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Abstract

Micro-UAV systems used for metric purposes are highly capable of capturing relatively high-resolution, chro-
matically stable aerial images at low altitudes. In micro-UAV-based aerial imaging-based structure-from-motion
(a-SfM) applications, the flight mission planning problem can be customised to achieve different objectives. The
requirement for minimising the time spent in the air, which is crucial for energy conservation, can be achieved by
designing the shortest possible flight path. Spatial resolution in the captured aerial images can be significantly pre-
served by maintaining the ground sampling distance (GSD) value within a 95% confidence interval throughout the
flight path. Fuel efficiency can be improved by minimising the number of turning manoeuvers required to follow the
flight path during the flying mission. In this paper, four distinct flight mission planning processes are delineated to
enable the energy-efficient and effective implementation of aerial imaging missions, with their associated parame-
ters optimised using the colony-based search algorithm (CSA). The obtained experimental results demonstrate that
the proposed flight mission planning processes are highly successful in the energy-efficient and effective execution
of aerial imaging missions.

Nomenclature

Below are the technical expressions for some of the variables used in Fig. 2

GSD ground sample distance

Vertices ordered vertex coordinates of the closed polygon ([N x 2] as [x; y])
DEndiap forward-overlap ratio (0 <p < 1)

Gsidelap side-overlap ratio 0 < ¢ < 1

H Flight altitude (meters)

ImageWidth image width in pixels

ImageHeight image height in pixels

f focal length of camera as meter

ccdWidth width of imaging sensor as meter

azimuth direction angle for the flight start (in degrees)

flightPaths cell array containing x and y spatial coordinates for each flight path
waypoints combined waypoints of all flight paths (M x 2 sized matrix)
totalTurns total number of turns made by the drone

dp vertices of turn locations

The following are the technical expressions for some of the variables used in Fig. 3.

U (low;, up;) continuous uniform distribution with parameters a and b
U{1,2,3} discrete uniform distribution with parameters a and b
ObjFun objective function
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rperm (a) randomly shuffles the positions of integer values between [1, a] according to a uniform
distribution

shuffle (a, b) randomly shuffies integers [1, a], returns first b values

rperm (a; b) randomly shuffles the positions of integer values between [1, a] according to a uniform
distribution and returns the first b of them

rnd () generates a random real-valued number between [0,1] according to the rules of a
uniform distribution each time it is called

rnd (a;b) generates a 2D matrix with ‘a’ rows and ‘b’ columns each time it is called; he elements
of the matrix are random values within the range [0,1], following the rules of uniform
distribution

sign (-) returns sign of numeric value ()

%) element-wise division operator (Hadamard division operator)

sign (+) returns the sign of the numeric value (.)

o element-wise multiplication operator (Hadamard multiplication operator)

LevyDist («, B, N, 1) generates a matrix with uniform random-valued elements having N rows and 1 column,
using a Levy distribution with parameters («, B)

zeros (a, b) generates a 2D matrix of size [a b] with all elements set to zero

1 In discrete mathematics, represents the ceiling function

sortindex (a,’ascend’) sorts the elements of the vector ‘a’ in ascending order and returns the resulting sorted
vector

radi ([c, d]) generates a uniform single integer value between [c d]

abs (+) absolute value function

1.0 Introduction

An optimally designed flight mission planning (FMP) process [1-3] reduces the energy and cost
required for the associated flight operations while indirectly enhancing the accuracy of applications
based on advanced structure-from-motion (a-SfM) techniques, such as neural radiance fields (NeRF),
Gaussian splatting, multi-view stereo (MVS) and structure from motion (SfM). Therefore, FMP is a
critical process that ensures the effective capture of aerial images, enabling accurate three-dimensional
reconstructions and geospatial analyses [4—6].

FMP involves designing a detailed strategy that specifies parameters such as altitude, speed, trajec-
tory, camera settings and image timing to meet specific project goals. The resulting data must align
with rigorous standards of accuracy, coverage and usability for applications like topographic mapping,
3D modelling and terrain analysis. Beyond technical precision, the flight plan also aims to optimise
operational efficiency, minimise costs and reduce environmental impacts [7-13].

The first step in FMP is to understand the project’s objectives. For instance, creating a digital eleva-
tion model [14-16], an orthophoto, or a detailed 3D reconstruction requires distinct considerations. Key
variables include the number and placement of ground control points (GCPs), which are essential for
georeferencing and validating the accuracy of the final outputs. GCP distribution [17, 18] plays a pivotal
role in ensuring reliable results. Additionally, constraints such as terrain complexity, weather conditions
and equipment limitations must be factored into the plan. A well-designed trajectory ensures compre-
hensive coverage while adhering to these constraints, directly influencing data quality and processing
efficiency [19-23].

