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Geometric Meaning of Isoparametric
Hypersurfaces in a Real Space Form
Makoto Kimura and Sadahiro Maeda

Abstract. We shall provide a characterization of all isoparametric hypersurfaces M’s in a real space form M̃(c)
by observing the extrinsic shape of geodesics of M in the ambient manifold M̃(c).

0 Introduction

In differential geometry it is interesting to know the shape of a Riemannian submanifold by
observing the extrinsic shape of geodesics of the submanifold. For example: A hypersurface
Mn isometrically immersed into a real space form M̃n+1(c) of constant curvature c (that
is, M̃n+1(c) = Rn+1, Sn+1(c) or Hn+1(c) according as the curvature c is zero, positive, or
negative) is totally umbilic in M̃n+1(c) if and only if every geodesic of M, considered as a
curve in the ambient space M̃n+1(c), is a circle.

Here we recall the definition of circles in Riemannian geometry. A smooth curve γ :
R −→ M in a complete Riemannian manifold M is called a circle of curvature κ(� 0) if it
is parametrized by its arclength s and it satisfies the following equation:

∇γ̇∇γ̇ γ̇(s) = −κ2γ̇(s),

where κ is constant and ∇γ̇ denotes the covariant differentiation along γ with respect to
the Riemannian connection ∇ of M. Since ‖∇γ̇ γ̇‖ = κ, this equation is equivalent to the
equation of geodesics, when κ = 0. So we treat a geodesic as a circle of null curvature.

In general, a circle in a Riemannian manifold is not closed. Of course, any circles of
positive curvature in Euclidean m-space Rm are closed. And also any circles in Euclidean m-
sphere Sm(c) are closed. But in the case of a real hyperbolic m-space Hm(c), there exist many
open circles. In fact, in Hm(c) a circle with curvature κ is closed if and only if κ >

√
|c|

(for details, see [2]).
In this paper we are interested in a hypersurface Mn of a real space form M̃n+1(c) satis-

fying that there exists an orthonormal basis {v1, . . . , vn} at each point p of the hypersurface
Mn such that all geodesics of Mn through p in the direction vi , (1 ≤ i ≤ n), lie on circles in
the ambient space M̃n+1(c). The classification problem of such hypersurfaces is concerned
with studies about isoparametric hypersurfaces Mn’s in a real space form M̃n+1(c) (that is,
all principal curvatures of Mn in M̃n+1(c) are constant).

Theory of isoparametric submanifolds is one of the most interesting objects in differen-
tial geometry. In particular, É. Cartan studied extensively isoparametric hypersurfaces in a
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standard sphere. The classification problem of isoparametric hypersurfaces in a sphere is
still open (see Problem 34 in [3]).

The main purpose of this paper is to provide a characterization of all isoparametric
hypersurfaces by observing the extrinsic shape of geodesics of hypersurfaces in a real space
form (Theorem 1 and Theorem 5).

The authors would like to express their sincere gratitude to Professors K. Ogiue and
J. Berndt for their valuable suggestions during the preparation of this paper. They also
greatly appreciate the referee’s useful comments.

1 Results

Theorem 1 Let Mn be a connected hypersurface of a real space form M̃n+1(c) of constant
curvature c. Then Mn is isoparametric in M̃n+1(c) if and only if for each point p in M there
exists an orthonormal basis {v1, . . . , vm} of the orthogonal complement of ker A in Tp(M)
(m = rank A) such that all geodesics of M through p in the direction vi , (1 ≤ i ≤ m), lie on
circles of nonzero curvature in the ambient space M̃n+1(c).

Proof Let M be an isoparametric hypersurface of a real space form M̃(c) with constant
principal curvatures κ1, . . . , κg . Then the tangent bundle TM is decomposed as: TM =
Tκ1⊕· · ·⊕Tκg , where Tκi = {X ∈ TM : AX = κiX} (i = 1, . . . , g). We here recall the fact
that each distribution Tκi is integrable and moreover, every leaf of Tκi is totally geodesic in
the hypersurface M and totally umbilic in the ambient space M̃(c) (see [1]), which implies
that every geodesic of such leaves is a geodesic in M and a circle in M̃(c).

Hence, for each point p of M, taking an orthonormal basis {v1, . . . , vm} of the orthog-
onal complement of ker A in Tp(M) in such a way that each vi (1 ≤ i ≤ m) is a principal
curvature vector, we find that the vectors v1, . . . , vm satisfy the statement of Theorem 1.

