
Ergod. Th. & Dynam. Sys. (1988), 8, 585-596
Printed in Great Britain

Entropy and semi-conjugacy in
dimension two
MICHAEL HANDEL

Department of Mathematics and Computer Science, Lehman College,
Bronx, New York 10468, USA

(Received 18 May 1987, revised 3 December 1987)

Abstract. We prove that if a diffeomorphism / of a closed surface is homotopic to
and has the same topological entropy as a pseudo-Anosov homeomorphism g, then
/ is semi-conjugate to g. As part of the proof, a necessary and sufficient condition
is given for a pseudo-orbit of a pseudo-Anosov homeomorphism g to be shadowed
by an actual orbit of g.

0. Introduction
We showed in [H] that if/: M2-» M2 is a pseudo-Anosov diffeomorphism and if
g: M -*• M is homotopic to / then there is a closed subset Ya M such that g | Y is
semi-conjugate to / ; i.e. there is a map TT:Y->M such that n° g\Y =f° IT. In this
paper we give a sufficient condition for Y to be all of M and hence for g to be
semi-conjugate to / In general the pre-images of points under the semi-conjugacy
will be disconnected.

THEOREM 0.1. Letf: M2-> M2 be a pseudo-Anosov diffeomorphism of a closed surface
and let g:M2-*M2 be a homeomorphism that is homotopic to f. If g has the same
topological entropy asf (it is necessarily at least as big) then g is semi-conjugate to f.

The introduction of topological entropy in this context is due to John Smillie
who showed that if g has periodic points that are not Nielsen equivalent to periodic
points of/ (or equivalently if Y does not contain all the periodic points of g) then
the topological entropy of g is strictly bigger than that of/

Let Nn (g) be the number of distinct Nielsen classes represented by the fixed point
set Fix(g") of g". As a corollary of Theorem 0.1, we show (Corollary 3.6) that if
the exponential growth rate of Nn(g) equals that of Nn(f), then g is semi-conjugate
t o /

In the final section of the paper, we consider extensions of Theorem 0.1 to the
more general setting used by Franks for Anosov diffeomorphisms and Fathi for
pseudo-Anosov homeomorphisms.

I would like to thank Albert Fathi for his helpful comments and careful reading
of an earlier manuscript for this paper.
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586 M. Handel

1. Notation and definitions
Throughout this paper M is a closed surface, / is a pseudo-Anosov diffeomorphism
of M and g is a homeomorphism of M that is homotopic to / Following A. B.
Katok, we say that "the /-orbit of x is globally shadowed by the g-orbit of y if there
are lifts /, g, x and y to the universal cover M of M such that D(f"(x), g"(y)) < K
for all n and some fixed K where D is an equivariant metric on M. Define
y = {ye M: the g-orbit of y is globally shadowed by the /-orbit of some xe M)
and let IT: Y-> M be the map which takes y to its associated x. We showed in [H]
that Y is a closed subset of M, that TT is a surjective map and that -n semi-conjugates
g\Y on to /

Our proof takes place in the universal cover M of M and uses the invariant stable
and unstable foliations (with singularities) on M that are lifted from the invariant
stable and unstable foliations (with singularities) that characterize / Readers that
are not familiar with pseudo-Anosov diffeomorphisms should consult [T], [F-L-P]
or [H-T] as required. For any point p e M, we denote the unstable leaf containing
p by (I(p) and the stable leaf containing p by &{p). When the unstable leaf through
p contains a smgvAanty we assume tYvaX &{$) conXams VV\at smgvAanly and eac\v
of the finitely many leaves emanating from that singularity; similarly for &(p).
The transverse measures for the foliations determine equivariant pseudo-metrics
Ds: M x M ^ [0, co) and Du: M x M ^ [0, oo) satisfying Du{fx,, fx2) = \Du{x{, x2)
and Ds(f~

lXi, f~lx2) = ADs(x,, x2) for all xt,x2eM and all lifts/ of/ where A > 1
is the expansion constant for/ We will use the equivariant metric D on M defined
by D = DU + DS.

Since Y is unchanged when / a n d g are replaced by/k and gk for any k>0, we
may assume that / fixes each singularity of the stable and unstable foliations, that
/ maps each stable and unstable half-leaf that initiates at a singularity to itself, and
that A > 4.

