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CUT-OFF AND HITTING TIMES OF
A SAMPLE OF ORNSTEIN–UHLENBECK
PROCESSES AND ITS AVERAGE

B. LACHAUD,∗ Université René Descartes - Paris 5

Abstract

A cut-off phenomenon is shown to occur in a sample of n independent, identically
distributed Ornstein–Uhlenbeck processes and its average. Their distributions stay far
from equilibrium before a certain O(log(n)) time, and converge exponentially fast after.
Precise estimates show that the total variation distance drops from almost 1 to almost
0 over an interval of time of length O(1) around log(n)/(2α), where α is the viscosity
coefficient of the sampled process. The distribution of the hitting time of 0 by the average
of the sample is computed. As n tends to infinity, the hitting time becomes concentrated
around the cut-off instant, and its tails match the estimates given for the total variation
distance.
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1. Introduction

The cut-off phenomenon has been widely investigated in the past twenty years; see, for
instance, [5] and [14] for general references. It describes the property of steep convergence to
equilibrium of certain Markov processes. Before the so-called ‘cut-off instant’, they remain as
far apart as possible, at least in the sense of the total variation distance. After the cut-off instant,
they converge exponentially fast (see Definition 2). This phenomenon has been recognized in
various families of Markov processes or chains; see [6], [15], and [18], for example. In [17],
Ycart showed that a cut-off occurs for samples of Markov chains on a finite set, both in discrete
and continuous time. This result has recently been extended in [2] to exponentially converging
processes.

The aim of this paper is to investigate the cut-off phenomenon for a sample of Ornstein–
Uhlenbeck (OU) processes and its average process. The Ornstein–Uhlenbeck process has been
widely studied in the past seventy years. It was first introduced in physics in 1930 [16], but
has also been used, for example, in financial mathematics to model prices in markets [9] and
in biology to model neural activity [10].

The interest of OU processes is that almost all computations can be carried out explicitly.
In particular, precise estimates of the distance between the distribution of the sample at time
t and its asymptotic distribution as t tends to infinity can be given (see Proposition 1). The
empirical mean of n independent, identically distributed (i.i.d.) OU processes is another OU
process. Thus, it is possible to compute the distance to equilibrium also for the average process.
Its turns out that the asymptotics is the same as for the sample (see Proposition 2).
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1070 B. LACHAUD

The study of hitting times of Ornstein–Uhlenbeck processes is also possible. Various
methods for computing the distribution of hitting times of diffusion processes are available
[3, Chapter 3.4], [8, p. 475]. In the case of the OU process, a series expression for the density
of the hitting time of a fixed level has been proposed by Pitman and Yor [12]. When that level
is 0, an explicit expression of the density is obtained. We shall apply this result to the average
process of a sample of n OU processes and deduce the asymptotics of the hitting time as n

tends to infinity (see Proposition 3). This asymptotic distribution can be viewed as that of the
logarithm of the absolute value of a Gaussian random variable, and its tail behavior can be
studied precisely. Interestingly, it turns out that the asymptotics of the distance to equilibrium
for both the sample and the average coincide with the tail behaviors of the hitting time.

The article is organized as follows. In Section 2, we recall the necessary background on the
one-dimensional OU process and on the cut-off phenomenon. The cut-off phenomenon and
the precise estimates for the distances between the distribution at time t and the asymptotic
distribution as t tends to infinity are studied in Section 3, first for the sample and then for
the average process. The hitting time of the average process and the link with the cut-off
phenomenon are the subject of Section 4.

2. Framework and preliminaries

In this section, we review the necessary background, first on the OU process and then on the
cut-off phenomenon.

2.1. Some useful properties of the one-dimensional OU process

The OU process appears as the solution of the so-called Langevin equation, a stochastic
differential equation that models the movement of a Brownian particle in a viscous fluid. It is
a diffusion process with linear drift and constant diffusion coefficient. The precise definition is
as follows.

