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Abstract. We prove that if a diffeomorphism f of a closed surface is homotopic to
and has the same topological entropy as a pseudo-Anosov homeomorphism g, then
S is semi-conjugate to g. As part of the proof, a necessary and sufficient condition
is given for a pseudo-orbit of a pseudo-Anosov homeomorphism g to be shadowed
by an actual orbit of g.

0. Introduction

We showed in [H] that if f: M>-> M? is a pseudo-Anosov diffeomorphism and if
g: M > M is homotopic to f, then there is a closed subset Y © M such that g| Y is
semi-conjugate to f; i.e. there is a map #: Y > M such that 7o g|Y = fo . In this
paper we give a sufficient condition for Y to be all of M and hence for g to be
semi-conjugate to f. In general the pre-images of points under the semi-conjugacy
will be disconnected.

THEOREM 0.1. Let f: M? > M? be a pseudo-Anosov diffeomorphism of a closed surface
and let g: M*>-> M* be a homeomorphism that is homotopic to f. If g has the same
topological entropy as f (it is necessarily at least as big) then g is semi-conjugate to f.

The introduction of topological entropy in this context is due to John Smillie
who showed that if g has periodic points that are not Nielsen equivalent to periodic
points of f (or equivalently if Y does not contain all the periodic points of g) then
the topological entropy of g is strictly bigger than that of f.

Let N,(g) be the number of distinct Nielsen classes represented by the fixed point
set Fix(g") of g". As a corollary of Theorem 0.1, we show (Corollary 3.6) that if
the exponential growth rate of N, (g) equals that of N, (f), then g is semi-conjugate
to f.

In the final section of the paper, we consider extensions of Theorem 0.1 to the
more general setting used by Franks for Anosov diffeomorphisms and Fathi for
pseudo-Anosov homeomorphisms.

I would like to thank Albert Fathi for his helpful comments and careful reading
of an earlier manuscript for this paper.
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1. Notation and definitions

Throughout this paper M is a closed surface, f is a pseudo-Anosov diffeomorphism
of M and g is a homeomorphism of M that is homotopic to f. Following A. B.
Katok, we say that the f-orbit of x is globally shadowed by the g-orbit of y if there
are lifts £, g X and  to the universal cover M of M such that D(f"(%), ")) <K
for all n and some fixed K where D is an equivariant metric on M. Define
Y ={ye M: the g-orbit of y is globally shadowed by the f-orbit of some x € M}
and let 7: Y > M be the map which takes y to its associated x. We showed in [H]
that Y is a closed subset of M, that = is a surjective map and that 7 semi-conjugates
g|Y onto f.

Our proof takes place in the universal cover M of M and uses the invariant stable
and unstable foliations (with singularities) on M that are lifted from the invariant
stable and unstable foliations (with singularities) that characterize f. Readers that
are not familiar with pseudo-Anosov diffeomorphisms should consult [T], [F-L-P]
or [H-T] as required. For any point pe M, we denote the unstable leaf containing
p by @(p) and the stable leaf containing p by 6(p). When the unstable leaf through

P contains a singularity we assume that i{p) contains that singularity and each
of the finitely many leaves emanating from that singularity; similarly for &(p).
The transverse measures for the foliations determine equivariant pseudo-metrics
D,: M x M [0, ) and D,: M x M - [0, ) satisfying D~,,(f£, ,ﬁ?z) =AD,(%,, %)
and D,(f7'%,, f'%,) = AD,(%,, %,) for all %,, ¥,€ M and all lifts f of f where A > 1
is the expansion constant for f. We will use the equivariant metric D on M defined
by D= 15,, + 55.

Since Y is unchanged when f and g are replaced by f* and g* for any k>0, we
may assume that f fixes each singularity of the stable and unstable foliations, that
f maps each stable and unstable half-leaf that initiates at a singularity to itself, and
that A > 4.

An efficient path (see figure 1.1) between X and y is a path that is made up of
segments of stable and unstable leaves, that has the minimum possible number of
such segments and that is shortest in the D-metric.

Choose K >0 so that for any pair f and g of equivariantly homotopic lifts of f
and g, and for all £ M, D(f(%), §(¥)) < K. It follows that if D,(%,,%,)> K then

D,(§(%), §(£))> D,(%,, %) + K

FIGURE 1.1
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and
D.(f(%), §(%))> D.(%1, %) + 2K
similarly if D,(%,, %,)> K then
Dy(g (%), § (%))> D,(%,, £)+K
and
D.(f(%), §7'(8)> Dy(%, %) +2K.