An efficient path (see figure 1.1) between x and y is a path that is made up of
segments of stable and unstable leaves, that has the minimum possible number of
such segments and that is shortest in the D-metric.

Choose K > 0 so that for any pair / and g of equivariantly homotopic lifts of /
and g, and for all xeM, D(f(x), g(x))< K. It follows that if Du(x,,x2)>K then

) > Du(x, ,x2) + K

I x

FIGURE 1.1
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and

Du(f(x1),g(x2))>Du(xl,x2) + 2K;

similarly if Ds(*i ,x2)>K then

A(r'(*.), g~l(x2)) > A(x, ,x2) + K
and

If z is a singularity of the foliations and if W" is a component of M — <?(£) then
W is called an unstable wedge based at z. See figure 1.2. For each unstable wedge
W, we define £", an unstable envelope based at z to be the component of
{xe W: Du(x, <?(£))> K} that intersects the unstable half-leaf in W" originating
at £. Note that if g is the lift of g that is equivariantly homotopic to the lift / o f /
that fixes £, and if E" is an unstable envelope based at £, then g(£")c £". Stable
wedges and envelopes are defined similarly.

Remark 1.1. If xe M and j is a stable leaf such that Du(x, <x)> K, then for all
n>0, g"(x) is in the component of M—f"(<r) that is the image under/" of the
component of M — a that contains x. If & c W" intersects the unstable half-leaf
originating at z, then /" ( (?) c E" for all sufficiently large n. It follows that if
xe{W": Du(x,a(z))>K}, then g"(x)e£u for all sufficiently large n.

The stable variation along a path p is the maximum Ds- distance between two
points on p. Note that if p has a stable variation less than K, then so does g(p).

2. An equivalent condition for semi-conjugacy
The construction in [H] shows that the homeomorphism g is semi-conjugate to
/ if for each y e M, there exists x e M such that the g-orbit of y is globally shadowed
by the /-orbit of x. For Anosov diffeomorphisms, x can always be found by the
standard shadowing techniques. In the pseudo-Anosov category, these techniques
break down and the inability to solve the shadowing problem can be detected by
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the asymptotic behavior of the orbit of a lift y of y with respect to some lift g0 of
g as follows.

PROPOSITION 2.1.- If the g-orbit of y is not globally shadowed by some f-orbit, then
there is a singularity z and disjoint stable and unstable envelopes Es and E" based at
z such that g~"(y)e Es and g"(y) e E" for all sufficiently large n, where g is the lift
of g that is equivariantly homotopic to the lift f of f that fixes z.

Proof of Proposition 2.1. Choose lifts y of y, g0 of g and f0 off such that g0 and /0

are equivariantly homotopic. We search for an /0-orbit that shadows the g0-orbit
of y; the construction fails only when we encounter the desired lift g.

We first find a stable leaf & such that Du(g5(y),f5(cr)) < K for all n > 0. If (L{y)
is non-singular, choose an orientation for {L{y) and denote this oriented leaf by
My). If (L(y) contains a singularity £„, then either §S(y)e NK(fS(cr(z0))) for all
n>0 and we're done, or (Remark 1.1) goiy)^fo(Eu) for some unstable envelope
E " based at f0 and for all sufficiently large n. In this latter case denote the oriented
unstable half-leaf initiating at z0 and intersecting E" by fJioiy)-

If the stable leaf cr(p) through pe(L0(y) is non-singular, then each fScr(p)
separates M into two components which we label + and - according to the
orientation on fo(ilo(y)) induced from that on /Z0(.y). We define a function T:{pe
to(yY- cr(P) is non-singular} ^ { + , 0, - } as follows. If Du(g5(y),f5(a(p)))< K for
all M > 0 (i.e. if o-(p) is the desired stable leaf) then T(p) = 0. Otherwise, (Remark
11). go(y) is either contained in the + component of the complement of fo(v(p))
for all sufficiently large n or it is contained in the - component for all sufficiently
large n; in the former case T(p) = + and in the latter case T(p) = —. Note that
r~ ' (~) a n d T"'( + ) are open subsets of the domain, that the image of T contains
both + and - and that if the domain is ordered according to the orientation on
flo(y) and the range is ordered by + < 0 < - , then T is order preserving.

