂T − θ0),

where θ̄ ∈ (θ0,θ̂T ). Similar treatments leading to Andrews (1991, eqn. (A.12)) yield

‖L2T‖ ≤ T2δ− 1
2√

�T

T−1∑
j=−T+1

|k(j/�T )| 1

T

T∑
t=| j|+1

sup
θ∈�

∥∥∥∥∥ ∂2

∂θ∂θ ′ φ(YtT,θ)φ(Yt−| j|,T,θ)

∥∥∥∥∥
= T2δ− 1−a

2

⎛⎝ 1

�T

T−1∑
j=−T+1

|k(j/�T )|
⎞⎠OP(1) = OP

(
T2δ− 1−a

2

)
,

where the OP(·) holds under PT . Furthermore, we have

L1T = Tδ

√
�T

T−1∑
j=−T+1

k

(
j

�T

)
1

T

T∑
t=| j|+1

φ(YtT,θ0)

(
∂

∂θ
φ(Yt−| j|,T,θ0)−λ

)

+ Tδ

√
�T

T−1∑
j=−T+1

k

(
j

�T

)
1

T

T∑
t=| j|+1

(
∂

∂θ
φ(YtT,θ0)−λ

)
φ(Yt−| j|,T,θ0)

+TδDTλ,

with λ = E(∂/∂θ)φ(YtT,θ0) and

DT = 1√
�T

T−1∑
j=−T+1

k

(
j

�T

)
1

T

T∑
t=| j|+1

(φ(YtT,θ0)+φ(Yt−| j|,T,θ0)).

Clearly, the first two terms in the expansion of L1T are of order OP(Tδ/
√

�T ) under PT .
Furthermore, from Andrews (1991, eqn. (A.15)), we can claim that DT = OP(

√
�T/T)
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under PT . As a result,

L1T = OP

(
Tδ− a

2

)
+OP

(
Tδ+ a−1

2

)
,

under PT . Since a ∈ (2δ, 1
2 −δ), L2T = oP(1) under PT . Moreover, since δ < 1/6, a < 1−4δ

and L1T = oP(1) and this completes the proof. �

APPENDIX B. Auxiliary Results and Proofs

Lemma B.1. Let s1(ιmax) = Rank
(

∂ρmax,1
∂θ ′ (θ0)

)
and R =

(
R1

... R2

)
a nonsingular (p,p)-

matrix such that RR′ = Ip, with the columns of R1 spanning the range of
∂ρ′

max,1
∂θ

(θ0) and
∂ρmax,1

∂θ ′ (θ0)R2 = 0. Let c = (c′
1,c

′
2)′ ∈ C . If s1(c) = s1(ιmax), that is, Rank

(
∂ρmax,1

∂θ ′ (θ0)
)

=
Rank

(
∂ρmax,1

∂θ ′ (θ0,c1)
)

, then the columns of R1 span the range of
∂ρ′

max,1
∂θ

(θ0,c1) and
∂ρmax,1

∂θ ′ (θ0,c1)R2 = 0.

Proof of Lemma B.1. Omitted. �

Proof of Proposition 3.1. We have θ̂T − θ0 = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1Z′U.
(i) Note that

X′Z = RR′X′Z = R
(

R′C′
L

−1
T Z′Z +R′V ′Z

)
and

L
−1
T CR =

(
C1R1 0

C2R1Tδ1−δ2 C2R2

)
�−1

T , with �T =
(

Tδ1 Is1 0
0 Tδ2 Ip−s1

)
.

Hence, X′Z = R�−1
T AT , with AT =

(
C1R1 0

C2R1Tδ1−δ2 C2R2

)′
Z′Z +�T R′V ′Z and

√
T�−1

T R′(θ̂T − θ0) =
(

AT (Z′Z)−1A′
T

T

)−1

AT (Z′Z)−1 Z′U√
T

. (B.1)

We have

AT (Z′Z)−1A′
T

T
=

(
C1R1 0

C2R1Tδ1−δ2 C2R2

)′ Z′Z
T

(
C1R1 0

C2R1Tδ1−δ2 C2R2

)

+ �T√
T

R′ V ′Z√
T

(
C1R1 0

C2R1Tδ1−δ2 C2R2

)

+
(

C1R1 0
C2R1Tδ1−δ2 C2R2

)′ Z′V√
T

R
�T√

T
+ �T√

T
R′ V ′Z√

T

(
Z′Z
T

)−1 Z′V√
T

R
�T√

T

=
(

C1R1 0
0 C2R2

)′
	

(
C1R1 0

0 C2R2

)
+oP(1).
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Thus,(
AT (Z′Z)−1A′

T
T

)−1

=
[(

C1R1 0
0 C2R2

)′
	

(
C1R1 0

0 C2R2

)]−1

+oP(1). (B.2)