Fuel efficiency is a growing concern in a-SfM [17, 24, 25] due to rising operational costs and the need
for sustainable practices. Optimising flight paths can significantly reduce fuel consumption by minimis-
ing unnecessary manoeuvres and excessive distances travelled. For instance, adopting grid-based flight
patterns with minimal turns and maintaining consistent altitudes optimised for the camera’s focal length
and the desired ground sample distance (GSD) significantly improves fuel efficiency. Such refinements
in flight planning not only reduce carbon emissions but also enhance the economic feasibility of large-
scale aerial surveys. Achieving a balance between thorough coverage and efficient operations is crucial
for the success of modern FMP applications [26-32].
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StM-based aerial mapping is a state-of-the-art method for aerial imaging. To compute high-accuracy
spatial coordinates of points on a topographic surface using SfM-based aerial imaging, completing the
aerial triangulation process with high precision is essential. High-accuracy aerial triangulation aids in
tightly linking sequential stereo models. Achieving high-quality aerial triangulation ensures the pro-
duction of high-quality topographic surface data. The quality of the aerial triangulation process heavily
depends on obtaining highly accurate camera projection centre coordinates. However, due to the dynamic
nature of the aerial imaging process, camera projection centre coordinates alone may not suffice to
achieve the required accuracy for aerial triangulation. Therefore, GCPs with sufficient spatial distribu-
tion are established across the imaged topographic surface. Accuracy of aerial triangulation is the highest
at GCP locations but oscillates in a parabolic form between GCPs. The amplitude of these oscillations
varies depending on the distances between GCPs and on whether the GCPs include (x, y, z) information
or only (z).

The number of GCPs can be defined as a function of the desired accuracy of the point cloud resulting
from SfM-based aerial imaging. Studies using a DJI Phantom 4 Pro drone have shown that a GCP
network spaced 125-150 m apart on the topographic surface is sufficient to achieve a point cloud with
better than 5 cm spatial accuracy in SfM-based processing. Real-time kinematic (RTK)-enabled drones
typically utilise a local correction service that supports the networked transport of RTCM via internet
protocol (NTRIP).

Accuracy is a critical factor in FMP [28, 33-35], as the primary objective is to generate data that
accurately reflects the physical environment [36, 37]. Key elements such as flight altitude, camera cali-
bration [38] and imaging geometry must be meticulously calculated to achieve this goal. Altitude plays
a significant role in determining resolution—lower altitudes produce higher levels of detail but cover
smaller areas, whereas higher altitudes offer broader coverage but with reduced precision. Consistent
imaging geometry is essential, particularly for processes like bundle adjustment in 3D reconstruction,
as it ensures reliable and accurate results. By optimising flight parameters, planners can reduce errors
and ensure that the derived coordinates closely match real-world measurements.

Forward-overlap (Endlap) and side-overlap (Sidelap) ratios of captured adjacent aerial images [39,
40] are critical to FMP, directly influencing 3D scene reconstruction using a-SfM methods. Typically,
60-80% endlap along the flight path and 40-70% sidelap between adjacent paths are required to ensure
sufficient common features for feature matching and triangulation. Inadequate overlaps may cause cov-
erage gaps or insufficient data for stereo processing, leading to incomplete or inaccurate models. These
ratios vary based on camera field of view, terrain complexity and application needs, making them essen-
tial to flight planning. Epipolar geometry principles enhance planning by ensuring consistent imaging
configurations, aiding relative orientation and stereo matching while minimising distortions for reliable
3D reconstructions. Flight planning balances precision, efficiency and sustainability by optimising paths,
maintaining accuracy and adhering to geometric principles, yielding high-quality data for geospatial
analysis and cost-effective, eco-friendly mapping.

Micro-UAV path planning problems predominantly involve discrete variables, exhibit complex struc-
tures, and are often non-differentiable. Consequently, evolutionary computing methods are frequently
employed [3, 30, 41-50] to address micro-UAV path planning problems [51-54]. In this paper, four
distinct problems defined for micro-UAVs are solved using CSA [51], a swarm-based evolutionary
computing method. CSA is specifically designed to compute the global minimum of real-valued numer-
ical problems and it operates on a multi-swarm basis and incorporates a structurally unique artificial
morphogenesis process.

The contributions of the proposed method are as follows:

o The FMP problem was heuristically solved using CSA across four distinct scenarios, each
involving varying flight and terrain coverage conditions.

« The FMP problem was solved to minimise the total flight distance at a fixed flying altitude.