Let q be the intersection of the closures of T~\-) and T~'( + ). If &(q) is not
the desired stable leaf then ar(q) contains a singularity zx and (Remark 1.1) there
is an unstable wedge W" based at f, that is disjoint from /I(y) such that go{y)&
fo(E") for all sufficiently large n, where E" is the unstable envelope for W". See
figure 2.1. Let /I, be the oriented unstable half leaf in W" whose negative end
converges to £,. There is a map Tl:{pefii: a-(p) is non-singular}-»{ + ,0, - } as
above. Iterating this argument we either find the desired stable leaf & or we find

My)

FIGURE 2.1
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sequences {£,} of singularities, {E") of unstable envelopes based at z, and {W" => E"}
of unstable wedges based at z{ such that go(y)^fo(E") for all sufficiently large n
and such that z,i W" forj> i. In particular, note that Du(y, zt)<K for all i.

Let W* be the stable wedge based at z, that contains y and let Es, be the stable
envelope based at z, that is contained in W*. Then W* n W" = 0 for all i. Since
Du{y, Zi) < K for all i and since the set of singularities is discrete, there exists i> 0
such that Ds(y, £,)> K. In this case ye W* and the conclusions of the proposition
are satisfied by £ = £,, £ s = £* and £" = £".

A similar argument produces an unstable leaf /I such that A(g"o(.v),/o(£)) < K-
for all M <0. If /I and & intersect then their intersection is a point x whose /0-orbit
shadows the g0-orbit of y. If/I and & are disjoint, choose p e p, so that Du(ar(p), <r)<
Du(cr{q), ar) for all q e /I. Then ^(p) contains a singularity z and o1 is contained in
an unstable wedge W that is disjoint from /I. Let Ws be the stable wedge that
contains fi. and let Es and £"be the envelopes determined by Ws and W. The
conclusions of the proposition are satisfied by z, Es and E". D

3. Computing entropy
In this section we assume that g is not semi-conjugate t o / and show that the entropy
of g is strictly greater than that of / We begin with some preliminary definitions
and lemmas.

Since g is not semi-conjugate to / there is an orbit of g that is not globally
shadowed by an orbit off. Choose g,f, z, y, Es, and E" as in Proposition 2.1; recall
that K>sup{Du(f(x), g(x)): xe M) and that after replacing g by an iterate of
itself (and hence A by a power of itself) if necessary, we may assume that A > 4.
Let c, = l / ( A - l ) < i a n d note that 1 + A+A2+- • - + A""1 < c,A" for all n>0.

LEMMA 3.1. There exists 0< c2< 1 such that ifDu(d, b)> K then Du(g"(d), g"(b))>
c2k"Du(d, b) for all d,beM.

Proof of Lemma 3.1. Repeated application of the fact that

Du(g(b),g(d))>Du(f(b~)J(d))-2K=\Du(b~,d)-2K

leads to

Du(g
n(b),g"(d))>\"{Du(d,b)-2Kc1).

Choose c2 = \. •

For any two points a and b in M, let u{d, b) be the number of unstable segments
in an efficient path between a and b.

LEMMA 3.2. There exists C> 0 such that u(g(d), g(b)) < u(d, b) + Cfor all d,beM.

Proof of Lemma 3.2. It is clear from the definition that

The lemma therefore follows from the fact that there is a uniform bound to the
distance between f(x) and g(x) and the fact that / carries efficient paths to efficient
paths. •
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FIGURE 3.1

LEMMA 3.3. Given T> K, let /? <= /!(£) be the union of the two T-length initial segments
of the unstable half leaves contained in the frontier of the stable wedge containing Es

(see figure 3.1). Denote the endpoints of /3 by {a, b). Then for all sufficiently large T,
there exists fc>0 and a covering translation to such that if p:

is a path connecting cr(a) to cr(b) with stable variation less
(*) than K, with E>s(x, P)<K + l for each xep and with interior disjoint

from ar(d) u a-(b)

then there is a subpath p'<^gk{p) such that (oV satisfies (*). Moreover, p and the
two endpoints of gk{p) are contained in three distinct unstable envelopes for z.

