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0. Introduction. We denote by Autsn�G� the set of all automorphisms that ®x
every subnormal subgroup of G setwise. In their paper [5], Franciosi and de Gio-
vanni began the study of Autsn�G�. Other authors have also considered the structure
of Autsn�G� under various restrictions on the structure of G (Robinson [11], Cossey
[2], Dalle Molle [4]). The inner automorphisms in Autsn�G� are precisely the inner
automorphisms induced by elements of !�G�, the Wielandt subgroup of G. Recall
that the Wielandt subgroup of a group G is the set of all elements of G that nor-
malise each subnormal subgroup of G and that ��G�, the centre of G, is contained in
!�G�. Thus Autsn�G� \ Inn�G� is isomorphic to !�G�=��G� and some of the results
obtained indicate that the structure of Autsn�G� is controlled by the structure of
!�G�=��G�; for example, Robinson [11, Corollary 3] shows that, for a ®nite group
G;Autsn�G� is insoluble if and only if !�G� is insoluble. We shall prove a result of a
similar nature here. One of the main results (Theorem B) of Franciosi and de Gio-
vanni [5] is that, for a polycyclic group G, Autsn�G� is either ®nite or abelian. We
shall show that Autsn�G� can indeed be in®nite, but only if !�G�=��G� is in®nite.

Theorem 1. Let G be a polycyclic group. Then Autsn�G� is in®nite if and only if
!�G�=��G� is in®nite.

The Wielandt subgroup of a polycyclic group is close to being central and if G is
nilpotent-by-abelian, for example, then !�G�=��G� is ®nite (Cossey [3, Theorem 1]).
We should expect it to be uncommon for a polycyclic group to have !�G�=��G�
in®nite. However the example in Cossey [3] shows that a polycyclic group G can
have !�G�=��G� in®nite and hence that Autsn�G� can be in®nite. Theorem 1 is an
immediate corollary of the next result, but we will need to prove Theorem 1 as an
intermediate step in the proof.

Theorem 2. Let G be a polycyclic group. Then Autsn�G� \ Inn�G� has ®nite index
in Autsn�G�.
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1. Preliminaries. Before we begin the proof of Theorem 2, we need some tech-
nical lemmas. Some of these are presumably known, but we have not yet been able
to ®nd them in the form we need and so have included proofs. A polycyclic group G
has a unique maximal ®nite normal subgroup, which we call the torsion radical of G
and denote by ��G�. We shall use frequently and without further comment the fact
that a polycyclic group is ®nite if and only if every element has ®nite order.

Lemma 1. Let G be a polycyclic group. If ��G� � 1, then � G=��G�� � � 1.

Proof. Put A=��G� � � G=��G�� �. Then ��A� has ®nite index in A and so A0 is
®nite. Since A0 is normal in G we have A0 � 1. If n is the order of A=��G�, we have
a; g� �n� an; g� � � 1, for all a 2 A; g 2 G. Thus A;G� �n� 1 and so the normal subgroup
A;G� � is ®nite, giving A;G� � � 1. We now have A � ��G�, as required.

Lemma 2. Let A be a group of automorphisms of the ®nitely generated group G.
Suppose that G has a ®nite A-invariant normal subgroup N such that A=CA�G=N� is
®nite. Then A is ®nite.

Proof. Let g1; . . . ; gm be a set of generators for G. If � is any element of
CA�G=N�, then ��gi� lies in a ®xed ®nite set of elements, for each i, namely giN. Since
N is ®nite, it follows that CA�G=N� is also ®nite. Thus A is ®nite.

Lemma 3. Let G be a polycyclic group and let H � G=��G�. Then !�G�=��G� is
®nite if and only if !�H�=��H� is ®nite.

Proof. Suppose ®rst that !�G�=��G� is ®nite and that x��G� 2 !�H�. We shall
prove that some power of x is in !�G�. The result follows since then some power of x
is in ��G�, by our hypothesis, and ��G���G�=��G� � ��H�.

Since G is polycyclic, there is an upper bound on the minimal number of gen-
erators of any subgroup of G, m say. Now suppose that S is a subnormal subgroup
of G. Then S0 � S��G�=��G� is subnormal in H and Sx

0 � S0. Now S0 : S � ��G�j������ .
In any group with minimal number of generators at most m, there are a bounded
number of subgroups of index at most ��G�j�� , M say. (See, for example, Problem 19,
page 102 of Magnus, Karass and Solitar [9].) Then x will act by conjugation as a
permutation of the subgroups of index S0 : Sjj in S0. In particular, y � xM! will act
trivially on this set and so Sy � S. It follows that xM! 2 !�G�, as required.