« The FMP problem was solved to minimise 95% of the GSD values of pixels in captured aerial
images along the flight path.
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o The FMP problem was solved to minimise 95% of the GSD values of pixels in captured aerial
images while reducing the number of turns along the flight path.

o The FMP problem was solved to maximise the number of aerial stereo images captured, ensuring
complete coverage of the given terrain.

The rest of this paper is organised as follows: In Section 2, flight path planning for aerial imaging
is introduced. In Section 3, the CSA is presented. In Section 4, experiments are discussed, and finally,
conclusions are provided in Section 5.

2.0 Flight path planning for aerial imaging

Aerial imaging-based topographic mapping methods can only capture aerial images that meet specific
geometric requirements through the use of an optimised FMP process. Therefore, FMP is an essen-
tial process for aerial imaging-based topographic mapping applications. From the perspective of aerial
imaging-based mapping methods, FMP ensures that the captured aerial images achieve the desired
numerical overlap limits in both forward and side directions. This process facilitates the mutual orienta-
tion of consecutive images and enables the generation of a 3D stereo model of the imaged area. To meet
the need for high-accuracy aerial mapping production, it is crucial to pre-plan an adequate GSD [55-58]
value during the initial step of FMP. In the experiments conducted in this paper, TUSAGA-AKTIF was
used for the global positioning of the micro-UAV. TUSAGA-AKTIF is a GPS-based real-time global
positioning network [59].

Variations in elevation on the topographic surface imaged using micro-UAVs can cause numerical
fluctuations in the GSD. Additionally, micro-UAV platforms generally have very limited onboard energy
resources. For this reason, optimising the flight plan to minimise fluctuations in the GSD is a necessity
for efficient use of the micro-UAV’s onboard energy. The general analytical definition of GSD is provided
in Equation (1).

Hmetcr : CCdVVidthmeter/pixel _ Hmeter : SenSOV‘/Vidthmm

GSD et pixet = - i ’
feter/pixe f;neter f;nm ) I mag € Wldth’)ixgls

ey

where, H represents the flight altitude (i.e. elevation hight), SensorWidth denotes the physical size of the
sensor in millimetres, and f corresponds to the focal length. ImageWidth and ccdWidth,,e e, pies denote the
width of the image, measured in pixels, and the width of a single pixel in the camera’s CCD, measured
in meters, respectively. In this paper, altitude measurements were obtained using barometric methods.

The height of a single image footprint corresponds to the flight direction of the micro-UAV. The width
of a single image footprint on the ground (GSDW,,..,) and the height of a single image footprint on the
ground (GSDH,,.,) are calculated using Equations (2) and (3), respectively.

GSDWmeler = GSDmeter/pixels : ImageWidthpixeln (2)

GSDHmeler = GSDmeter/pixelx : ImageHeighpixels . (3)

Aerial imaging based mapping methods necessitates a sufficient degree of image overlap to ensure
accurate processing and reconstruction. Specifically, forward overlap, which refers to the overlapping
area along the flight path, is typically maintained within a range of 60% to 80%. Similarly, side overlap,
representing the overlapping region between adjacent flight lines, generally falls within the range of
40% to 70%. These overlap parameters are critical for achieving high-quality results in photogrammetric
analyses.

The distance between adjacent images, Endlap,..,, and distance between side-flight lines,
Sidelap,,...,, are calculated by using Equations (4) and (5):

Endlapmeter = GSDWmeter : (1 - pEndlnp) ) (4)

Sidelapmeter = GSDHmeter : (1 - qSidelap) > (5)
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Figure 1. Blue-coloured convex polygon is used for FMP optimisation tests. The spatial coordinates
are defined in the datum of WGS84 and projection system of EPSG:3395 (WGS84/World Mercator). The
red-coloured FMP is associated with an azimuth = 30°, whereas the green-coloured FMP corresponds
to an azimuth = —30°,

where praq, and gsige,, denote forward-overlap and side-overlap values of aerial images as %, respec-
tively.

In this paper, the 2D vertex coordinates of the polygon for which the relevant flight plan is to be
created have been defined using the WGS84 datum and the EPSG:3395 (WGS84/World Mercator) pro-
jection system. The Endlap and Sidelap values were used to completely cover the 2D polygon surface,
where the corresponding FMP is to be performed, with a point-mesh grid of size [Endlap Sidelap]. The
central position of the generated point-mesh coincides with the centre of the corresponding 2D poly-
gon. Each point in the point-mesh represents a waypoint. Each waypoint corresponds to an aerial image
capture location. By optimising the azimuth of the Point-Mesh relative to the centre of the 2D polygon,
the number of waypoints remaining inside the polygon is maximised, thereby achieving maximum cov-
erage that satisfies the flight parameters over the corresponding 2D polygon. In this paper, the relevant
azimuth value is calculated using an evolutionary optimisation algorithm called the colony-based search
algorithm (CSA) [51]. The waypoints are organised as an interlacing-path to generate the flight path.
The number of turns on the interlacing-path corresponds to the total number of turns.