Definition 1. Let α > 0, σ > 0, and x0 be real numbers. Let (B(t))t≥0 be a standard Brownian
motion. We call the unique solution of the stochastic differential equation

dX(t) = −αX(t) dt + σ
√

2α dB(t), X(0) = x0,

an OU process starting at x0 with parameters α and σ .

Now consider an OU process X starting at x0 with parameters α and σ . The process X can
be explicitly written as

X(t) = x0e−αt + σ
√

2α

∫ t

0
e−α(t−u) dB(u).

Consequently this process is Gaussian, with mean

E(X(t)) = x0e−αt

and covariance function

cov(X(s), X(t)) = σ 2[e−α|t−s| − e−α(t+s)].
In particular, the distribution of X(t) is Gaussian with mean x0e−αt and variance σ 2(1−e−2αt ).
Hence, the stationary distribution ν of the process X is the centered Gaussian distribution with

https://doi.org/10.1239/jap/1134587817 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587817


Cut-off and hitting times of Ornstein–Uhlenbeck processes 1071

variance σ 2, denoted by N (0, σ 2). Finally, the OU process X converges to its stationary
distribution as t → ∞, i.e.

X(t)
d−→ N (0, σ 2).

More precisely, this convergence takes place at an exponential rate. The total variation dis-
tance between the distribution of X at time t (denoted by LX(t)) and its stationary distribution ν

has the following form as t tends to infinity (see Appendix A for a proof):

‖LX(t) − ν‖TV = |x0|
σ
√

2π
e−αt + o(e−2αt ). (1)

Let us now consider the hitting time T0 of the level 0 by the OU process X,

T0 = inf{t ≥ 0 : X(t) = 0}.
We are interested in the level 0 because zero is the expected value of the stationary distribution
of the process X, and we will see in Section 4 that the cut-off phenomenon can be linked to the
hitting time of the expected value of the stationary distribution using an empirical process.

A study of the hitting time T0, in the more general case in which 0 is replaced by any fixed
level a, has already been made [12]. It is used in several applications; for example, in [11]
the distribution of the hitting time was needed to find a pricing formula for interest rate path-
dependent options in financial models. A survey on the use of the hitting time of an OU process
can be found in [1]. In the general case, its density f is given by a series expansion, while,
when the level is 0, the density can be computed explicitly [12], [1]:

f (t) = |x0|
2σ

√
πα

(
α

sinh(αt)

)3/2

exp

(
− x2

0 e−αt

4σ 2 sinh(αt)
+ αt

2

)
. (2)

2.2. The cut-off phenomenon

The cut-off phenomenon is described here in terms of the total variation distance. Recall
that this distance is defined between two probability distributions µ and ν on a common space
E by

‖µ − ν‖TV = sup
A⊂E

|µ(A) − ν(A)|.

The cut-off phenomenon is defined for a sequence of stochastic processes as follows.

Definition 2. Suppose that, for each n ∈ N, we have

• a measurable space E(n) and

• a stochastic process X(n) = {X(n)(t), t ≥ 0}, with values in E(n), that converges to a
distribution ν(n) on E(n) as t tends to ∞.

For t ≥ 0, we define d(n)(t) = ‖LX(n)(t) − ν(n)‖TV, where LX(n)(t) is the distribution of
X(n) at time t . Let (tn)n∈N∗ be a nondecreasing deterministic sequence of times. It is called a
sequence of cut-off times if, for c > 0,

c < 1 ⇒ lim
n→∞ d(n)(ctn) = 1,

c > 1 ⇒ lim
n→∞ d(n)(ctn) = 0.
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Note that, for a Markov process X that converges to its stationary distribution ν, the total
variation distance between the distribution of X at time t and the distribution ν is a nonincreasing
function of t . This implies, in particular, that a sequence of cut-off times is not unique.
If (tn)n∈N∗ is a sequence of cut-off times then all sequences (τn)n∈N∗ equivalent to (tn)n∈N∗
(in the sense that the ratio tn/τn tends to 1) are also sequences of cut-off times.