Furthermore,

AT (Z′Z)−1 Z′U√
T

=
(

C1R1 0
C2R1Tδ1−δ2 C2R2

)′ Z′U√
T

+ �T√
T

R′ V ′Z√
T

(
Z′Z
T

)−1 Z′U√
T

=
(

C1R1 0
0 C2R2

)′ Z′U√
T

+oP(1). (B.3)

(i) follows from (B.1)–(B.3) and Assumption 4(iii).
(ii) In the case s1 = p, we use the fact that Tδ1−1X′Z = (

C′
1 0

)
	+oP(1). Therefore,

X′Z(Z′Z)−1Z′X = T1−2δ1
(
C′

1	11C1 +oP(1)
)
, (B.4)

and since C1 is of rank p,
(

X′Z(Z′Z)−1Z′X
)−1 = T−1+2δ1

[
(C′

1	11C1)−1 +oP(1)
]
.

Moreover,

X′Z(Z′Z)−1Z′U = T
1
2 −δ1

[(
C′

1 0
)
	+oP(1)

]
(	−1 +oP(1))

Z′U√
T

.

As a result,

T
1
2 −δ1(θ̂T − θ0) = (C′

1	11C1)−1C′
1

Z′
1U√
T

+oP(1),

and (ii) follows from Assumption 4(iii).
(iii) σ̂ 2

u converges in probability to σ 2
u by the law of large numbers. For the case

0 < s1 < p, we have

(
�−1

T R′X′PZXR�−1
T

)−1 =
(

�T R′X′PZXR�T

T

)−1

=
(

AT (Z′Z)−1A′
T

T

)−1

,

and using (B.2), we have the expected result. For the case s1 = p, the expected result follows
from (B.4). �

Proof of Theorem 4.2. Analogous to previous notation, let

V̂θ (c) =
((√

T
∂φ̄T

∂θ ′ (θ̂T (c))R(c)�T (c)−1
)′


̂(c)−1
(√

T
∂φ̄T

∂θ ′ (θ̂T (c))R(c)�T (c)−1
))−1

,

where φ in this definition includes only the components of φmax selected by c. Under

Assumptions 5 and 6(ii), ‖θ̂T (c)−θ0‖ = OP(T− 1
2 +δ2) under PT . Thanks to Lemma A.5 of

Antoine and Renault (2009), we can claim that
√

T ∂φ̄T
∂θ ′ (θ̂T (c))R(c)�T (c)−1 converges in

probability to J(c), and as a result, V̂θ (c) converges in probability to (J(c)′
(c)−1J(c))−1.
Note that

V̂θ (c) = 1

T
�T (c)R(c)′

(
Îθ,T

)−1
R(c)�T (c).
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Hence,

ln
∣∣∣V̂θ (c)

∣∣∣ = −2(s1(c)δ1 + s2(c)δ2) lnT − ln
∣∣∣Îθ,T ∣∣∣ .

Thus,

−
ln
∣∣∣Îθ,T ∣∣∣
lnT

= 2(s1(c)δ1 + s2(c)δ2)+
ln
∣∣∣V̂θ (c)

∣∣∣
lnT

= 2(s1(c)(δ1 − δ2)+pδ2)+
ln
∣∣∣V̂θ (c)

∣∣∣
lnT

and

mRMSC(c) = 2(s1(c)(δ1 − δ2)+pδ2)+
ln
∣∣∣V̂θ (c)

∣∣∣
lnT

+κ(|c|,T). (B.5)

Let

	T (c,cr) = mRMSC(c)−mRMSC(cr).

Thanks to Assumption 6(i) and (ii), s1(cr) = s1(ιmax). This rules out s1(c) > s1(cr), and
we shall distinguish the following two cases: (1) s1(c) < s1(cr) and (2) s1(c) = s1(cr).

Case (1): s1(c) < s1(cr). Assume first that δ1 − δ2 < 0, and we have s1(cr)(δ1 − δ2)+
pδ2 < s1(c)(δ1 − δ2)+pδ2.

Moreover, since V̂θ (c)
P→ Vθ (c), and V̂θ (cr)

P→ Vθ (cr) (both under PT with finite limits)

and κ(|c|,T) → 0 as T → ∞ for all c, we can claim that 	T (c,cr)
P→ 2(s1(cr) − s1(c))

(δ1 − δ2) < 0, meaning that cr will be chosen over c as T gets large with probability
approaching 1.

If δ1 = δ2, then ρmax,1(θ,c) = ρmax(θ,c), for all c ∈ C . Hence, from Assumption 6(ii),
we have s1(c) = p = s1(cr). This case is covered by Case (2).

Case (2): s1(c) = s1(cr). Lemma B.1 ensures that Vθ (c), Vθ (cr), and Vθ (ιmax) can be
expressed in terms of the same rotation matrix R(ιmax). By definition, Vθ (cr) = Vθ (ιmax)

and, considering Vθ (c) as expressed in terms of R(ιmax) as well, standard results of GMM
theory ensure that we either have Vθ (c) = Vθ (cr) or Vθ (c)−Vθ (cr) is positive semi-definite.
We further consider these two cases.