An FMP with an optimal flight path and conditions designed for a micro-UAV facilitates the efficient
use of on-board energy. In Fig. 1, two different non-optimal FMPs, calculated for azimuth = 30° and
azimuth = —30°, are shown in red and green, respectively, over the test polygon used in the experiments
presented in this paper. The additional flying mission parameters for these flights are provided as fol-
lows: prugiay = 0.80, Gsiverqy = 0.70, H =200 m, ImageWidth = 5472 pixels, ImageHeight = 3648 pixels,
f=8.8-10"m, and ccdWidth = 2.41 - 10~° m. For an FMP that ensures optimal conditions, the azimuth
angle should be optimised according to the objective function.

The pseudo-code of the FMP method proposed in this paper is provided in Fig. 2, where the lines
#1—4 compactly express the calculation processes related to the GSD value. The process for calculating
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Input
o polygonVertices:Coordinates of the polygon vertices (N x 2 matrix)
e p: Forward overlap rate (0 < p < 1)
e b: Lateral overlap rate (0 < b < 1)
o [z Flight altitude (meters)
e t: azimuth angle (in radians)
Output:
e flight Paths: Coordinates for each flight path (cell array)
o waypoints: All waypoints of flight paths (M x 2 matrix)
e totalTurns: Total number of turns made by the drone

1 cameraFocal Length < 35 x 1073 r Focal length
2 sensorWidth « 36 x 103 > Camera sensor width
3 sensorHeight < 24 x 1073 > Camera sensor height
« GSD  ZteneWidthh > GSD
5 EndLap + GSD - (1 —p) > Forward overlap
¢ Sidelap + GSD - (1—b) > Lateral overlap
7 centroid < mean(polygonVertices, 1) > Centroid of the polygon

> Rotation matrix

cos(t) —sin(t)

E R |:*si||{.’} cos(t) :|
9 rotatedPolygonVertices « (poly. _jf)HV(’? tices — centroid) - RT + centroid
10 xCoords + rotated PolygonVertices(:, 1) > X coordinates
11 yCoords + rotated PolygonVertices(:,2) > Y coordinates
12 minX « min(xCoords), max X < max(xCoords)

minY < min(yCoords), mazrY <+ max(yCoords)
18 flight Paths « [|, waypoints + [], totalTurns < 0
14 for y € minY : Sidelap : mazY do
15 if mod(i,2) = 1 then

16 // Left to right

17 xline «+ minX : EndLap : max X

18 end

19 else

20 // Right to left

21 xLine +— maxX : —EndLap : minX

22 end

23 linePoints « [xLine', repmat(y, length(xzLine), 1))
24 inPolygon + inpolygon(linePoints(:, 1), line Points(:

. 2), rotated PolygonVertices(:, 1), rotated PolygonVertices(:, 2))
filteredPoints « linePoints(inPolygon, :)

25 if filteredPoints # || then

26 flight Paths + flight Paths U filtered Points

waypoints + waypoints U filtered Points

totalTurns + totalTurns + 1

27 end

28 end

9 if folalTurns > 0 then

30 | totalTurns + totalTurns — 1

31 end

a2 waypoints « (waypoints — centroid) - R + centroid return
[flight Paths, waypoints, total T'urns

]

Figure 2. The pseudo-code of the FMP algorithm, proposed for computing waypoints and total turns.

Endlap and Sidelap given in lines #5-6 and lines #14-28 of Fig. 2 analytically and compactly describe
the processes for constructing the interlacing path, calculating waypoint positions, and determining the
total number of turns.

In this paper, the relevant FMP problem has been solved separately for four different scenarios.
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The endurance of micro-UAVs in the air is generally limited due to the restricted capacity of their on-
board energy sources. Since the flight endurance is a function of the total flight path length, the classical
approach for FMP aims to minimise the total flight path length. The first FMP problem is based on
minimising the total flight path length. This optimisation was achieved by applying Equation (6).

n—1
ObjFun : arg min TotalDistance = E \/(x,+1 — )+ i — ¥+ @ — 2 (6)
——

azimuth =1

where, the flight path calculated as a result of the FMP is represented by a list of waypoints, (x, y, 2);
indicates the 3D spatial position of the i waypoint.

In aerial imaging-based a-SfM applications utilising micro-UAVs, the accuracy levels of the calcu-
lated topographic surface points may exhibit undesirable local fluctuations due to variations in GSD
values. Therefore, it may be necessary to prepare the FMP in a manner that ensures relatively stable
GSD values along the waypoints. The second FMP planning problem aims to find the narrowest 95%
confidence interval for the GSD values calculated for the image capture points along the flight path.
This ensures that the GSD values for the image capture points, and consequently the flight path, have

the minimum average and standard deviation. This problem is modelled by Equation (7).