A particular case in which a cut-off phenomenon has already been proved to occur was studied
by Ycart [17]. In that case, the process X(n) is a sample of n i.i.d. finite-valued Markov chains
that converge to their stationary distribution. The cut-off instants have the form log(n)/2β,
where β is the spectral gap of the infinitesimal generator of the sampled chain. (For reversible
Markov chains, the spectral gap is defined as the smallest nonzero eigenvalue of the infinitesimal
generator (see [14, p. 327]).) In what follows, we will use the same ideas in the case of the OU
process.

In order to bound total variation distances, we will use the Hellinger distance H . For two
probability measures µ and ν, with respective densities p and q with respect to the same measure
λ, the Hellinger distance separating them is defined as

H(µ, ν) =
(

1

2

∫
(
√

p − √
q)2 dλ

)1/2

.

The following classical inequality holds (see [13, p. 61]):

H 2(µ, ν) ≤ ‖µ − ν‖TV ≤ H(µ, ν)
√

2 − H 2(µ, ν). (3)

In the case of the OU processes all distributions are Gaussian. For all integers n, the Hellinger
distance between two samples of n i.i.d. Gaussian random variables, with respective means m1
and m2 and respective variances σ 2

1 and σ 2
2 , is given explicitly by

H 2(N (m1, σ
2
1 )⊗n, N (m2, σ

2
2 )⊗n) = 1 −

(
2v1v2

v2
1 + v2

2

)n/2

exp

(
−n(m1 − m2)

2

4(v2
1 + v2

2)

)
. (4)

In the next section, we study the cut-off phenomenon for a sample of n i.i.d. OU processes
and for its empirical mean.

3. Cut-off for OU processes

3.1. Cut-off for a sample of n OU processes

Consider a sample of n i.i.d. OU processes starting at x0 with parameters α and σ . At each
instant t , the sample has an n-dimensional Gaussian distribution that converges, as t tends to
∞, to another n-dimensional Gaussian distribution. For a positive integer n, let us denote
by dn(t) the total variation distance between the distribution of the sample of OU processes
(X1, . . . , Xn) at time t and its stationary distribution ν⊗n:

dn(t) = ‖L(X1(t), . . . , Xn(t)) − ν⊗n‖TV.

Proposition 1. The sample X(n) = (X1(t), . . . , Xn(t)) has a cut-off at the instant

tn = log(n)

2α
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and, for all sufficiently large integers n and for all real u such that tn + u > 0, the following
inequalities hold:

1 − exp

(
− x2

0

8σ 2 e−2αu

)
+ εn(u) ≤ dn(tn + u), (5)

dn(tn + u) ≤
√

1 − exp

(
− x2

0

4σ 2 e−2αu

)
+ ε′

n(u). (6)

Here εn(u) and ε′
n(u) converge to 0 as n tends to infinity.

This proposition shows that the cut-off actually occurs over an interval of time of length
O(1), which is more precision than required in Definition 2.

This cut-off phenomenon is a particular case of the cut-off studied in [2] for general
exponentially converging processes. Formula (1) says that the OU process is an exponentially
converging process, in the sense that the total variation distance between its distribution at time
t and the stationary distribution is exponentially decreasing as t tends to infinity. It was proved
in [2] that all samples of n exponentially converging processes exhibit a cut-off at an instant of
order log(n).

Proof of Proposition 1. Let us begin with the proofs of (5) and (6). The sample X(n) at time
t has density N (x0e−αt , σ 2(1 − e−2αt ))⊗n and its stationary distribution, as t tends to infinity,
is N (0, σ 2)⊗n. Thus, the Hellinger distance between the distribution of X(n) at time t and its
stationary distribution can be computed using (4). Inequality (3) then bounds the total variation
distance by the Hellinger distance and, finally, the study of the behavior of the upper and lower
bounds as n tends to infinity gives the expected results.