Case (2-i): Vθ (c) = Vθ (cr). We have

min(τT,c,τT,cr ) ln(T)	T (c,cr)

= min(τT,c,τT,cr )
(

ln |V̂θ (c)|− ln |Vθ (c)|
)

−min(τT,c,τT,cr )
(

ln |V̂θ (cr)|− ln |Vθ (cr)|
)

+min(τT,c,τT,cr ) ln(T)(κ(|c|,T)−κ(|cr|,T))

= OP(1)+min(τT,c,τT,cr ) ln(T)(κ(|c|,T)−κ(|cr|,T)) .

Thanks to Assumption 6(iv), this quantity tends to +∞ with probability 1 as T grows and
we can deduce that 	T (c,cr) is positive with probability 1 as T grows. This means that cr
is eventually selected over c.

Case (2-ii): Vθ (c)−Vθ (cr) is positive semi-definite and different from 0. From Magnus
and Neudecker (2002, Thm. 22), |Vθ (c)| > |Vθ (cr)| and we have

ln(T)	T (c,cr) = ln |V̂θ (c)|− ln |V̂θ (cr)|+ ln(T)(κ(|c|,T)−κ(|cr|,T))

= ln |Vθ (c)|− ln |Vθ (cr)|+oP(1).
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Therefore, 	T (c,cr) is positive with probability 1 as T grows.

Taken together, Cases (1), (2-i), and (2-ii) establish that ĉ
P→ cr under PT as T → ∞. �

Proof of Theorem 4.3. We have that

∂φ̄T (θ̂T (c),c)

∂θ ′ =
(

∂φ̄T (θ̂T (c),c)

∂θ ′ −L
−1
T

∂ρmax(θ̂T (c),c)

∂θ ′

)

+L
−1
T

(
∂ρmax(θ̂T (c),c)

∂θ ′ −M

)
+L

−1
T M,

where M stands for either ∂ρmax(θ0,c)
∂θ ′ under Assumption 7(i.a) or for the actual M in

Assumption 7(i.b).
Let M1 be the submatrix of M given by its first k1 rows, and let M2 be the submatrix of M

given by its last k2 rows. Let s1(c) = Rank(M1) and R =
(

R1
...R2

...R3

)
the orthogonal matrix

(i.e., RR′ = Ip) such that M1R2 = 0 and MR3 = 0. Note that R1 is void if s1(c) = 0 and R2 is
void if s2(c) = 0, whereas R3 has p−q > 0 columns corresponding to an orthogonal basis
of the null space of M. s1(c)+ s2(c) = q.

Let λT =
⎛⎝ Tδ1 Is1(c) 0 0

0 Tδ2 Is2(c) 0
0 0 Tδ2 Ip−q

⎞⎠ . We have

∂φ̄T (θ̂T (c),c)

∂θ ′ RλT = L
−1
T MRλT +oP(1) =

(
M1R1 0 0

M2R1Tδ1−δ2 M2R2 0

)
+oP(1)

=
(

M1R1 0 0
0 M2R2 0

)
+oP(1),

where the oP(1) terms are negligible under PT . We have

mRMSC(c) = −
ln
∣∣∣Îθ,T (c)

∣∣∣
lnT

+κ(|c|,T),

with Îθ,T (c) = ∂φ̄T (θ̂T (c),c)′
∂θ


̂(c)−1 ∂φ̄T (θ̂T (c),c)
∂θ ′ . We can write

Îθ,T (c) = Rλ−1
T

(
λT R′ ∂φ̄T (θ̂T (c),c)′

∂θ

̂(c)−1 ∂φ̄T (θ̂T (c),c)

∂θ ′ RλT

)
λ−1

T R′ ≡ Rλ−1
T K̂θ,Tλ−1

T R′.

Thus,

ln
∣∣∣Îθ,T (c)

∣∣∣ = 2ln
∣∣∣λ−1

T

∣∣∣+ ln |K̂θ,T |
so that

mRMSC(c) = 2[s1(c)(δ1 − δ2)+pδ2]− ln |K̂θ,T |
lnT

+κ(|c|,T).

Using (B.5), we have

mRMSC(cr) = 2(s1(cr)(δ1 − δ2)+pδ2)+ ln |Vθ (cr)+oP(1)|
lnT

+κ(|cr|,T).
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Note that lnT · κ(|γ |,T) → 0 as T → ∞ for γ = c,cr . Furthermore, since Vθ (cr) is
positive-definite, ln |Vθ (cr)| ∈R, whereas − ln |K̂θ,T | → +∞, since K̂θ,T is asymptotically
degenerate. Furthermore, by definition of cr ,

s1(cr)(δ1 − δ2)+pδ2 = s1(ιmax)(δ1 − δ2)+pδ2

and, since s1(ιmax) ≥ s1(c), we have

[s1(ιmax)(δ1 − δ2)+pδ2]− [s1(c)(δ1 − δ2)+pδ2] = (s1(ιmax)− s1(c))(δ1 − δ2) ≤ 0.