If 7 is a singularity of the foliations and if W* is a component of M — &(Z) then
W* is called an unstable wedge based at Z. See figure 1.2. For each unstable wedge
W* we define E“, an unstable envelope based at 7 to be the component of
{Xe W*. D,(x, (Z))> K} that intersects the unstable half-leaf in W* originating
at Z. Note that if g is the lift of g that is equivariantly homotopic to the lift f of f

that fixes z, and if E" is an unstable envelope based at Z, then g(E")< E* Stable
wedges and envelopes are defined similarly.

FIGURE 1.2

Remark 1.1. If Xe M and & is a stable leaf such that D, (% &)> K, then for all
n=0,g"(X) is in the component of M —f"(&) that is the image under f" of the
component of M — & that contains % If 6 W* intersects the unstable half-leaf
originating at Z, then f"(6)< E* for all sufficiently large n. It follows that if
fe{W": D,(% &(3))> K}, then g§"(X) e E* for all sufficiently large n.

The stable variation along a path p is the maximum D;-distance between two
points on p. Note that if p has a stable variation less than K, then so does g(p).

2. An equivalent condition for semi-conjugacy

The construction in [H] shows that the homeomorphism g is semi-conjugate to
fif for each y € M, there exists x € M such that the g-orbit of y is globally shadowed
by the f-orbit of x. For Anosov diffeomorphisms, x can always be found by the
standard shadowing techniques. In the pseudo-Anosov category, these techniques
break down and the inability to solve the shadowing problem can be detected by
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the asymptotic behavior of the orbit of a lift y of y with respect to some lift g, of
g as follows.

PrOPOSITION 2.1: If the g-orbit of y is not globally shadowed by some f-orbit, then
there is a singularity z and disjoint stable and unstable envelopes E* and E* based at
Z such that g "(y)e E° and g"(y)e€ E" for all sufficiently large n, where g is the lift
of g that is equivariantly homotopic to the lift f of f that fixes 7.

Proof of Proposition 2.1. Choose lifts § of y, §, of g and f, of f such that g, and f,
are equivariantly homotopic. We search for an fo-orbit that shadows the g,-orbit
of y; the construction fails only when we encounter the desired lift g.

We first find a stable leaf & such that D, (ga(5), f2(6)) <K for all n>0. If /i(F)
is non-singular, choose an orientation for £(y) and denote this oriented leaf by
o(¥). If f(¥) contains a singularity Z,, then either gg(y) e N (f(6(3,))) for all
n>0 and we’re done, or (Remark 1.1) gg(y) e F2(E™) for some unstable envelope
E" based at 7, and for all sufficiently large n. In this latter case denote the oriented
unstable half-leaf initiating at Z, and intersecting E* by to(y).

If the stable leaf &(p) through pe go(y) is non-singular, then each f{,’&(p')
separates M into two components which we label + and — according to the
orientation on f7( o(y)) induced from that on go(y). We define a function T:{p¢c
o(¥): a(p) is non-singular} > {+, 0, —} as follows. If ﬁu(gg(ﬁ),fg(&(ﬁ))) < K for
all n>0 (i.e. if &(p) is the desired stable leaf) then T(p)=0. Otherwise, (Remark
1.1), g5(7) is either contained in the + component of the complement of faa( p)
for all sufficiently large n or it is contained in the — component for all sufficiently
large n; in the former case T(p)=+ and in the latter case T(p)=—. Note that
T7'(-) and T7'(+) are open subsets of the domain, that the image of T contains
both + and — and that if the domain is ordered according to the orientation on
po(¥) and the range is ordered by + <0< —, then T is order preserving.

Let § be the intersection of the closures of T7'(—) and T~'(+). If 6(§) is not
the desired stable leaf then &(4) contains a singularity Z, and (Remark 1.1) there
is an unstable wedge W/ based at 7, that is disjoint from £ (y) such that g§¢(y) €
Fa(EY) for all sufficiently large n, where EY is the unstable envelope for WY. See
figure 2.1. Let i, be the oriented unstable half leaf in W whose negative end
converges to Z,. There is a map T;:{p € ui,: (p) is non-singular}->{+,0, —} as
above. Iterating this argument we either find the desired stable leaf ¢ or we find

Aol P)

FIGURE 2.1
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sequences {Z;} of singularities, { E}'} of unstable envelopes based at Z; and {W} > E [}
of unstable wedges based at Z; such that g5(y) € fo(E}) for all sufficiently large n
and such that Z; € W} for j> i In particular, note that 5u(f, Z;)< K for all i.