Let us then notice that

lim
u→−∞ 1 − exp

(
− x2

0

8σ 2 e−2αu

)
= 1,

lim
u→∞

√
1 − exp

(
− x2

0

4σ 2 e−2αu

)
= 0,

and that, for all n, the function dn is nonincreasing (as recalled in Section 2.2). Hence, we
conclude that tn is a cut-off instant in the sense of Definition 2.

In the next section, we will see that a cut-off phenomenon is exhibited by the average process
of the sample, and has the same cut-off instant.

3.2. Cut-off for the average of n i.i.d. OU processes

Let us now study what happens for the average process of the sample, defined at each instant
as the arithmetic mean of the sample. Let (X1, . . . , Xn) be a sample of n OU processes starting
at x0 with parameters α and σ . We denote by Mn the average process,

Mn(t) = 1

n

n∑
i=1

Xi(t), t ≥ 0.

The process Mn is a particular linear combination of n independent OU processes with the
same coefficient α. Because of the linearity of the stochastic differential equation satisfied
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by the Xi , the process Mn is again an OU process starting at x0, but with parameters α and
σ/

√
n. Consequently, as t tends to infinity it converges to its stationary distribution νn, which

is Gaussian with mean 0 and variance σ 2/n. Moreover, this convergence exhibits a cut-off
phenomenon at the same instant as the sample. Let us denote by dn(t) the total variation
distance between the distribution of Mn at time t and its stationary distribution νn:

dn(t) = ‖L(Mn(t)) − νn‖TV.

Proposition 2. The sequence (tn)n∈N∗ is a sequence of cut-off instants for the convergence of
the process Mn to its stationary distribution, and, for all sufficiently large integers n and for all
real u such that tn + u > 0, the following inequalities hold:

1 − exp

(
− x2

0

8σ 2 e−2αu

)
+ εn(u) ≤ dn(tn + u), (7)

dn(tn + u) ≤
√

1 − exp

(
− x2

0

4σ 2 e−2αu

)
+ ε′

n(u). (8)

Here εn(u) and ε′
n(u) converge to 0 as n tends to infinity.

Notice that the sequence of cut-off instants is the same for the average of n OU processes
as it is for the sample. We might expect the convergence of the average to be faster than that of
the sample, since the latter comprises a larger number of processes.

Proof of Proposition 2. As in the proof of Proposition 1, to ensure that tn is a cut-off instant
in the sense of Definition 2 it suffices (in this case) to prove (7) and (8).

At time t , the average process Mn has density N (x0e−αt , σ 2(1 − e−2αt )/
√

n) and its
stationary distribution, as t tends to infinity, is N (0, σ 2/

√
n). Thus, the Hellinger distance

between the distribution of Mn at time t and its stationary distribution can be computed using
(4). As in the previous proof, inequality (3) then bounds the total variation distance by the
Hellinger distance and the study of the behavior of the upper and lower bounds, as n tends to
infinity, gives the expected results.

Now we can see that the cut-offs for both the sample of OU processes and its average are
very similar. The cut-off instants are the same and the tail behaviors have similar bounds. Let
us now consider the total variation distance as a function of time: it decreases from 1 to 0 and,
thus, dn (or dn) can be viewed as the survival function of a certain positive random variable
concentrated around the cut-off instant log(n)/(2α). This (virtual) random variable could be
viewed as ‘the instant at which the sample reaches equilibrium’. As we shall see in the next
section, the hitting time of 0 by the average process can be viewed as an approximation of this
virtual instant.

4. Hitting times

Here, the link between the cut-off phenomenon and special hitting times will be explained.
This idea has already appeared in [17], in the case of a sample (X1, . . . , Xn) of finite-valued
continuous-time Markov chains. Suppose that the sample converges to its stationary distribu-
tion. In [17], a cut-off was proved to occur at time

τn = log(n)

2β
,
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where β is the spectral gap of the infinitesimal generator of the sampled process. The gap β

is unknown in general, and an estimator was proposed for it. For a certain functional f , the
average process of the image, under f , of the sample is defined by

M
f
n (t) = 1

n

n∑
i=1

f (Xi(t)).