Ob]FLm .arg min (H/GSD + 3. OGSD) (7)
N —
azimuth
where [, 0'l45p = [mean (GSD) , std (GSD)] |  GSD = [GSDy,.), | denote the mean and standard

deviation of GSD values.

The turning manoeuvres of micro-UAVs involve complex processes, and the efficiency of on-board
energy usage increases as the number of turns decreases. In a-SfM applications based on micro-UAV-
supported aerial imaging, the accuracy levels of the calculated topographic surface points may exhibit
undesirable numerical fluctuations due to the influence of GSD values by local topographic height vari-
ations. Therefore, it may be necessary to prepare an FMP that ensures a relatively stable GSD value
along the waypoints while minimising the number of turns. The third FMP problem aims to minimise
the 95% confidence interval for the GSD values calculated for the image capture points along the flight
path and to minimise the number of required turns. This problem is modelled using Equation (8).

ObjFun: argmin [(ugsp + 3 - ogsp) + totalTurns] . (8)
———’
azimuth

Micro-UAVs commonly utilise the Stop-Turn-Go strategy to complete their turning manoeuvres. The
number of turning manoeuvres is a result of the FMP. Therefore, it may be necessary to prepare an FMP
that minimises the number of turns for energy conservation. The fourth FMP planning problem aims
to minimise the total number of turns, totalTurns (see lines #25-#31 of the Fig. 2). This problem is
modelled using Equation (9).

ObjFun : arg min totalTurns 9)
——

azimuth

In this paper, CSA has been employed to address the planning problems formulated in Equations
(6)—(9) for determining the optimal azimuth value. Fundamentally, CSA is responsible for computing
the azimuth angle of the flight paths as defined in line #8 of Fig. 2. Once this azimuth angle is determined,
the flight plan parameters that satisfy the corresponding geometric constraints can be calculated using
the algorithm presented in Fig. 2.

3.0 Colony-based search algorithm (CSA)

The CSA [51] was developed as an evolutionary-based global minimiser tailored for addressing single-
objective, bounded or unbounded real-valued numerical problems. Within the current iteration, CSA
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focuses solely on evolving the patterns within the clan matrix, which is formed by randomly chosen
patterns from a parent population referred to as the colony matrix. CSA operates as a non-recursive,
iterative and reasonably robust approach. Its framework comprises initialisation, selection, numerical
evolution and updating phases. The mutation mechanism in CSA is integrated with the random crossover
process, collectively termed the morphogenesis process. The algorithmic design of CSA is thoroughly
elaborated, step-by-step, in the subsequent descriptions.

The primary population of CSA, termed the Colony Matrix, p0, comprises a random solution vector
with dimensions equivalent to the Clan Matrix, p, multiplied by 7 time. The initial Colony Matrix,
p0, along with the objective function values of the Colony patterns, fitp0, are determined through the
methodology outlined in Equation (10).

POicirnj=1:0 ~ Ullow;, up;)

) (10)
fitpO = ObjFun (p0)
where ObjFun, low, and up denote the objective function, the lower and upper bounds of the search
space, respectively. In this study, the Mersenne Twister uniform pseudo-random number generator is
employed to produce random numbers utilised across all experimental methods. In CSA, the initial
values of moment and initindex are set to moment,, ;4. = 0 and initindex = {1:N}, respectively.
Equation (11) can be used to express the clan, p, and objective function values of the p, fitp, patterns.

[p; fitp] = [pO(index, :); fitpO(index)] (11

where index = rprm (T - N; N) | (initindex ~= inex) and updated initindex = index. Equation (12) is
used to generate the scale factor, or scale, that the CSA uses to regulate the direction vector’s amplitude:

(rand (N; ¢) — 0.50) @ (rand (N, ¢) — 0.50) If rand() < rand()
scale = (12)
sign (rand (N; 1) — 0.50) o ® else

where @ ~ LevyDist (o, B,N,1) and @ denote scaling vector, and Hadamard division operator,
respectively. The individuals of @ have Levy distribution with o, 8 location and shape parameters.
@ supplies Levy flight ability to CSA. In the CSA framework, Levy flights provide the essential
exploration capability needed to overcome local optima and identify a variety of high-quality solutions
within intricate search spaces. By incorporating sporadic long jumps, Levy flights strengthen the global
search process, enhancing algorithm robustness and reducing the likelihood of stagnation. The Levy
distribution, distinguished by its heavy-tailed nature, is a probability distribution that exhibits a greater
tendency to generate extreme values than the normal distribution. It is characterised by its probability
density function (PDF), as specified in Equation (13).