Conversely, let M be a hypersurface satisfying the condition that for each point p in M
there exists an orthonormal basis {v1, . . . , vm} of the orthogonal complement of ker A in
Tp(M) such that all geodesics of M through p in the direction vi (1 ≤ i ≤ m), lie on circles

of nonzero curvature in the ambient space M̃n+1(c). We consider the open dense subset
U = {p ∈ M | the multiplicity of each principal curvature of M in M̃(c) is constant on
some neighborhood Vp(⊆ U) of p} of M. We here note that all principal curvatures are
differentiable on U and in a neighborhood of any point p in U the principal curvature vec-
tors can be chosen to be smooth. In the following, we shall study on a fixed neighborhood
Vp. We remark that the shape operator A has constant rank on Vp.

Let γi = γi(s) (1 ≤ i ≤ m) be geodesics of M (with metric 〈 , 〉) with γi(0) = p and
γ̇i(0) = vi , where {v1, . . . , vm} is an orthonormal basis of (ker A)⊥ in Tp(M). We denote

by ∇̃ and∇ the Riemannian connections of M̃(c) and M, respectively. Then they satisfy

∇̃γ̇i ∇̃γ̇i γ̇i = −k2
i γ̇i(1.1)

for some positive constants ki . Here, without loss of generality we can set k1 ≤ k2 ≤ · · · ≤
km. We recall the Gauss formula ∇̃XY = ∇XY + 〈AX,Y 〉N and the Weingarten formula
∇̃XN = −AX, where N is a unit normal vector field on M and A is the shape operator of
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M in M̃(c). From these two formulas we get

∇̃γ̇i ∇̃γ̇i γ̇i = −〈Aγ̇i, γ̇i〉Aγ̇i + 〈(∇γ̇i A)γ̇i , γ̇i〉N.(1.2)

Comparing the tangential component of (1.1) and (1.2), we obtain

〈Aγ̇i, γ̇i〉Aγ̇i = k2
i γ̇i

so that at s = 0
〈Avi, vi〉Avi = k2

i vi .

Hence
Avi = kivi or Avi = −kivi (1 ≤ i ≤ m),

which means that the tangent space Tp(M) is decomposed as:

Tp(M) = ker A⊕ {v ∈ Tp(M) : Av = −ki1 v} ⊕ {v ∈ Tp(M) : Av = ki1 v}

⊕ · · · ⊕ {v ∈ Tp(M) : Av = −kig v} ⊕ {v ∈ Tp(M) : Av = kig v},

where 0 < ki1 < ki2 < · · · < kig and g is the number of positive distinct k j ( j = 1, . . . ,m).
Hence our discussion yields that every ki j is differentiable on Vp. Next, we shall show the
constancy of ki j . It suffices to check the case that Avi j = ki j vi j . First we note that vi j ki j = 0
(see the normal component of Equation (1.2)). For any vl (1 ≤ l �= i j ≤ n), since A is
symmetric, we see

〈(∇vi j
A)vl, vi j 〉 = 〈vl, (∇vi j

A)vi j 〉.(1.3)

Here {vm+1, . . . , vn} is an orthonormal basis of ker A. In order to compute Equation (1.3)
easily, we extend an orthonormal basis {v1, . . . , vn} to principal curvature unit vector fields
on some neighborhood Wp(⊂ Vp), say {V1, . . . ,Vn}. Moreover we can choose∇Vi j

Vi j =

0 at the point p, where (Vi j )p = vi j . Such a principal curvature vector field Vi j can be
obtained as follows:

First we define a smooth vector field Wi j on some sufficient small neighborhood Wp(⊂
Vp) by using parallel displacement for the vector vi j along each geodesic with origin p. We
remark that in general Wi j is not principal on Wp, but AWi j = ki jWi j on the geodesic
γ = γ(s) with γ(0) = p and γ̇(0) = vi j . We here define the vector field Ui j on Wp as:
Ui j =

∏
α�=ki j

(A − αI)Wi j , where α runs over the set of all distinct principal curvatures of

M except for the principal curvature ki j . Then we find that AUi j = ki jUi j (�= 0) on Wp.
We define Vi j by normalizing Ui j . Our construction shows that the integral curve of Vi j

through the point p is a geodesic on M, so that in particular (∇Vi j
Vi j )p = 0.