The hitting time of the expected value of the stationary distribution of the sampled process by
the average process M

f
n is denoted by Tn. Ycart [17] proved that

lim
n→∞

E(Tn)

τn

= 1

and

lim
n→∞

var(Tn)

E(T 2
n )

= 0,

which shows that the random variable log(n)/(2Tn) is a consistent estimator of β.
Let us apply the same idea to OU processes. Again consider a sample of n OU processes

starting at x0 with parameters α and σ . We denote by ν their common stationary distribution, by
Mn the average process of the sample, defined as above, and take f to be the identity function.

The distribution ν is centered (see Section 2.1); thus, the hitting time that we are interested
in is the first instant at which the average process hits the level 0, i.e.

T
x0,n
0 = inf{t ≥ 0 : Mn(t) = 0}.

As already seen, Mn is an OU process starting at x0 with parameters α and σ/
√

n, and the
density gn of the hitting time T

x0,n
0 can be deduced from (2) to be

gn(t) = |x0|
2σ

√
n

πα

(
α

sinh(αt)

)3/2

exp

(
− nx2

0 e−αt

4σ 2 sinh(αt)
+ αt

2

)
.

From this explicit expression, the asymptotic distribution of T
x0,n
0 can be computed.

Proposition 3. For a positive integer n, let Un be the following scaled version of T
x0,n
0 :

Un = α

(
T

x0,n
0 − log(n)

2α
+ 1

2α
log

(
2σ 2

x2
0

))
.

As n tends to infinity, the distribution of Un converges weakly to the distribution on R with
density g, where

g(t) = 2√
π

exp(−t − e−2t ).

Proof. At time t , the density of the random variable Un is given by

1

α
gn

(
t

α
+ log(n)

2α
− 1

2α
log

(
2σ 2

x2
0

))
.

An elementary computation shows that, for all t ,

lim
n→∞

1

α
gn

(
t

α
+ log(n)

2α
− 1

2α
log

(
2σ 2

x2
0

))
= g(t).

Then Scheffé’s lemma (see, e.g. [4, p. 223]) implies that the random variable Un converges in
distribution to a random variable with density g.
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Proposition 3 implies that the random variable T
x0,n

0 is concentrated around the cut-off
instant tn, in terms of convergence in probability:

lim
n→∞

T
x0,n
0

log(n)/(2α)
= 1 in probability.

Thus, log(n)/(2T
x0,n

0 ) could be viewed as a consistent estimator of α if α were unknown.
Note also that the limit distribution g can be viewed as the distribution of a random variable

Y defined by

Y = −log

( |N |√
2

)
,

where N is a standard Gaussian random variable. The distribution of Y is asymmetrical and
behaves in very different ways close to −∞ and close to ∞. More precisely, if we denote by 	

the distribution function of the standard Gaussian distribution, we can see that the distribution
function G of the random variable Y is given, for all real y, by

G(y) = 2(1 − 	(
√

2e−y)).

The following approximations to the behaviors of 1 − 	 close to 0 and close to ∞ are well
known (see [7, p. 175]):

1 − 	(x) ∼ 1

2
− x√

2π
, x → 0,

1 − 	(x) ∼ 1

x
√

2π
exp

(
−x2

2

)
, x → ∞.

We therefore deduce the following approximations for the tail behaviors of G at ∞ and −∞:

G(y) ∼ 1 − 2√
π

e−y, y → ∞, (9)

G(y) ∼ 1√
π

exp(y − e−2y), y → −∞. (10)

For the convergences of both the sample and the average process, let us now compare the
asymptotic tail behaviors of the hitting time T

x0,n
0 to what happens before and after the cut-off

instant.
After the cut-off instant tn, the total variation distance decreases to 0. The upper bounds of

the total variation distances are (see Propositions 1 and 2)

dn(tn + u) ≤
√

1 − exp

(
− x2

0

4σ 2 e−2αu

)
+ ε′

n(u)

and

dn(tn + u) ≤
√

1 − exp

(
− x2

0

4σ 2 e−2αu

)
+ ε′

n(u),

where ε′
n(u) and ε′

n(u) tend to 0 as n tends to ∞. As u tends to ∞, the upper bound in both
cases is equivalent to

|x0|
2σ

e−αu.
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By Proposition 3, the right tail of T
x0,n
0 can be evaluated as follows:

lim
n→∞ P(T

x0,n
0 > tn + u) = 1 − G

(
αu + log

(
σ
√

2

|x0|
))

.