)= Loxp (-t ) (!
f(x’a’ﬁ)_2nexp( 2(x—ot)>( (X—Ol)m) "

where, x, ¢ and 8 denote the random variable, the location parameter, and the scale parameter of the
distribution, respectively. In CSA, the ® used in Equation (12) is generated using Equation (14):

=8 (rand)+1)@w? | o~T (a;k), k~{2:5) (14)

where I' («; ) denotes Gamma distribution with the parameters of («; «).
The value of ¢ used in Equation (12) is computed using Equation (15):

If rand() <rand() , then c=1 else c=D (15)
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Using the steps outlined in Equation (16), the binary valued mutation control matrix, m, of CSA is
produced.

m = Oy.p

for j=11t N

ind = rperm (D)

Koy or = abs(randi([0. 1]) — rand() 41100y (16)
e=ind (1: [kipger - D)

m(k,e):=1
end

where e denotes piecewise-power operator. CSA uses Equation (17) to generate evolutionary
direction, dx.

p[v2]—p[vl] v=1
dx={ plvl]—p yv=2, (17)
p[indexO [mndi (1,N/5)] , :] —p v=3
where [v1,v2] = [rperm (N;N) , rperm (N, N)], vl #v2 and index(0 = sortindex (fit,'ascend’) N v~
U{1,2,3}.
The morphogenesis matrix, px, of CSA is generated using Equation (18):
px=p+scaleomodx+s (18)

where s = (rand (N; 1) — 0.50) o rand(N; 1)*@di(z10D
In CSA, Equation (19) is used to update the individuals that exceed the search boundaries:

for k=1to N

forl=11to D

If px(k,1) < low(l), px(k,1) =low(l) + rand() """ . (up(l) — low(l)) (19)
If px(k,. D) > up(l), px(k,l) =up(l) + rand()" """ . (low(l) — up(1))

end

end

The objective function values of px patterns are computed using Equation (20):
fitpx = ObjFun(px) (20)

The orders, ind of the px patterns supply better solutions then the corresponding patterns are obtained
using Equation (21):

ind (—ﬁtpx“:[\]) <ﬁtp{l:N} | ind € {l N} (21)

In the concluding stage of each iteration, CSA modifies the associated colony patterns by incorpo-
rating the clan patterns as outlined in Equation (22).

[p(ind, ) ,ﬁtp(ind)] = [px(ind, 3] ,ﬁtpx(ind)]
[pO(index, 3), fitO(index)] = [p, ﬁtp]

indbest < fitp0,,qpes; = min(fitp0)

[gbest, gmin] = [pO(indbest, D, ﬁtO(indbest)]

(22)
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1 Function C8A(fuc, userdata, N, D, low, up, Epk):

2 T+ 2

3 initindex + 1 : N;

4 moment +— 0;

5 PO;  ~ Ullow;, up;) | 1<i< N, 1<j<D;
(] fitp0 + ObjFun(fne, pp, userdatal;

T for epoch + 1 to Epk do

8 repent

o | index + rperm(T - N, N};

10 until sumfinder = initindex) == 0

11 initindex + index;

12 p + polindex, :);

13 fitp + fitp0{index);

14 if rand < rand then c +— 1 else ¢« I}

15 if rand < rond then

16 |  seale + (rand(N,e) — 0.5)/(rand(N, e) — 0.5);
1T alsa

18 t— [=1,1];

19 scale +— sign(rand( N, 1) — 0.5) - levy_dist(randi([2, 5], N, 1), randi(10, N, 1)t[rands(2)]y.
20 m +— zeros( N, D);
21 for j + 1 to N do

22 ind + rpers(D);

23 k +— |ranas(o, 1)) — rmmﬂiflﬁ-‘”]”:

24 b o= ind{l:ceil(k - 2));

25 m(j. b)) — 1;
26 ropent

27 vy + rperm(N);

28 vg 4 rperm{ N );
29 until vy # 1: N and va # vy and vg # 1: N;
30 indexrg +— sorted indices of fitp ascending;
31 v 4= randi{3);
32 switeh v do

33 case | do

a4 L dx = plva, ) = plvyg. i
a5 case ? do

a6 L dx e« plvy.:) — ps
a7 ease § do

a8 L dx «— plindexqg(randi{[1, [N/5]])),:) — p;
39 s + (rand(N, 1) — 0.5) - rand( N, 1)720d1([2,10]),
40 pr +— p+ scale - m - dr + & - moment;
41 for k +— 1 to N do
42 for | + 1 to [ do

43 if pa(k, 1) < low(l) then

a4 L ek, 1) « low(l) + rana®81 (15D L (up(n) — tow(1));
45 if px(k,1) > up(l) then