The first conclusion follows with a0 = ln |Vθ (cr)|, a1 = 2(s1(ιmax)− s1(c))(δ1 − δ2), and
a1T = ln |K̂θ,T |. We can therefore conclude that mRMSC(cr) < mRMSC(c) with probability
approaching 1 as T → ∞. �

Proof of Proposition 4.4. The first conclusion is a mere consequence of Theorems 4.2
and 4.3. Since PT (ĉT = cr) → 1 as T → ∞, the second part follows directly from Lemma 1
of Pötscher (1991). �

Proof of Proposition 4.5. All the stochastic order of magnitude in this proof are

under PT . Under Assumptions 1 and 2(ii), θ̂T (φ)− θ0 = OP(T− 1
2 +δ2). By a mean-value

expansion, we have

∂φ̄T

∂θ ′ (θ̂T (φ)) = ∂φ̄T

∂θ ′ (θ0)+ ∂2φ̄T (θ̈)

vec(∂θ∂θ ′)′ [Ip ⊗ (θ̂T (φ)− θ0)],

where θ̈ ∈ (θ̂T (φ),θ0) and may vary with the entries of ∂φ̄T
∂θ ′ (θ), “⊗‘’ is the Kronecker

product, and vec(A) transforms the matrix A into a vector by stacking its columns. By post-
multiplying this equality by

√
TR(φ)�T (φ)−1, we have

√
T

∂φ̄T

∂θ ′ (θ̂T (φ))R(φ)�T (φ)−1

= √
T

(
∂φ̄T

∂θ ′ (θ0)−E

(
∂φ̄T

∂θ ′ (θ0)

))
R(φ)�T (φ)−1 +√

TE

(
∂φtT

∂θ ′ (θ0)

)
R(φ)�T (φ)−1

+√
T

∂2φ̄T (θ̈)

vec(∂θ∂θ ′)′ [Ip ⊗ (θ̂T (φ)− θ0)]R(φ)�T (φ)−1 ≡ (1)+ (2)+ (3).

By Assumption 2(ii), (1) = OP(1)OP(T− 1
2 +δ2) = OP(T− 1

2 +δ2). By Assumption 3,

(3) = √
TOP(T−δ1)OP(T− 1

2 +δ2)OP(T− 1
2 +δ2) = OP(T− 1

2 −δ1+2δ2).

In addition,

(2) =
⎛⎜⎝

∂ρ1(θ0)
∂θ ′ R1(φ) 0

1
Tδ2−δ1

∂ρ2(θ0)
∂θ ′ R1(φ)

∂ρ2(θ0)
∂θ ′ R2(φ)

⎞⎟⎠ = J(φ)+O(T−δ2+δ1),

where we consider the usual partition of the moment restriction, i.e.,

E(φj(θ)) = ρj(θ)

Tδj
(j = 1,2), and R(φ) = (R1(φ)

... R2(φ)),
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with the columns of R2(φ) spanning the null space of ∂ρ1
∂θ ′ (θ0). As a result,

√
T

∂φ̄T

∂θ ′ (θ̂T (φ))R(φ)�T (φ)−1 = J +OP(T−δ2+δ1)+OP(T− 1
2 +δ2)+OP(T− 1

2 −δ1+2δ2)

= J +OP(T(−δ2+δ1)∨(− 1
2 −δ1+2δ2)). (B.6)

If the model is linear in θ , (3) is not involved and

√
T

∂φ̄T

∂θ ′ (θ̂T (φ))R(φ)�T (φ)−1 = J +OP(T(−δ2+δ1)∨(− 1
2 −δ2)).

To complete the proof for (i), we derive the asymptotic order of magnitude of 
̂iid(φ) −

(φ), where 
(φ) = E(φtT (θ0)φtT (θ0)′). By a mean-value expansion, we have

vec

⎛⎝1

T

T∑
t=1

φtT (θ̂T (φ))φtT (θ̂T (φ))′
⎞⎠ = vec(
(φ))+ vec

⎛⎝1

T

T∑
t=1

φtT (θ0)φtT (θ0)′ −
(φ)

⎞⎠
+ 1

T

T∑
t=1

∂

∂θ ′ vec[φtT (θ)φtT (θ)′]
∣∣∣∣
θ=θ̈

(θ̂T (φ)− θ0)

= vec(
(φ))+OP(T− 1
2 +δ2)

= 
(φ)+OP(T− 1
2 −δ1+2δ2),

where the last equality follows from the fact that − 1
2 + δ2 ≤ − 1

2 − δ1 + 2δ2. Since V̂θ (φ)

is a smooth function of
√

T ∂φ̄T
∂θ ′ (θ̂T (φ))R(φ)�T (φ)−1 and 
̂iid(φ), the claimed result

follows by the delta method. If the model is linear in θ , we would have V̂θ (φ)− Vθ (φ) =
OP(T(−δ2+δ1)∨(− 1

2 +δ2)).
To complete the proof for (ii), we rely on Proposition A.1 to obtain the asymptotic order

of magnitude of 
̂hac(φ)−
(φ), where 
 is the long-run variance of φtT (θ0). Under the
conditions in (ii), we can claim applying Proposition A.1 that


̂hac(φ)−
(φ) = OP(T− 1
2 + α

2 ).