Proof of Lemma 3.3. For sufficiently large n, g"~l(Es)nEu is non-empty. Thus
if T is sufficiently large, g"~\Es)vE" separates g"(a) from g"(b) and since
p n g~\Es) = <f>, g"(p) n E" is non-empty. A similar argument allows us to choose
n > 0 so that for all sufficiently large T,g"(p)nEu contains two points p,qeE"
satisfying Du(p,q)>K. _

As m increases Du(g
m(p), gm{q)) grows exponentially in m while

u{gm(p),gm{q)) grows linearly in m. For sufficiently large m an efficient path y'
between gm(p) and gm(q) contains arbitrarily long unstable leaf segments and
hence unstable leaf segments that are nearly parallel to translates of p. In particular,
there is a covering translation t0 and an unstable leaf segment /3'<= Nl(top)ny'
connecting to5{a) to tocr{b). Since y' is efficient, the stable leaves through the
endpoints of P' separate gm(p) from gm(q) and there is an arc p'c gm+n(p) that
connects these stable leaves but is otherwise disjoint from them. Let k = m + n. The
stable variation of p' is bounded by the stable variation of gk(p) and is therefore
less than K. Since the unstable leaf that contains p' separates gm(p) from gm{q),
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Entropy and semi-conjugacy in dimension two 591

there exists xoegk(p) with Ds(x0,/3') = 0. It follows that Ds(x,/3')<K and hence
that Ds(x, top)<K + l for all x€ p . •

We now assume that T is chosen as in Lemma 3.3. We say that a path p<^ M
and a covering translation f are an admissible pair if t~l(p) satisfies (*).

We say that a path p is admissible if it is part of an admissible pair. Note that if
(p, f) is an admissible pair, then there is a subpath p'<= g(p) such that (p', gtg')
is an admissible pair. If a is an arc containing p, we say that the admissible pair
(p, t) is a-forced if the stable leaves through the endpoints of p each separate the
endpoints of a; we say that (p, /) is a-unforced if there is a singularity £, such that
p and the two endpoints of a are contained in three distinct unstable envelopes for
z,. Thus Lemma 3.3 states that for any admissible pair (p, identity), there is a subpath
p'c§k(p) such that (p', t0) is a gfc(p)-unforced admissible pair.

For any path a, let Fn(a) [respectively Un(a)] be the maximum cardinality of a
collection {{p(i), t(i))} of g"(a)-forced [respectively g"(a)-unforced] admissible
pairs where each p ( 0 c £"(«) and the f(i)'s are distinct.

As a corollary to the (second paragraph of the) proof of Lemma 3.3, we have the
following estimate on Fn(p).

COROLLARY 3.4. There exists c 3 >0 such that Fn(p)> c3A" for all admissible paths.

After replacing g by an iterate of itself if necessary, we may assume that the
constant k of Lemma 3.3 equals 1, that c3A>4 and that c, + (2 /c 3 A)<l . Choose
1 > d > 0 so that [dk' +1] < c3k

j/2 for ally > 1 where [ ] denotes the greatest integer
function. Note that

The following lemma shows that for any admissible path p<= M, the exponential
growth rate of Un(p) is strictly larger than log (A).

LEMMA 3.5. Let p be an admissible path. Then Un(p) > Bn where (Bn) is a sequence
satisfying Bn+x>(\+d)Bn.

Proof of Lemma 3.5. If (p(i,j), t{i,j)) is a g'(p)-unforced admissible pair for some
i > l , then there is a unique singularity z(i,j) such that g"~'(p(i,j)) and the two
endpoints of g"{p) are contained in three distinct envelopes of f"~'z{i,j) for all
n > i > 1. The first step in the proof is an inductive construction ( i > l ) of a collection
P,(p) = {(p(i,j), t(i,j)): 1 <j<[JA'"~1 +1]} of g'(p)-unforced admissible pairs such
that for each n > l , all the elements of {/" ' '(i(i,j)): 1 < I < M ; l<j<[d\'~l + l]}
are distinct. See figure 3.2. In particular, for all 1< i, fc< «, 1 <jrs[d\'~^ + 1], and
l</<[dA*~ 1 + l ] , g"~l'(p(i,./)) and g"'k(p(k, I)) do not intersect a common stable
leaf.

There is no loss in assuming that p satisfies (*). Define Pi(p) = {(p(l, 1), f(l, 1))}
to be the admissible pair produced by Lemma 3.3; note that z ( l , l ) = z. We
now assume that P\(p), • • •, Pn(p) have been defined. Corollary 3.4 states that
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FIGURE 3.2
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§2(p)

Fn(p)> c3A". Since

there are [dA" + l]<c3A"/2 g"(p)-forced admissible pairs {(p'(nj), t'(n,j))} such
that

Applying Lemma 3.3 to t'(n,jYxp'{n,j), we obtain a gf'(n,j)~1g"(p)-unforced
admissible pair (a(j), t0). Define

(p(n + \,j), t(n +1,7)) = (t"(n, j)a(j), t"(n,j)t0)

where t"(n,j) is the covering translation gt'(n,j)g~', and note that z(n + l,j) =
ft'(n,j)z. This completes the construction of Pn+1(p).