46 L pxtk, 1) « up() + rand®240L5D) L (ouw(l) = up(1));
aT fitpx + ObjFun(fne, px, userdata);
48 ind + fitpx < fitp;
49 plind, :) « pa(ind,);
50 fitp(ind) + fitpx(ind);
51 polindex,:) + p;
52 fitpO{index) + fitp;
53 [grmin, indbest] + min(fitp0);
54 ghest +— pglindbest,:);
55 out.gmin +— gmin, out.ghest +— ghest;
56 moment — (|randi([0, 1], N, 1}] — m) - da;

1 Function levydist{a, &)

2 z + rand() + 1;

3 w 4+ gamrnd{er, randi([2, 5]));

4 x4 F-zfwlieg

5 return x;

Figure 3. Pseudo-code of CSA with the sub-function levy_dist.

At the conclusion of the present iteration, the numerical value of is revised according to
Equation (23):

moment = (abs(randi([0, 1]; N, 1)) —m) o dx (23)

The pseudo algorithm of the CSA has been illustrated in Fig. 3.

CSA is an iterative, non-recursive, stochastic evolutionary search method. CSA is developed for solv-
ing single-objective, real valued numerical problems. The version of CSA presented in this paper is
designed as a global minimiser. CSA scales the amplitude of the direction vectors using a unique scaling
method.
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Figure 4. Mzt. Ali and Mt. Erciyes.

4.0 Experiments

In the experiments conducted in this section, four distinct optimal FMP were calculated using the follow-
ing parameter values: p = 0.80, g = 0.70, H = 200 m, ImageWidth = 5472 pixels, ImageHeight = 3648
pixels, F =8.8 mm, and ccdWidth=2.41 © m. The flight plans were designed over a test polygon
that partially covers Mt. Ali, with geographical coordinates (lat=38°.6621, Lon=35°.5533, WGS8&4).
Figure 4 visualises the general view of test area, Mt. Ali.

The EPSG:3395 (WGS84/World Mercator) projection system was used for visualising the flight plans
obtained from the conducted experiments. The EPSG:3395, also known as the WGS84/World Mercator
projection, is a widely used mapping system that provides a conformal representation of the Earth’s
surface. This projection system preserves angles and shapes over small areas, making it particularly
suitable for applications requiring accurate directional relationships, such as navigation and flight path
visualisation. One of its key advantages is its ability to represent large-scale maps with minimal distor-
tion near the equator, although distortions increase at higher latitudes. The uniformity of scale along
the equator and its compatibility with global datasets make EPSG:3395 a preferred choice for tasks
involving geospatial analysis and cartographic rendering. Additionally, the projection’s grid-based struc-
ture simplifies calculations for mapping purposes, enhancing computational efficiency. Its widespread
adoption in geographic information systems (GIS) ensures seamless integration with existing tools and
frameworks. Another notable benefit is its consistent representation of longitudinal lines as vertical
and latitudinal lines as horizontal, which aids in the interpretation of spatial data. These characteristics
contribute to its reliability and usability in applications where precise spatial alignment is critical.

The local altitude, H, of the micro-UAV for the (i, j)™ pixel location of the digital terrain model (DTM)
has been fixed as H = 200 m. The highest geodesic peak within the flight polygon is #y = max(DTM) =
1851.44m. Thus, the micro-UAV flies at a steady elevation of h,,,, = hy + 200 = 2051.44 m throughout
the flight.

In this paper, the digital elevation model (DEM) data of Mt. Ali, obtained from the ASTER GDEM
v3 global elevation dataset [60] with a spatial resolution of 1 arc-second, was used to generate the GSD
map presented in Fig. 5.

In this paper, each of the four distinct FMP problems addressed contains a single unknown corre-
sponding to the azimuth value. To determine the optimal value of (azimuth), the CSA was employed.
The control parameters of CSA were configured as follows: clan size N = 30, problem dimension D =1,
maximum number of iterations MaxCycle = 100, 000, lower bounds low = [0, —100, —100] and upper
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Figure 5. GSD map for h,,, = 2051.44 m. and H= 200 m.

bounds up = [360, 200, 200]. These values were selected empirically. CSA is not overly sensitive to the
initial parameter settings.

The first FMP problem (Experiment #1), which aims to minimise the total flight distance, is defined
using Equation (6). In this experiment, a global solution value of azimuth = 91°.06024 was obtained.
According to the obtained global solution, the total flight distance is 33,432.55 m. In this scenario, a
total of 29 turns were made. A total of 789 image capture point locations were calculated. The average
GSD is 14.80, and the standard deviation value is 3.28.