Again, by the delta method, we can claim using (B.6) that

V̂θ (φ)−Vθ (φ) = OP(T(−δ2+δ1)∨(− 1
2 −δ1+2δ2)∨(− 1

2 (1−α))) = OP(T(−δ2+δ1)∨(− 1
2 (1−α))).

(B.7)

If the model is linear in θ , we have

V̂θ (φ)−Vθ (φ) = OP(T(−δ2+δ1)∨(− 1
2 +δ2)∨(− 1

2 (1−α))),

which, since 2δ2 < α, also implies (B.7). �

APPENDIX C. Mixed Identification Strength of Arbitrary Number
of Levels

This section establishes the consistency of mRMSC in a more general framework of moment
condition models with mixed identification strength of arbitrary number of levels. We claim
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that a moment condition model represented by the R
k-valued estimating function φ(·) has

mixed identification strength if, for some l ∈ N: φ ≡ (φ′
1, . . . ,φ

′
l)

′ ∈ R
k1 ×·· ·×R

kl :

E(φi(YtT,θ)) = ρi(θ)

Tδi
, i = 1, . . . ,l, and 0 ≤ δ1 ≤ ·· · ≤ δl <

1

2
. (C.1)

The case studied in the main body of the paper corresponds to l = 2.
We assume that the set of available moment restrictions to be selected from are collected

in the R
kmax -valued estimating function φmax satisfying the following assumption.

Assumption C.1. (i) φmax(·) satisfies (C.1), that is, φmax ≡ (φ′
max,1, . . . ,φ

′
max,l)

′ ∈
R

k1 ×·· ·×R
kl :

E
(
φmax,i(YtT,θ)

) = ρmax,i(θ)

Tδi
, i = 1, . . . ,l, and 0 ≤ δ1 ≤ ·· · ≤ δl <

1

2
,

where ρmax(·) is an R
kmax -valued function defined on the compact parameter set

� ⊂ R
p.

(ii) ρmax ≡ (ρ′
max,1, . . . ,ρ

′
max,l)

′ ∈R
k1 ×·· ·×R

kl is continuous on � and satisfies over
�: [ρmax(θ) = 0 ⇔ θ = θ0].

(iii) sup
θ∈�

√
T
∥∥φ̄max,T (θ)−E (φmax(YtT,θ))

∥∥ = OP(1) under PT , with φ̄max,T (θ) =
1
T

T∑
t=1

φmax(YtT,θ).

(iv) θ0 belongs to the interior of � and θ �→ φmax(Y,θ) is twice continuously differ-
entiable almost everywhere in a neighborhood Nθ0 of θ0.

(v) ∂ρmax
∂θ ′ (θ0) is full column rank and, for i = 1, . . . ,l, E

(
∂φmax,i(YtT,θ0)

∂θ ′
)

=
T−δi ∂ρmax,i

∂θ ′ (θ0) + o(T−δi) and
√

T sup
θ∈Nθ0

∥∥∥ φ̄max,T (θ)

∂θ ′ −E

(
∂φmax(YtT,θ)

∂θ ′
)∥∥∥ = OP(1)

under PT , with φ̄max,i,T (θ) = 1
T

T∑
t=1

φmax,i(YtT,θ).

(vi) δl < 1
4 + δ1

2 .
(vii) For all k, 1 ≤ k ≤ ki(i = 1, . . . ,l),

Tδi
∂2φ̄k

max,i,T (θ)

∂θ∂θ ′
P→ Hmax,i,k(θ),

under PT , uniformly over Nθ0 , where Hmax,i,k is a (p,p)-matrix function of θ and
φ̄k

max,i,T (θ) is the kth component of φ̄max,i,T (θ).

(viii) 
(φmax) = limT→∞ Var(
√

Tφ̄max,T (θ0)) is positive-definite, with variance taken
under PT .

For i = 1, . . . ,l, define

Jmax,i =
(

∂ρmax,1(θ0)′
∂θ

· · · ∂ρmax,i(θ0)′
∂θ

)′
.

Let s1, . . . ,sl be such that, for all i = 1, . . . ,l, Rank(Jmax,i) = s1 + ·· · + si, with
Rank(Jmax,l) = s1 + ·· · + sl = p. Let Rmax ≡ (R1 · · · Rl) be an orthogonal (p,p)-matrix
such that Ri is a (p,si)-full-column-rank matrix and, for all j = 2, . . . ,l,

Jmax,j−1Rj = 0.
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Let Jmax be the block-diagonal (kmax,p)-matrix with diagonal blocks (∂ρmax,i(θ0)/∂θ ′)Ri,
i = 1, . . . ,l, and let �T (φmax) be the block diagonal (p,p)-matrix with diagonal blocks

T
1
2 −δi Isi , i = 1, . . . ,l.