Let W; be the stable wedge based at Z; that contains y and let E; be the stable
envelope based at Z; that is contained in W;. Then Win W¢ = for all i. Since
D.( ¥, Z) < K for all i and since the set of singularities is discrete, there exists i>0
such that D,(5, 7)> K. In this case y€ Wi and the conclusions of the proposition
are satisfied by =2, E°=E{ and E*=E/.

A similar argument produces an unstable leaf & such that ISS( £0(9), fg(ﬁ)) <K
for all n<0. If 4 and & intersect then their intersection is a point £ whose f,-orbit
shadows the g,-orbit of §. If & and & are disjoint, choose p € g so that D, (6(p), 5) <
D.(6(§), &) for all § e . Then &(p) contains a singularity Z and & is contained in
an unstable wedge W*" that is disjoint from . Let W* be the stable wedge that
contains & and let E* and E" be the envelopes determined by W* and W". The
conclusions of the proposition are satisfied by Z, E* and E*. O

3. Computing entropy

In this section we assume that g is not semi-conjugate to f and show that the entropy
of g is strictly greater than that of f. We begin with some preliminary definitions
and lemmas.

Since g is not semi-conjugate to f there is an orbit of g that is not globally
shadowed by an orbit of . Choose £, f. 7, 7, E*, and E* as in Proposition 2.1; recall
that K > sup {5u(f(£), g(x): xe 1\71} and that after replacing g by an iterate of
itself (and hence A by a power of itself) if necessary, we may assume that A > 4.
Let ¢,=1/(A —1)<% and note that 1+ A +A%+---+A" "' <¢,A" forall n>0.

Lemma 3.1; There exists 0< ;<1 such that if D,(d, ) > K then D,(§"(4), §"(6))>
¢;A"D, (4, b) for all @, be M.
Proof of Lemma 3.1. Repeated application of the fact that
D,(§(b), §(a))> D.(f(b), f(a))~2K =AD,(, ) -2K
leads to

D,(§"(b), £"(a)) =A"(D,(4, b) - 2Kc,).
Choose ¢, =3. 0

For any two points 4 and b in M,Jet u(ad, 5) be the number of unstable segments
in an efficient path between @ and b.
LeEMMA 3.2. There exists C >0 such that u(g(a), (b)) <u(d, b)+ C forall 4, be M.
Proof of Lemma 3.2. 1t is clear from the definition that
u(§(d), £(6)) = u(§(d), f(@)+u(f(@), f(B) +u(F (B, §(B)).
The lemma therefore follows from the fact that ihere is a uniform bound to the

distance between (%) and §(%) and the fact that f carries efficient paths to efficient
paths. (]
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(b)

FIGURE 3.1

LemMa 3.3. Given T > K, let B = [i(Z) be the union of the two T-length initial segments
of the unstable half leaves contained in the frontier of the stable wedge containing E*
(see figure 3.1). Denote the endpoints of B by {a, b}. Then for all sufficiently large T,
there exists k>0 and a covering translation t, such that if p:

is a path connecting (a) to &(b) with stable variation less
@) than K, with D,(X, B} < K +1 for each X € p and with interior disjoint

from 6(d)u &(b)
then there is a subpath p'< §“(p) such that t;'p’ satisfies (x). Moreover, p' and the
two endpoints of §*(p) are contained in three distinct unstable envelopes for Z.

Proof of Lemma 3.3. For sufficiently large n, §" '(E*)~ E* is non-empty. Thus
if T is sufficiently large, §" '(E°)u E" separates ¢"(a) from g"(b) and since
png (E°)=¢,8"(p)n E" is non-empty. A similar argument allows us to choose
n>0 so that for all sufficiently large T, g"(p)n E* contains two points p, g€ E*
satisfying 15,,([5, 3)> K.