Now suppose that !�H�=��H� is ®nite. If x 2 !�G�, then we have x��G�� �m2 ��H�,
by our hypothesis. It will therefore be enough to show that if y��G� 2 ��H� then
yn 2 ��G�, for some n. The inner automorphism induced by y acts on G=��G� trivially
and so, by Lemma 2, y induces an inner automorphism of ®nite order on G. The
result follows.

The next two results enable us to show that under certain very restricted condi-
tions we can show that some power of an automorphism is inner; our aim in the proof
of Theorem 2 will be to reduce the general case to that of the lemma below. First we
shall need a result about integral representations of a cyclic group of prime order p.
Suppose that X � hxi is cyclic of order p. We denote by Z the ring of integers, by Zq

the ®eld of q elements, where q is a prime, and by Q the ®eld of rational numbers.
We need some facts about ZpX that are well known but not easily accessible.

380 VITTORIO D. ALMAZAR AND JOHN COSSEY

https://doi.org/10.1017/S0017089599000439 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000439


Observe that ZpX is isomorphic to the quotient ring Zp x� �=�xp ÿ 1�Zp�x��.
Regarded as a ZpX-module, submodules of Zp x� �= �xp ÿ 1�Zp�x�

ÿ �
correspond to

ideals and these are just �xÿ 1�iZp x� �= �xp ÿ 1�Zp�x�
ÿ �

, for 0 � i � p, (noting that
xp ÿ 1 � �xÿ 1�p). In particular, submodules and quotient modules are indecompo-
sable and determined by their dimensions. (For another treatment of this, see Alperin
[1], Corollary 1.3.3 and pages 24±25.)

Lemma 4. Let R � ZX. Suppose that W is an R-module that is free as abelian
group and generated as module by one element. If E � EndR�W�, then since R is
commutative we can consider x as an element of E. Suppose that 1� . . .� xpÿ1 � 0 in
E. Then W is an indecomposable R-module and W has rank pÿ 1 as free abelian
group. Further, if Et is the endomorphism ring of the R-module W=ptW, then Et is a
local ring.

Proof. Since W=pW is generated by a single element as ZpX-module, it is iso-
morphic to a quotient of ZpX and hence is indecomposable. It follows that W is an
indecomposable R-module. But now, regarding x as a linear transformation of
Q
W we have that its minimum polynominal must divide 1� �� . . .� �pÿ1,
(since it must also divide �p ÿ 1). But this is the pth cyclotomic polynominal and
hence is irreducible over Q. (See Lang [8, p. 316].) Thus x has minimum polynomial
1� �� . . .� �pÿ1 and so Q
W has dimension pÿ 1. It follows that W has rank
pÿ 1 as free abelian group. Moreover W=ptW is indecomposable and hence, by
Proposition 9.4 of Lang [8], Et is a local ring.

We now use Lemma 4 to show that under certain conditions some power of an
automorphism will be inner. We denote the natural homomorphism from a group G
onto Inn�G� by �G, and if the context is clear, by �.

Lemma 5. Let G be a polycyclic group with ��G� � 1, normal subgroups M and H,
with M abelian, M � H and G=Hj�� ®nite. Let 1 6� � 2 Aut�G�. Suppose that every
subnormal subgroup S satisfying H � S � G is �-invariant, and that � centralises H
and G=M. Then, for some integer n, we have �n � ��m�, for some m 2M.

Proof. We prove the result by induction on G=Hj�� . We show ®rst that if
G=H � p

���� , for some prime p, there exists v 2M such that �p
2�g� � gv, for all g 2 G.

If x is an element of G not in H, then we have ��x� � xw, with w 2M. Note that
w 6� 1 since then � would be the identity automorphism. Since M is a free abelian
group, we can regard it as a Zhxi-module. Let W be the submodule generated by w.
We note that ��xp� � xp � �xw�p and so xp � xpwwx . . .wxpÿ1 or w1�x�...�xpÿ1�1.
Hence we get wxp � w and so hxi acts on W as a cyclic group of order p. It now
follows from Lemma 4 that W is indecomposable and of rank pÿ 1.

We now show that �p�x� is xu, for some u 2W. To see this it is enough to show
that �p�x� and x are conjugate in every ®nite quotient of Whxi, by Theorem 3 of [12,
p. 59], and to prove this it is enough to show they are conjugate in Whxi modulo Wn,
for every integer n. If n � paq, with q, p coprime, then it is an easy consequence of
the Sylow theorems that if �p�x� and x are conjugate modulo Wpa then they are
conjugate modulo Wpaq, and so it is enough to show that �p�x� and x are conjugate
modulo Wpt , for all positive integers t.