Using the approximation of G near ∞ (9), we deduce that

1 − G

(
αu + log

(
σ
√

2

|x0|
))

∼ |x0|
σ

√
2

π
e−αu, u → ∞.

The behavior of the right tail of T
x0,n
0 thus matches that of the total variation distance following

the cut-off instant, up to a constant factor 2
√

2/π .
Before the cut-off instant tn, the total variation distance increases (into the past) to 1. By

considering the lower bounds of the total variation distances evaluated at time tn − u, where u

is a positive real number, we find that

1 − exp

(
− x2

0

8σ 2 e2αu

)
+ εn(−u) ≤ dn(tn − u)

and

1 − exp

(
− x2

0

8σ 2 e2αu

)
+ εn(−u) ≤ dn(tn − u),

where εn(−u) and εn(−u) tend to 0 as n tends to ∞. These lower bounds can be compared
with the approximation of P(T

x0,n
0 < tn − u). By Proposition 3, the following convergence

holds:

lim
n→∞ P(T

x0,n
0 < tn − u) = G

(
−αu + log

(
σ
√

2

|x0|
))

.

Using the approximation of G near −∞ (10), we deduce that

G

(
−αu + log

(
σ
√

2

|x0|
))

∼ σ

|x0|
√

2

π
exp

(
−αu − x2

0

2σ 2 e2αu

)
, u → ∞.

The agreement between the left tail of T
x0,n
0 and the behavior of the total variation distance

prior to the cut-off instant is not as good as that between the right tail and the behavior after the
cut-off instant. However, the same type of doubly exponential tail is obtained in both cases.

Let us finish with a numerical illustration of the link between the cut-off phenomenon and
the hitting time. We choose the parameters of the sampled OU process to be

α = 1, σ = 1, and x0 = 10.

We also fix the size n of the sample, and we choose a sequence of regularly spaced instants
t1, . . . , tk . Our experiment involves simulating the sample of n OU processes (X1, . . . , Xn)

with these parameters. At the instants t1, . . . , tk , we compute the p-value of the Student t-test,
which determines whether the sample (X1(t), . . . , Xn(t)) has a centered Gaussian distribution
with variance σ 2. We thus obtain a k-tuple of p-values. We also compute the values of the
average process Mn at each instant, and find the first time T

x0,n
0 at which this process crosses

the level 0. We thus obtain one observation of this random variable.
We then repeat this experiment 1000 times, obtaining 1000 k-tuples of p-values and 1000

observations of the random variable T
x0,n
0 .
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Table 1: Average of the 1000 p-values of the Student t-test between the distribution of the sample and
the stationary Gaussian distribution.

ti n = 100 n = 1000

2.5 0 0
3.0 0.000 25 0
3.5 0.017 0
4.0 0.085 0.000 016
4.5 0.16 0.007 6
5.0 0.21 0.068
5.5 0.23 0.15
6.0 0.24 0.21

Table 2: The p-values of the Kolmogorov–Smirnov test between the sample of the random variable Un

and the limit distribution.

n p-value

100 0.0037
1000 0.024

We first compute the average of the 1000 p-values for each instant t1, . . . , tk . Table 1 shows
the results obtained for n = 100 and for n = 1000, with k = 8 in both cases.