As m increases D,(8"(p), g7(q)) grows exponentially in m while
u(g™(p), £"(q)) grows linearly in m. For sufficiently large m an efficient path v’
between £™(p) and g™(4) contains arbitrarily long unstable leaf segments and
hence unstable leaf segments that are nearly parallel to translates of B8. In particular,
there is a covering translation t, and an unstable leaf segment B'< N,(t,8)n Yy’
connecting t,0(d) to t,6(b). Since ' is efficient, the stable leaves through the
endpoints of B’ separate £¢”(p) from £™(§) and there is an arc p’'c §""(p) that
connects these stable leaves but is otherwise disjoint from them. Let k = m + n. The
stable variation of p’ is bounded by the stable variation of g“(p) and is therefore
less than K. Since the unstable leaf that contains B8’ separates ¢™(p) from g™(q),
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there exists Xo€ §(p) with D,(%,, 8') =0. It follows that D.(%, B')< K and hence
that D.(X, to,B) <K +1 for all xep'. O

We now assume that T is chosen as in Lemma 3.3. We say that a path pc M
and a covering translation t are an admissible pair if t~'(p) satisfies (*).

We say that a path p is admissible if it is part of an admissible pair. Note that if
(p, t) is an admissible pair, then there is a subpath p'< g(p) such that (p’, gtg ")
is an admissible pair. If « is an arc containing p, we say that the admissible pair
(p, t) is a-forced if the stable leaves through the endpoints of p each separate the
endpoints of a; we say that (p, t) is a-unforced if there is a singularity Z; such that
p and the two endpoints of « are contained in three distinct unstable envelopes for
Z;. Thus Lemma 3.3 states that for any admissible pair (p, identity), there is a subpath
p'< g§*(p) such that (p’, t,) is a §“(p)-unforced admissible pair.

For any path a, let F,(«) [respectively U, (a)] be the maximum cardinality of a
collection {(p(i), t(i))} of g"(a)-forced [respectively g"(a)-unforced] admissible
pairs where each p(i)< g"(a) and the t(i)’s are distinct.

As a corollary to the (second paragraph of the) proof of Lemma 3.3, we have the
following estimate on F,(p).

COROLLARY 3.4. There exists ¢;>0 such that F,(p)> c;A" for all admissible paths.

After replacing g by an iterate of itself if necessary, we may assume that the
constant k of Lemma 3.3 equals 1, that ¢;A >4 and that ¢, +(2/c;A) <1. Choose
1>d>0so that [dA) +1]<c;A’/2 for all j=1 where [ ] denotes the greatest integer
function. Note that

1

T[N 11+ T (eA7/2)< 1+ 6,607 /2= (e, +2/ A" (eA"/2) < A" /2.
i=1

i=1
The following lemma shows that for any admissible path p < M, the exponential
growth rate of U,(p) is strictly larger than log (A).

LEMMA 3.5. Let p be an admissible path. Then U,(p)> B, where (B,) is a sequence
satisfying B,.,> (A +d)B,,.

Proof of Lemma 3.5. If (p(i, j), t(i, j)) is a §'(p)-unforced admissible pair for some
i =1, then there is a unique singularity Z(i, j) such that " '(p(i,j)) and the two
endpoints of ¢g"(p) are contained in three distinct envelopes of f"13(i, j) for all
n=iz= 1. The first step in the proof is an inductive construction (i = 1) of a collection
P(p)={(p(i,j), t(i, j)): 1=j=[dr'""+1]} of §'(p)-unforced admissible pairs such
that for each n=1, all the elements of {f" (:(i,j)): 1<i=n;1=j=<[d\" '+1]}
are distinct. See figure 3.2. In particular, for all 1=i k=n1<j=< [dr""'+1], and
1=I=[d\*"+1], 8" (p(ij)) and §" *(p(k, 1)) do not intersect a common stable
leaf. . - -

There is no loss in assuming that p satisfies (). Define P,(p) ={(p(1, 1), t(1, 1))}
to be the admissible pair produced by Lemma 3.3; note that Z(1,1)=7Z We
now assume that P,(p),..., P,(p) have been defined. Corollary 3.4 states that
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FIGURE 3.2

F,(p)> c;A". Since

n

Y [AAVTT+1]<cA"/2,
i=1

there are [dA"+1]<c;A"/2 g"(p)-forced admissible pairs {(p'(n, j), t'(n, j))} such
that

{£(mHE}o{f GG D) 1=i=m=I=[dA " +1]}=2.
Applying Lemma 3.3 to t'(n,j) 'p’(n,j), we obtain a gt'(n,j) '¢"(p)-unforced
admissible pair (a(j), t;). Define

(p(n+1,)), t(n+1,)))=("(n, j)a(j), t"(n, j)t,)

where t"(n,j) is the covering translation gt'(n,j)¢™"', and note that Z(n+1,j)}=
ft'(n, j)Z This completes the construction of P, ,(p).