Thanks to the Codazzi equation 〈(∇XA)Y,Z〉 = 〈(∇Y A)X,Z〉, at the point p we find

(the left-hand side of (1.3)) = 〈(∇vl A)vi j , vi j 〉

= 〈(∇Vl A)Vi j ,Vi j 〉

= 〈∇Vl (ki jVi j )− A∇VlVi j ,Vi j 〉

= 〈(Vlki j )Vi j + (ki j I − A)∇VlVi j ,Vi j 〉

= vlki j .

https://doi.org/10.4153/CMB-2000-011-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-011-3


Isoparametric Hypersurfaces 77

Similarly we get

(the right-hand side of (1.3)) = 〈Vl, (∇Vi j
A)Vi j 〉

= 〈Vl,∇Vi j
(ki jVi j )− A∇Vi j

Vi j 〉

= 〈vl, (vi j ki j )vi j 〉 = 0.

Therefore we can see that the differential dki j of ki j vanishes at the point p, which shows
that every ki j (> 0) is constant on Wp, since p is an arbitrary point of Wp.

Now let {λi} be the n principal curvature functions on M numbered in descending
order. Then each λi is continuous on M. The above argument guarantees that the set where
{q ∈ M : λi(q) = λi(p)} for the fixed point p(∈ U) is both open and closed in M, so that
every principal curvature is constant on M. Thus M is an isoparametric hypersurface.

As immediate consequences of Theorem 1 we establish the following

Theorem 2 Let Mn be a connected hypersurface of a real space form M̃n+1(c) of constant
curvature c. Then Mn is isoparametric with nonzero constant principal curvatures in M̃n+1(c)
if and only if for each point p of M, there exists an orthonormal basis {v1, . . . , vn} of Tp(M)
such that all geodesics of M through p in the direction vi, (1 ≤ i ≤ n), lie on circles of nonzero
curvature in the ambient space M̃n+1(c).

Theorem 3 Let Mn be a connected hypersurface of a real space form M̃n+1(c) of constant cur-
vature c. Then Mn is totally umbilic (but not totally geodesic) in M̃n+1(c) or locally congruent
to a product of spheres Sr(2c) × Sn−r(2c) (1 ≤ r ≤ n − 1) which is naturally imbedded into
Sn+1(c) if and only if there exists an orthonormal basis {v1, . . . , vn} at each point p of M such
that all geodesics of M through p in the direction vi , (1 ≤ i ≤ n), lie on circles with the same
nonzero curvature in the ambient space M̃n+1(c).

Proof of Theorem 3 By virtue of the proof of Theorem 1 we know that the hypersurface
Mn in M̃n+1(c) satisfying the condition that there exists an orthonormal basis {v1, . . . , vn}
at each point p of M such that all geodesics of M through p in the direction vi , (1 ≤ i ≤ n),
lie on circles with the same nonzero curvature, say, k in the ambient space M̃n+1(c) has
at most two nonzero constant principal curvatures k, −k. Then we get the conclusion
(see [1]). It is well-known that the hypersurface Sr(c1)×Sn−r(c2) (1 ≤ r ≤ n−1, 1

c1
+ 1

c2
= 1

c )

in Sn+1(c) has two constant principal curvatures c1√
c1+c2

with multiplicity r and− c2√
c1+c2

with

multiplicity n− r.

In connection with Theorem 1 we recall the following example.

Example 4 A hypersurface Mn in a real space form M̃n+1(c) is called a Dupin hypersurface
(cf. [1]) if each of its principal curvatures has constant multiplicity and is constant along
the leaves of its principal foliation. So each leaf of its principal foliation is totally umbilic in
M̃n+1(c), but generally is not totally geodesic in Mn by Theorem 1.
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Finally we rewrite Theorem 1 as follows:

Theorem 5 Let Mn be a connected hypersurface of a real space form M̃n+1(c) of constant
curvature c. Then Mn is isoparametric in M̃n+1(c) if and only if for each point p of M, there
exists an orthonormal basis {v1, . . . , vn} of Tp(M) of principal curvature vectors such that all
geodesics of M through p in the direction vi, (1 ≤ i ≤ n), lie on circles in the ambient space
M̃n+1(c).

Proof of Theorem 5 If 〈Avi, vi〉 = 0, then Avi = 0, because vi is a principal curvature
vector. Hence the proof of Theorem 1 yields that all principal curvatures of M are constant.
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