For n = 100, we can see that the Student t-test accepts the null hypothesis for instants
between 3.5 and 4.5, which means that the sample (X1(t), . . . , Xn(t)) has a centered Gaussian
distribution with variance σ 2, and, consequently, that the sample has converged. The theoretical
value of the cut-off instant is log(100)/(2α), which is equal to 2.30. For n = 1000, the Student t-
test accepts the null hypothesis for instants between 4.5 and 5, which means that the convergence
of the sample occurs between t = 4.5 and t = 5. Here, the theoretical value of the cut-off
instant is log(1000)/(2α), which is equal to 3.45.

Finally we consider the sample of 1000 observations of the random variable T
x0,n

0 . We want
to illustrate the convergence in distribution proved in Proposition 3. We compute the scaled
version of the sample,

Un = α

(
T

x0,n
0 − log(n)

2α
+ 1

2α
log

(
2σ 2

x2
0

))
.

Then, a Kolmogorov–Smirnov test allows us to decide if the sample is distributed with the limit
distribution. Table 2 shows the p-values that we obtain for this test.

We conclude that, at the 2% probability level, the Kolmogorov–Smirnov test accepts the null
hypothesis for n = 1000 but not for n = 100.

5. Concluding remarks

We have proved that a cut-off phenomenon occurs during the convergence both of a sample
of OU processes and its average, and at the same instant tn in each case. Moreover, we have
found a sequence of hitting times T

x0,n
0 that stay close to the cut-off instants as n tends to infinity.

Here the parameter α is known, but the random variable log(n)/(2T
x0,n

0 ) can be viewed as a
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consistent estimator of α. It could be very useful in other models where a parameter is supposed
to be unknown.

Finally, in future we would like to generalize this study to more general processes than the
OU processes, and also to generalized average processes.

Appendix A.

Let us prove that the approximate total variation distance at time t between the distribution
of the one-dimensional OU process and its stationary distribution ν is given, as t tends to ∞,
by (1):

‖LX(t) − ν‖TV = |x0|
σ
√

2π
e−αt + o(e−2αt ).

First, recall that both distributions, LX(t) and ν, are Gaussian, i.e.

LX(t) = N (x0e−αt , σ 2(1 − e−2αt )), ν = N (0, σ 2).

If we denote by u the quantity e−αt , we have to estimate the total variation distance between
N (x0u, σ 2(1 − u2)) and N (0, σ 2) as u tends to 0. The total variation distance between two
probability measures P and Q having respective densities p and q with respect to the same
dominating measure λ is given by (see, for instance, [13, p. 59])

‖P − Q‖TV = 1

2

∫
|p − q| dλ.

In our case, we obtain∥∥∥∥LX

(−log(u)

α

)
− ν

∥∥∥∥
TV

= 1

2

∫
R

∣∣∣∣ 1

σ
√

2π
e−x2/(2σ 2) − 1

σ
√

2π
√

1 − u2
exp

(
− (x − x0u)2

2σ 2(1 − u2)

)∣∣∣∣ dx,

which can be rewritten as∥∥∥∥LX

(−log(u)

α

)
− ν

∥∥∥∥
TV

= 1

2
E

∣∣∣∣1 − 1√
1 − u2

exp

(
x2

0

2σ 2

)
exp

(
− (N − x0/(σu))2

2(1/u2 − 1)

)∣∣∣∣,
where N is a standard Gaussian random variable.

Considering the function inside the expectation as a function of u, we compute its polynomial
approximation as u tends to 0 using the Taylor–Lagrange formula, to obtain∣∣∣∣1 − 1√

1 − u2
exp

(
x2

0

2σ 2

)
exp

(
− (N − x0/(σu))2

2(1/u2 − 1)

)∣∣∣∣ = |x0uN |
σ

+ u2ε(u, N),

where ε is a function polynomial in N that tends to 0 as u tends to 0.
Taking the expectation, and knowing that all the moments of the standard Gaussian random

variable are finite, we obtain

‖LX(t) − ν‖TV = |x0|e−αt

σ
√

2π
+ o(e−2αt ),

which is the expected result.
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