We next define collections Q, (n=1) of g" (p)-unforced admissible paths by
Qo(p)=p and (n=1)Q,(p) = Pis,(Pii_1)- - - P1)(p))) where the union is taken
over all ordered k-tuples (1< k= n) of positive integers i(1), ..., i(k) whose sum
equals n and where P, of a union is the union of the P;’s. Thus for each (B, t) € Q,(p)
there is a sequence of admissible paths

i) € Piny(p), Ti € Pio(Ticny)s « - > Ticiy = B € Pigoy(Tick—ny)-
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If (8, ') is another element of Q,(p) with corresponding 7}’s and if 7,1y # 7'y,
then < ¢" "Y1y, and B’ §"7V'7},, do not intersect a common stable leaf. In
particular, ¢ # t'. A similar argument shows that all the elements of Q,(p) determine
distinct covering translations.

Note that Q,(p) can also be defined recursively by

Q,.(p)=g) Q¢ Poyip);

it follows that

1

Card (Q,)='% (Card (Q)x[dA"™'+1]).

Define B, =Y/ ; (card Q;) dA"~'"'. Then U,(p) = card(Q,)= B, and
B,.,=AB,+d(card Q,)
=AB,+dB,
=(A+d)B,. O

Remark. The covering translations that occur in the admissible pairs counted in the
proof of Lemma 3.5 are independent of the exact choice of p and depend only on
the fact that p satisfies (*).

The following corollary shows that the exponential growth rate of N, (g) is strictly
greater than log A. Since there exists 8 > 0 such that N,(g) is an (n, §)-separated
set for all n>0, the topological entropy of g is strictly greater than log A, the
topological entropy of f

COROLLARY 3.6. There exists ¢ >0 such that N,(g)>c(A+d)".

Proof of Corollary 3.6. Choose an arc « that satisfies (*). Let (p, t) be one of the
admissible pairs counted in the proof of Lemma 3.5 and let h=¢" g"; recall that
pc g"(a). It suffices to show that h has fixed points and that there is a uniform
bound (i.e. a bound independent of #) to the number of such h that can be mutually
conjugate,

There is a subarc a;=(t""p) of ﬂ(a) that satisfies (*). Similarly, for all k=1
there are subarcs a; of ﬁ"(a) that satisfy (*). In particular, there exists a constant
K, and X, € a such that D(h* (%), %) < K, for all k=1.

We claim that there exists K, >0 such that D(h'(%,), %) < K, for 0=<i=<k and
all k= 1. Since D,(A' (%), %) is uniformly bounded for all i = 1 and all x,, it suffices
to find K,> K, so that if D,(h'(%),%)> K, then D,(h""'(%), %)> K,. The
existence of K, follows from the fact that

D,(h'(£), %) = Du(h"™' (%), h(£)) - D.(h(%,), %)
= A "D, (h'(%,), %) - C,
where C, is greater than D,(h(%), %) for all X¢ a.and ﬁu(ﬁ‘(i,:),‘fk)> K.

It follows immediately that the entire h-orbit of any accumulation point % of the
set {A*/2(%,): k=1} is contained in the K,-neighborhood of a. The Brouwer
Translation Theorem (see for example [F2]) implies that Fix (h) is non-empty.
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Moreover, for any fixed point y of h, 13(i7i()7), Ri(%)) is uniformly bounded for all
ieZ. Thus D~()7, %) <2K and Fix (k) is contained in the 2K + K, neighborhood of
a. As there are only finitely mﬁny covering translations that do not move this
neighborhood of « entirely off of itself, there is a uniform bound to the number of
h’s that are mutually conjugate. a

4. Extensions and counterexamples

Fathi [F1] generalized the results of [H] by replacing the hypothesis that g = f with
the hypothesis that g is a homeomorphism of a compact metric space N for which
there exists a non-nullhomotopic map a: N - M satisfying a © g=f° a. The con-
clusions are the same as in [H] except that 7: Y > M is homotopic to a|Y rather
than the inclusion of Y into M. In this section we consider the extent to which
Theorem 0.1 applies to this context. In particular, we assume throughout this section
that f, g and a are as above and that the entropy of g equals that of f.