Assumption C.1 is sufficient—if we add that
√

Tφ̄max,T (θ0)
d→ N(0,
(φmax)) under

PT —to establish the asymptotic normality of the two-step GMM estimator, θ̂max. (See
Antoine and Renault (2012, Thm. 4.3).) More specifically,

�T (φmax)R−1
max(θ̂max − θ0)

d→ N(0,(J′
max
(φmax)−1Jmax)−1).

This asymptotic variance is the semiparametric efficiency bound for the estimation of
R−1

maxθ0 from (C.1). (See Dovonon et al. (2022).) As already mentioned in the case l = 2,
this bound is the cornerstone of our moment selection procedure and it can be consistently
estimated under the conditions in Assumption C.1. We can indeed claim, by relying on
Lemma 4.1 of Antoine and Renault (2012), that

Ĵmax ≡ √
T

∂φ̄max,T (θ̂max)

∂θ ′ Rmax�T (φmax)−1 P→ Jmax, under PT,

and, hence,(
Ĵ′

max
̂(φmax)−1Ĵmax

)−1 P→
(

J′
max
(φmax)−1Jmax

)−1
, under PT .

As in Section 4.2, any candidate model can be represented by a specific selection vector
c ∈ R

kmax with entries 0’s and 1’s. The set of all possible selection vectors is denoted C ,
and the candidate models are represented by φmax(·,c), c ∈ C .

Letting c be a selection vector, we write c = (c′
1, . . . ,c

′
l)

′ ∈ R
k1 × ·· · ×R

kl and, for
j = 1, . . . ,l, let sj(c) be defined as sj but with ρmax(·,c) replacing ρmax(·). Similar to
Definition 1, we introduce the following definition of a relevant moment restriction in the
general context:

Definition C.2. A subset of moment restriction characterized by cr ∈ C is said to be
relevant if the following two properties hold:

(i) s1(cr)δ1 +·· ·+sl(cr)δl = s1(ιmax)δ1 +·· ·+sl(ιmax)δl and Vθ (ιmax) = Vθ (cr), where
ιmax is a kmax-vector of 1’s.

(ii) For any decomposition cr = cr,1 + cr,2 of cr with cr,1,cr,2 ∈ C , either one of the
following holds:

(ii.a) s1(cr)δ1 +·· ·+ sl(cr)δl < s1(cr,1)δ1 +·· ·+ sl(cr,1)δl,

(ii.b) s1(cr)δ1 + ·· ·+ sl(cr)δl = s1(cr,1)δ1 + ·· ·+ sl(cr,1)δl and Vθ (cr,1)− Vθ (cr)

is positive semidefinite.

Similar comments to those following Definition 1 stand here as well. Lemma C.1 ensures
that s1(cr)δ1 + ·· · + sl(cr)δl = s1(ιmax)δ1 + ·· · + sl(ιmax)δl is equivalent to s1(cr) =
s1(ιmax), . . . ,sl(cr) = sl(ιmax). Therefore, the rotation matrix associated with φmax(·,cr)

can be set to Rmax and Vθ (ιmax) and Vθ (cr) in Definition C.2(i) are expressed in terms of
the same rotation matrix. Similar arguments stand for Definition C.2(ii).
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We base the estimation of cr , the selection vector corresponding to the relevant set of
moment conditions, on the mRMSC introduced by (24) with a penalization term κT =
κ(|c|,T):

mRMSC(c) = − 1

lnT
ln
∣∣∣Îθ,T (c)

∣∣∣+κ(|c|,T),

where Îθ,T (c) is given by (24) with φ(·) = φmax(·,c). As in Section 4.2, the relevant model
cr is estimated by ĉT defined by

ĉT = arg min
c∈C

mRMSC(c).

To formulate our consistency theory, we let

Ceff = {c ∈ C : s1(c)δ1 +·· ·+ sl(c)δl = s1(ιmax)δ1 +·· ·+ sl(ιmax)δl and Vθ (c) = Vθ (ιmax)}

and

Cmin = {c ∈ Ceff : |c| ≤ |c̄| for all c̄ ∈ Ceff}

and make the following assumption, which is mere adaptation of Assumption 6 to the more
general specification (C.1).