By Lemma 4, we have that W=Wp is a �pÿ 1�-dimensional Zphxi-module and so
is uniqely determined. We consider the element �1ÿ x�pÿ1 as an element of
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EndZhxi�W�. We have �1ÿ x�pÿ1 � 1ÿ �pÿ 1�x� . . .� �ÿ1�pÿ1xpÿ1. We then have,
putting xpÿ1 � ÿ1ÿ xÿ . . .ÿ xpÿ2, that �1ÿ x�pÿ1 � a1x� a2x

2 � . . .� apÿ2xpÿ2,
where ai � �ÿ1�i�pÿ 1� . . . �pÿ i�=i!ÿ �ÿ 1. Thinking of ai as a polynominal in p we
see that the constant term is 0. Thus ai � pbi, for each i, and a1 � p, giving

�1ÿ x�pÿ1 � p�x� b2x
2 � . . .� bpÿ2xpÿ2� � pf�x�:

Note also that 1ÿ �pÿ 1� � . . .ÿ �pÿ 1� � 1 � 0 (put x � 1 in the expansion of
�1ÿ x�pÿ1) and so 1� �pÿ 1� ÿ . . .� �pÿ 1��pÿ 2�=2ÿ �pÿ 1� � p. Thus we have
b1 � . . .� bpÿ2 � 1 and so f�x� is not in the unique maximal ideal of Et. Thus f�x�
has an inverse in Et. We then have u�1ÿx�

pÿ1 � wp, where u � wf�x�ÿ1 . Now consider xv,
where v � u�1ÿx�

pÿ2
. We then have xv � x x; v� � � xv�1ÿx� and v�1ÿx� � u�1ÿx�

�pÿ1� � wp.
Thus we have �p�x� � xwp � xv, as required. Set � � �p. Note that if v; x� � � 1 then
� is the identity automorphism on G, and so is inner. Thus we assume that v; x� � 6� 1.

We now have that � acts as conjugation by v on x and centralises H; we do
not know the action of v on H however. Consider now y 2 H. We have yx

ÿ1 2 H
and so yx

ÿ1 � ��yxÿ1� � y��x
ÿ1� � yx

ÿv
. Hence y � y v;x� �. Thus v; x� � 2 ��H� and

��x� � x v; x� �ÿ1. We can now, as in the previous paragraph, ®nd z in the normal
closure of v; x� � in G such that �p�x� � xz and moreover we now have z 2 ��H�. It
follows that �p�xna� � �xna�z, for any integer n and any a 2 H, and so �p � �p2 acts
as an inner automorphism on G, proving the result in this case.

Now suppose that the result is true for �G�;M�;H�; ��� satisfying the hypoth-
eses of the lemma with G�=H� < G=Hj������ . We have established the result for H max-
imal in G and so we may suppose that there is a normal subgroup K of G satisfying
H < K < G. It is easy to check that �K;H;M; �� (with � regarded as an auto-
morphism of K) satis®es the hypotheses of the Lemma and hence, by our inductive
hypothesis, for some integer t we have �, regarded as an automorphism of K, is such
that �t acts as the inner automorphism of K induced by z, for some z 2M. Now
consider � � �t��z�ÿ1. Since z 2M; ��z� centralises G=M and so � centralises
G=M. Since z 2 S, for any subnormal subgroup S satisfying K � S � G;S� � S.
By its de®nition, � centralises K. Thus we see that �G;K;M; �� satis®es the
hypotheses of the lemma. Then, by our inductive hypothesis, there is an integer
u and an element y 2M such that �u � ��y�. We then have �t��z�ÿ1ÿ �u�
�tu��z��t�uÿ1� . . . ��z� � �tu� �t�uÿ1��z� . . . z

ÿ � � �tu��x�, with x � �t�uÿ1��z� . . . z 2M,
since M is �-invariant. Thus ®nally we have �tu � ��yxÿ1� and the proof is complete.

2. Proof of Theorem 2. We consider ®rst the case that G is a polycyclic group
with !�G�=��G� ®nite; we shall show that then Autsn�G� is also ®nite and thus
establish Theorem 1 as a special case of Theorem 2. Throughout the proof, we set
A � Autsn�G�.