We next define collections Qn ( n> l ) of g" (p)-unforced admissible paths by
Q0(p) = p and (n > l)Qn(p) = \JP«k)(.Pnk-\)(- • • Pnu(p))) where the union is taken
over all ordered A:-tuples ( l < k < n ) of positive integers / ( I ) , . . . , i(k) whose sum
equals n and where P, of a union is the union of the P,'s. Thus for each (/8, t) e Qn(p)
there is a sequence of admissible paths
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If (j8', /') is another element of Qn(p) with corresponding r'/s and if T I ( 1 ) ^ T'JW,

then j3cg""'(1)Tl(1) and j8'<=g""J<1)TJ(1) do not intersect a common stable leaf. In
particular, t # t'. A similar argument shows that all the elements of Qn(p) determine
distinct covering translations.

Note that Qn(p) can also be defined recursively by

< ? - ( P ) = U Qj°Pn-j(p);

it follows that

Card (<?„)= I (Card(Q)x[dA""j"' + l]).

Define Bn =i;r0 ' (card Q) dA""7"1. Then l/n(p)>card(Qn)>Bn and

= (\ + d)Bn. D

Remark. The covering translations that occur in the admissible pairs counted in the
proof of Lemma 3.5 are independent of the exact choice of p and depend only on
the fact that p satisfies (*).

The following corollary shows that the exponential growth rate of Nn(g) is strictly
greater than log A. Since there exists 5 > 0 such that Nn(g) is an («, 5)-separated
set for all n > 0, the topological entropy of g is strictly greater than log A, the
topological entropy of/

COROLLARY 3.6. There exists c> 0 such that Nn(g) > c(\ + d)".

Proof of Corollary 3.6. Choose an arc a that satisfies (*). Let (p, t) be one of the
admissible pairs counted in the proof of Lemma 3.5 and let h = f~'g"; recall that
p<=g"(a). It suffices to show that h has fixed points and that there is a uniform
bound (i.e. a bound independent of n) to the number of such h that can be mutually
conjugate.

There is a subarc a, = ((~1p) of h(a) that satisfies (*). Similarly, for all fc>l
there are subarcs ak of hk(a) that satisfy (*). In particular, there exists a constant
Ko and xk e a such that D(hk(xk), xk)<K0 for all k > 1.

We claim that there exists X, > 0 such that D(£'(xk), xk) <K{ for 0< i < k and
all k > 1. Since Ds{h'(xk), xk) is uniformly bounded for all i" > 1 and all xk, it suffices
to find K2>K0 so that if Du(h'(xk),xk)> K2 then Du(h

i+l(xk), xk)> K2. The
existence of K2 follows from the fact that

Du(h~i+\xk),xk)>Du(h~i+1(xk),h(xk))-Du(h(xk),xk)

where C, is greater than Du(h(x), x) for all xe a-and Du{h'(xk^);xk)> K.
It follows immediately that the entire /i-orbit of any accumulation point x of the

set {h[k/2]{xk): fe> 1} is contained in the K,-neighborhood of a. The Brouwer
Translation Theorem (see for example [F2]) implies that Fix (h) is non-empty.
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Moreover, for any fixed point y of h, D(h'(y), h'(x)) is uniformly bounded for all
i 6 Z. Thus D(y, x) < 2K and Fix (h) is contained in the 2K + K, neighborhood of
a. As there are xyaly finitely many covering translations that do not move this
neighborhood of a entirely off of itself, there is a uniform bound to the number of
h's that are mutually conjugate. •

4. Extensions and counterexamples
Fathi [Fl] generalized the results of [H] by replacing the hypothesis that g ==/ with
the hypothesis that g is a homeomorphism of a compact metric space N for which
there exists a non-nullhomotopic map a: N-*M satisfying a °g—f° a. The con-
clusions are the same as in [H] except that n: Y-> M is homotopic to a | Y rather
than the inclusion of Y into M. In this section we consider the extent to which
Theorem 0.1 applies to this context. In particular, we assume throughout this section
that / g and a are as above and that the entropy of g equals that of/