Assumption C.2. (i) cr satisfies Definition C.2 and Cmin = {cr}; (ii) ∀c ∈ C ,
ρmax(θ,c) = 0 ⇔ θ = θ0, and Rank(∂ρmax(θ0,c)/∂θ ′) = p; (iii) 
̂(c) converges in
probability, under PT , to 
(c) ≡ limT→∞ Var(

√
Tφ̄max,T (θ0,c)), positive-definite, with

variance taken under PT ; (iv) V̂θ (c) = Vθ (c) + OP(τ−1
T,c) under PT , where τT,c → ∞ as

T → ∞; and (v) ∀ c ∈ C and c̃,c̄ ∈ C : |c̄| > |c̃|, min(τT,c̃,τT,c̄) · ln(T) · (κ(|c̄|,T)−
κ(|c̃|,T)) → ∞ and lnT ·κ(|c|,T) → 0 as T → ∞.

Note that Assumption C.2 is the same as Assumption 6. We only replace in the latter the
definition of the relevant model by the more general concept above, and φmax and ρmax
are, respectively, replaced by their more general version in Assumption C.1. Similar to
Theorem 4.2, we can now claim the following result.

Theorem C.1. If Assumptions C.1 and C.2 hold, then ĉT converges in probability to cr
as T → ∞.

This result shows that the optimal model with respect to mRMSC converges to the
relevant model cr as the sample size grows when selection is made among candidate
models satisfying point identification and first-order local identification properties. This
is an extension of Theorem 4.2 to the case where l ≥ 2 and, in a similar way, is at the core
of the consistency of mRMSC over the whole set of candidate models. Indeed, as shown
by Theorem 4.3, we can also show in this context that, with probability approaching 1, cr
outperforms candidate models that fail point identification or first-order local identification
properties. We can also claim that the selection procedure yields a model that is efficient
since we can establish an analog of Proposition 4.4 in the current configuration. We do
not propose a formal exposition of the analogs of Theorem 4.3 and Proposition 4.4 to save
space.
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Proofs
Lemma C.1. Let c = (c′

1, . . . c′
l)

′ ∈ {0,1}k1 × ·· · × {0,1}kl be a candidate model. For
i = 1, . . . ,l, define

Jmax,i =
(

∂ρmax,1(θ0)′
∂θ

· · · ∂ρmax,i(θ0)′
∂θ

)′
and

Jmax,i(c) =
(

∂ρmax,1(θ0,c1)′
∂θ

· · · ∂ρmax,i(θ0,cl)
′

∂θ

)′
.

Let s1, . . . ,sl and s1(c), . . . ,sl(c) be such that

Rank(Jmax,i) = s1 +·· ·+ si, and Rank(Jmax,i(c)) = s1(c)+·· ·+ si(c).

Finally, let Rj ( j = 1, . . . ,l) be a collection of full-column-rank (p,sj)-matrices such that,
for each i = 1, . . . ,l, the columns of (R1 · · · Ri) span those of J′

max,i and Jmax,iRj = 0 for
all j = i+1, . . . ,l.

If Rank(Jmax,l) = Rank(Jmax,l(c)) = p and s1δ1 + ·· · + slδl = s1(c)δ1 + ·· · + sl(c)δl,
then

s1 = s1(c), . . . ,sl = sl(c).

Furthermore, we also have that, for each i = 1, . . . ,l, the columns of (R1 · · · Ri) span those
of Jmax,i(c)

′ and Jmax,i(c)Rj = 0, for all j = i+1, . . . ,l.

Proof of Lemma C.1. Since for each j, Jmax,j is Jmax,j(c) plus extra rows,

Rank(Jmax,j(c)) = s1(c)+·· ·+ sj(c) ≤ s1 +·· ·+ sj = Rank(Jmax,j).

We also have

0 = (s1(c)− s1)δ1 + (s2(c)− s2)δ2 +·· ·+ (sl(c)− sl)δl

=
l−1∑
j=1

⎡⎣ j∑
i=1

(si(c)− si)

⎤⎦(δj − δj+1)+ δl

l∑
i=1

(si(c)− si)

=
l−1∑
j=1

⎡⎣ j∑
i=1

(si(c)− si)

⎤⎦(δj − δj+1),

where the last equality follows from the fact that Rank(Jmax,l(c)) = s1(c)+·· ·+ sl(c) =
p = s1 +·· ·+ sl = Rank(Jmax,l). Since δj ≤ δj+1, each of the terms in this summation is

nonnegative and it results that each of them is nil. We can then claim that
∑j

i=1(si(c)−si) =
0 for each j or equivalently si(c) = si for each i = 1, . . . ,l−1. Moreover, since all the si’s and
si(c)’s add to p, this also shows that sl(c) = sl. This shows the first statement. The second
one follows trivially. �

Proof of Theorem C.1. Analogous to previous notation, let

V̂θ (c) =
((√

T
∂φ̄T

∂θ ′ (θ̂T (c))Rmax(c)�T (c)−1
)′


̂(c)−1
(√

T
∂φ̄T

∂θ ′ (θ̂T (c))Rmax(c)�T (c)−1
))−1

,
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where φ in this definition includes only the components of φmax selected by c. Under

Assumptions C.1 and C.2(ii), ‖θ̂T (c)−θ0‖ = OP(T− 1
2 +δl) under PT . Thanks to Lemma 4.1

of Antoine and Renault (2012), we can claim that
√

T ∂φ̄T
∂θ ′ (θ̂T (c))Rmax(c)�T (c)−1 con-

verges in probability to J(c) ≡ Jmax(c), and as a result, V̂θ (c) converges in probability to
(J(c)′
(c)−1J(c))−1. Note that

V̂θ (c) = 1

T
�T (c)Rmax(c)′

(
Îθ,T

)−1
Rmax(c)�T (c).