Fathi also showed that if N is a closed surface and g is pseudo-Anosov, then
Y = N and in fact m: N > M is a branched covering. (His proof uses the fact that
a pseudo-Anosov homeomorphism supports a unique measure of maximal entropy
and the support of this measure is the entire surface.) Theorem 0.1 therefore implies
thatif N is a closed surface and g is homotopicto a pseudo-Anosov homeomorphism,
then g is semi-conjugate to f. As Example 4.1 shows, the hypothesis that g determines
a pseudo Anosov mappmg class is essential.

Ifa:N- M, g: N> N and f M > M are lifts to the universal covers such that
aog and fo a are equivariantly homotopic and if « is homotopic to a semi-
conjugating map =, then for all € N there exists X€ M and C >0 such that
D( ag"(y), F™(%))< C for all neZ. We will use this as a criterion for proving that
for certain g and a, there are no maps 7 = « that semi-conjugate g to f.

Example 4.1. Fix a hyperbolic structure on M and let A* and A" be the geodesic
laminations determined by the stable and unstable foliations F* and F" determined
by f. There is a standard construction (see for example [H-T] or [M]) of a
homeomorphism h: M > M that preserves A° and A" and that is semi-conjugate to
f by a map p =identity. Choose a singularity z of F* and F“. We may assume that
p~'(z) = Fix (h) is a hexagon (or a 2n-gon for n>3 if z is a more complicated
singularity) and that for each point v in a stable [respectively unstable] leaf initiating
at z, p~'(v) is an arc of an unstable [respectively stable] leaf. See figure 4.1.

FIGURE 4.1
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Let M’ be the surface obtained from M by removing the interior of p~'(z) and
let N be the closed surface obtained by gluing together two copies M; and M}
where dM and dM} are identified by a homeomorphism that carries cl (p;'(4)) N
oM/ to cl(p5;'(B))nodM}% where A and B are non-adjacent stable and unstable
leaf segments initiating at z. See figure 4.2 where C is the image in N of
cl(pr'(A)) naM;.

FIGURE 4.2

Then h,:M{-> M) and h,: M;-> M} fit together to define a homeomorphism
H:N-> N and p,:Mi-> M and p,: M- M fit together to define a map a: N> M
such that f o a = a o H. There is a foliation (see figure 4.2) of U = p;'(A)u p5(B)u
C where the leaves are given by

{pi'(v): ve A}u{p;'(w): we B}u{C]}.
Let X be a vector field on N supported on a neighborhood of C in U such that
X is transverse to the foliation and points in the direction of p; '(B). Defineg=¢ « H
where ¢ is the time one map of the flow generated by X.

Since g and H agree on their non-wandering sets, the entropy of g equals that

of f. On the other hand, there are lifts

fe]\':l,le\jl»]\:!,C‘Cﬁ,ﬁ:ﬁ—)ﬁ,g:ﬁeﬁand&:ﬁeﬂ
such that f fixes 7, H fixes C, § is equivariantly homotopic to H and d° H =
foa Let A/ Bc M be the lifts of A and B that initiate at 7 Then for each
y € C there exists N > 0 such that {ag"(5): n> N} agrees with an f-orbit in B and
{ag™"(¥): n> N} agrees with an f-orbit in A. In particular,
sup {D(f"(X), ag"(§)): ne Z} =co for all ¥ M
and g is not semi-conjugate to f by a map that is homotopic to a. ]

Our final example shows that Theorem 0.1 may fail in the general context even
if @ is a homotopy equivalence.

Example 4.2. Let N=M x[0,1] and let G, be an isotopy of f to itself such that
G,,, contains a fixed point P that is not Nielsen equivalent to any fixed point of f.
Choose a function u: N —>[0,1] such that u™'(0)=M x{0,1}u Px {3} and let
H(y, t) be the time one map of the flow generated by the vector field u-a/at.
Then g(y, t)= H°(G,(y), t) is a homeomorphism of N with non-wandering set
M x{0,1}u P x {3} and therefore with entropy equal to that of f. Define a equal
to the projection of N onto M. Choose lifts &, /' and P such that &g and
feod are equivariantly homotopic and such that g fixes Px{i}. The Brouwer
translation theorem and the choice of P imply that no orbit of f is bounded. Since
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ag"(Px{i})=P for all n€Z, g is not semi-conjugate to f by any map that is

homotopic to a. 0
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