The second FMP problem (Experiment #2), as given in Equation (7), focuses on achieving the nar-
rowest 95% confidence interval for the GSD values at the image capture points along the flight path. In
this experiment, a global solution value of azimuth = 268°.6806 was obtained. According to the obtained
global solution, the total flight distance is 34051.11 m. In this scenario, a total of 30 turns were made. A
total of 800 image capture point locations were calculated. The average GSD is 14.79, and the standard
deviation value is 3.26.

The third FMP problem (Experiment #3), as given in Equation (8), aims to minimise both the 95%
confidence interval for the GSD values calculated at the image capture points along the flight path and
the number of required turns. In this experiment, a global solution value of azimuth = 199°.1012 was
obtained. According to the obtained global solution, the total flight distance is 35574.54 m. In this
scenario, a total of 30 turns were made. A total of 819 image capture point locations were calculated.
The average GSD is 14.93, and the standard deviation value is 3.37.

The fourth FMP problem (Experiment #4), as defined in Equation (9), aims to minimise the total num-
ber of turns. In this experiment, a global solution value of azimuth = 47°.8804 was obtained. According
to the obtained global solution, the total flight distance is 36232.08 m. In this scenario, a total of 35 turns
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Figure 6. Visualisation of experimental results of : (a) Experiment #1, (b) Experiment #2, (c)
Experiment #3 and (d) Experiment #4.
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were made. A total of 819 image capture point locations were calculated. The average GSD is 14.95,
and the standard deviation value is 3.40. The results obtained from Experiments #1—4 are illustrated in
Fig. 6.

5.0 Conclusion

Small-scale FMP applications frequently utilise micro-UAV’s, which are constrained by limited on-
board energy capacities. This limitation makes energy efficiency a critical factor in mission planning.
Among the most influential parameters affecting energy consumption are the total length of the flight
path and the number of images captured during the mission. Micro drones generally lack sophisti-
cated speed control systems, meaning that reducing flight time is largely dependent on minimising
the overall flight path length. Each image capture process consumes a portion of the drone’s on-board
energy resources, further underscoring the importance of optimising both the flight plan and the imag-
ing process. Designing FMP under geometric constraints, such as image overlap ratios and GSD, plays a
vital role in ensuring operational safety, efficiency and high-quality outputs. This study introduces four
problem models corresponding to different scenarios for calculating optimal flight paths under varying
constraints, offering a systematic approach to flight planning. The optimisation problems were solved
using the CSA algorithm, demonstrating its capability to address complex flight path design challenges
effectively. The results reveal that analytical flight planning methods outperform manual planning based
on user experience, particularly in terms of flight safety, energy efficiency and image quality. Analytical
approaches provide objective and reliable solutions, reducing the risk of human error associated with
subjective judgement. Optimised flight paths significantly decrease unnecessary energy consumption,
thereby extending the drone’s operational lifespan and improving mission feasibility. By minimising the
total flight distance, the proposed models not only reduce mission duration but also lower operational
costs, making them highly practical for small-scale a-SfM, such as aerial mapping. Efficient flight plan-
ning ensures that the drone can complete its mission without the risk of sudden power depletion, which
is particularly critical for micro drones with limited battery capacity. Geometric constraints such as GSD
and overlap ratios are essential for achieving high-quality a-SfM outputs, and their integration into the
optimisation process guarantees that the generated flight plans meet both operational and quality stan-
dards. Manual flight planning often leads to suboptimal paths due to reliance on subjective judgement,
whereas analytical methods provide objective and data-driven solutions.

The proposed optimisation framework highlights the potential for enhancing the reliability of FMP
conducted with micro drones, particularly in resource-constrained environments. Reducing the number
of turns in the flight path not only conserves energy but also minimises the likelihood of navigational
errors, contributing to smoother and more efficient operations. This study emphasises the importance
of adopting systematic and analytical approaches to improve the performance of small-scale aerial
mapping, particularly when using energy-limited platforms. The findings suggest that optimising flight
paths can lead to significant improvements in mission efficiency, especially in scenarios where energy
resources are scarce.

Future research could explore additional constraints and variables to further refine the optimisation
models, expanding their applicability to a broader range of aerial imaging scenarios. For instance, incor-
porating environmental factors such as wind speed or terrain elevation could enhance the robustness of
the flight planning process. Investigating the integration of real-time data during missions might also
enable dynamic adjustments to flight paths, further improving efficiency and adaptability. Additionally,
the development of user-friendly tools for implementing these optimisation models could facilitate their
adoption by practitioners in the field. Overall, this study demonstrates the value of analytical flight plan-
ning in achieving safer, more efficient and higher-quality FMP, paving the way for advancements in
small-scale drone-based mapping and surveying.
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