Hence,

ln
∣∣∣V̂θ (c)

∣∣∣ = −2(s1(c)δ1 +·· ·+ sl(c)δl) lnT − ln
∣∣∣Îθ,T ∣∣∣ .

Thus,

−
ln
∣∣∣Îθ,T ∣∣∣
lnT

= 2(s1(c)δ1 +·· ·+ sl(c)δl)+
ln
∣∣∣V̂θ (c)

∣∣∣
lnT

and

mRMSC(c) = 2(s1(c)δ1 +·· ·+ sl(c)δl)+
ln
∣∣∣V̂θ (c)

∣∣∣
lnT

+κ(|c|,T). (C.2)

Let

	T (c,cr) = mRMSC(c)−mRMSC(cr).

Thanks to Assumption C.2(i), s1(c)δ1 +·· ·+ sl(c)δl ≤ s1(cr)δ1 +·· ·+ sl(cr)δl; otherwise,
s1(c)δ1 + ·· · + sl(c)δl > s1(ιmax)δ1 + ·· · + sl(ιmax)δl, which is impossible. This would
indeed require that sj(c) > sj(ιmax) for some j.

We shall distinguish the following two cases: (1) s1(c)δ1 + ·· · + sl(c)δl < s1(cr)δ1 +
·· ·+ sl(cr)δl and (2) s1(c)δ1 +·· ·+ sl(c)δl = s1(cr)δ1 +·· ·+ sl(cr)δl.

Case (1): s1(c)δ1 +·· ·+ sl(c)δl < s1(cr)δ1 +·· ·+ sl(cr)δl. Since V̂θ (c)
P→ Vθ (c), and

V̂θ (cr)
P→ Vθ (cr) (both under PT with finite limits) and κ(|c|,T) → 0 as T → ∞ for all c,

we can claim that 	T (c,cr)
P→ 2[(s1(c)− s1(cr))δ1 +·· ·+ (sl(c)− sl(cr))δl] < 0, meaning

that cr will be chosen over c as T gets large with probability approaching 1. The rest of the
proof is similar to the case l = 2.

Case (2): s1(c)δ1 + ·· · + sl(c)δl = s1(cr)δ1 + ·· · + sl(cr)δl. Lemma C.1 ensures that
Vθ (c), Vθ (cr), and Vθ (ιmax) can be expressed in terms of the same rotation matrix Rmax.
By definition, Vθ (cr) = Vθ (ιmax) and, considering Vθ (c) as expressed in terms of Rmax
as well, standard results of GMM theory ensure that we either have Vθ (c) = Vθ (cr) or
Vθ (c)−Vθ (cr) is positive semidefinite. We further consider these two cases.

Case (2-i): Vθ (c) = Vθ (cr). We have

min(τT,c,τT,cr ) ln(T)	T (c,cr) = min(τT,c,τT,cr )
(

ln |V̂θ (c)|− ln |Vθ (c)|
)

−min(τT,c,τT,cr )
(

ln |V̂θ (cr)|− ln |Vθ (cr)|
)

+min(τT,c,τT,cr ) ln(T)(κ(|c|,T)−κ(|cr|,T))

= OP(1)+min(τT,c,τT,cr ) ln(T)(κ(|c|,T)−κ(|cr|,T)),
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where we use Assumption C.2(iv). By Assumption C.2(iv), this quantity tends to +∞ with
probability 1 as T grows and we can deduce that 	T (c,cr) is positive with probability 1 as
T grows. This means that cr is eventually selected over c.

Case (2-ii): Vθ (c)−Vθ (cr) is positive-semi-definite and different from 0. From Magnus
and Neudecker (2002, Thm. 22), |Vθ (c)| > |Vθ (cr)| and we have

ln(T)	T (c,cr) = ln |V̂θ (c)|− ln |V̂θ (cr)|+ ln(T)(κ(|c|,T)−κ(|cr|,T))

= ln |Vθ (c)|− ln |Vθ (cr)|+oP(1).

Therefore, 	T (c,cr) is positive with probability 1 as T grows.

Taken together, Cases (1), (2-i), and (2-ii) establish that ĉ
P→ cr under PT as T → ∞. �

SUPPLEMENTARY MATERIAL

Dovonon, P., F. Doko Tchatoka, and M. Aguessy (2022). Supplement to
“Relevant moment selection under mixed identification strength,” Econometric
Theory Supplementary Material. To view, please visit: https://doi.org/10.1017/
S0266466622000640.
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