Fathi also showed that if N is a closed surface and g is pseudo-Anosov, then
Y = N and in fact TT : N-* M is a branched covering. (His proof uses the fact that
a pseudo-Anosov homeomorphism supports a unique measure of maximal entropy
and the support of this measure is the entire surface.) Theorem 0.1 therefore implies
that if N is a closed surface and g is homotopic to a pseudo-Anosov homeomorphism,
then g is semi-conjugate t o / As Example 4.1 shows, the hypothesis that g determines
a pseudo-Anosov mapping class is essential.

If a: N -* M,g: N -* N and f:M^M are lifts to the universal covers such that
a ° g and / ° a are equivariantly homotopic and if a is homotopic to a semi-
conjugating map 7T, then for all ye N there exists xe M and O 0 such that
D(dg"(y),f"(x)) < C for all neZ. We will use this as a criterion for proving that
for certain g and a, there are no maps TT — a that semi-conjugate g to /

Example 4.1. Fix a hyperbolic structure on M and let As and A" be the geodesic
laminations determined by the stable and unstable foliations Fs and F" determined
by / There is a standard construction (see for example [H-T] or [M]) of a
homeomorphism h: M -» M that preserves As and A" and that is semi-conjugate to
/ by a map p — identity. Choose a singularity z of Fs and F". We may assume that
p~'(z)c Fix (h) is a hexagon (or a 2n-gon for n>3 if z is a more complicated
singularity) and that for each point v in a stable [respectively unstable] leaf initiating
at z, p'l{v) is an arc of an unstable [respectively stable] leaf. See figure 4.1.

FIGURE 4.1
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Let M' be the surface obtained from M by removing the interior of p~'(z) and
let N be the closed surface obtained by gluing together two copies M\ and M2

where dM[ and dM2 are identified by a homeomorphism that carries cl (p^\A)) n
dM\ to cl(p21(B))ndM'2 where A and B are non-adjacent stable and unstable
leaf segments initiating at z. See figure 4.2 where C is the image in N of
cl (P;\A))ndM[.

Then /i,:M',->M', and h2:M2->M2 fit together to define a homeomorphism
H:N^N and p, :M',-» M and /?2: M'2-> M fit together to define a map a:N^> M
such that/° a = a° H. There is a foliation (see figure 4.2) of t/ = p
C where the leaves are given by

Let X be a vector field on N supported on a neighborhood of C in U such that
X is transverse to the foliation and points in the direction of p2\B). Define g = <f> ° H
where <j> is the time one map of the flow generated by X.

Since g and H agree on their non-wandering sets, the entropy of g equals that
of/ On the other hand, there are lifts

ze M,f: M^ M, C c N, H: N^> N, g: N^ N and a : N^ M

such that / fixes z, H fixes C, g is equivariantly homotopic to H and a ° H =
f°a. Let A,B<=M be the lifts of A and B that initiate at £ Then for each
ye C there exists JV> 0 such that {ag"(y): n> N} agrees with an /-orbit in B and
{ag~"{y): n> N} agrees with an /-orbit in A. In particular,

sup {D(f"(x), ag"{y))\ n e Z} = oo for all xe M

and g is not semi-conjugate to / by a map that is homotopic to a. •

Our final example shows that Theorem 0.1 may fail in the general context even
if a is a homotopy equivalence.

Example 4.2. Let N = M x[0,1] and let G, be an isotopy of / to itself such that
G1/2 contains a fixed point P that is not Nielsen equivalent to any fixed point of/
Choose a function M : N - > [ 0 , 1] such that u"'(0) = M x { 0 , l } u P x { | and let
H(y,t) be the time one map of the flow generated by the vector field u- d/dt.
Then g(y, t) = H °(G,(y), t) is a homeomorphism of N with non-wandering set
Mx{0,l}uPx{^} and therefore with entropy equal to that of/ Define a equal
to the projection of N onto M. Choose lifts a,f,'g and P such that a°g and
f°d are equivariantly homotopic and such that g fixes Px{|}. The Brouwer
translation theorem and the choice of P imply that no orbit of / is bounded. Since
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dg"(Px{^}) = P for all neZ, g is not semi-conjugate to / by any map that is
homotopic to a. •
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