Consider H � G=��G�. By Lemma 3, !�H�=��H� is ®nite and we can regard A as
acting on H. If Autsn�H� is ®nite, then A=CA�H� is also ®nite and so A is ®nite, by
Lemma 2. Thus it will be enough to consider the case in which ��G� � 1. In this case
it follows from Lemma 1 that !�G� � ��G�.

If A is in®nite, then it is abelian, by Franciosi and de Giovanni [5, Theorem B]
and ®nitely generated by Theorem 1 of [12, p. 25]. Suppose that � is an element of
A of in®nite order. We have, by Lemma 2.1 of Franciosi and de Giovanni [5], that �
acts trivially on G=!�G�. Since F�G�, the Fitting subgroup of G, is a torsion-free
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nilpotent group on which � acts as a power automorphism, (since every subgroup of
F�G� is subnormal in G), we have that �2 acts trivially on F�G� (and so in particular
on ��G�). We set � � �2. Now suppose that x 2 G is an element not ®xed by �. Then
��x� � xz, for some z 2 ��G� � !�G�. If xn 2 F�G�, for some integer n, then we have
��xn� � xn � �xz�n � xnzn and so zn � 1, giving z � 1, a contradiction. Hence x is an
element of in®nite order and hxi \ F�G� � 1. Since G=F�G� is abelian-by-®nite we
can, by replacing x by a power if necessary, assume that L � F�G�hxi is subnormal
in G; L is clearly not nilpotent. If L=F�G�p were nilpotent for all p in an in®nite set of
primes �, then L=F�G�p would be nilpotent of class at most the Hirsch length of
F�G�, for each p 2 �, and then, since \p2�F�G�p � 1 by a theorem of G. Higman [6],
we would have L nilpotent, a contradiction. Thus the set of primes p for which
L=F�G�p is nonnilpotent is in®nite. Choose p > 2 to be a prime such that L=F�G�p is
not nilpotent and z 62 F�G�p. Since x acts on F�G�=F�G�p by conjugation, we have
some power of x centralises F�G�=F�G�p. Now choose m to be the smallest positive
power of x for which xm centralises F�G�=F�G�p; note that m > 1. If m � ptk with k
coprime to p, then F�G�hxki=F�G�p is the subdirect product of an in®nite cyclic group
and a ®nite p-group, and so is nilpotent. But now we have F�G�phxki subnormal in
F�G�hxki and so in G. We can consider � as an automorphism of F�G�phxki=F�G�p
and then we have 
 � �2 centralises F�G�phxki=F�G�p. It follows that 
�xk� � xk

modulo F�G�p. Thus we have xk � 
�xk� � �2�xk� � �xz2�k � xkz2k modulo F�G�p
and thus z2k 2 F�G�p. Since 2k is coprime to p, we have z 2 F�G�p, a contradiction.
This contradiction completes the proof for the case in which !�G�=��G� is ®nite.

We now suppose that !�G�=��G� is in®nite; it follows immediately that A and
!�G� are abelian (Franciosi and de Giovanni [5, Theorem B], and Robinson [10,
13.3.9]). By Lemma 3 we have that if H � G=��G� then !�H�=��H� is also in®nite.
Suppose that Autsn�H�= Autsn�H� \ Inn�H�� � is ®nite. Then for � 2 A there is an
integer m such that �m acts on H as an inner automorphism, say conjugation by
g��G�. We put � � �m��gÿ1�. Then � acts trivially on H and it follows from Lemma 2
that �n � 1, for some integer n, and so �mn is an inner automorphism. It follows that
A= A \ Inn�G�� � is ®nite. Thus we may as well assume that ��G� � 1.

We now have C1 � CG !�G�� � of ®nite index in G by Theorem 1 of Cossey [3].
We now de®ne Ci inductively by Ci � CCiÿ1 !�Ciÿ1�� �. Note that, since ��G� � 1, we
have ��Ci� � 1 also. Since !�G� � F�G�, we have !�G� � ! F�G�� � � � F�G�� �
and hence F�C1� � F�G� and !�G� � !�C1� � � F�G�� �. It now follows that
!�Ci� � !�Ci�1� � � F�G�� � and thus, for some integer m, we must have
!�Cm� � !�Cm�1�. We then have !�Cm�1� � !�Cm� � ��Cm�1� � !�Cm�1� and hence
!�Cm�1� � ��Cm�1�. It now follows from the ®rst part of the proof that A=CA�Cm�1�
is ®nite. Thus it will be enough to show that some power of any automorphism in
CA�Cm�1� is inner.

Observe that !�G� is an abelian normal subgroup of G contained in Cm�1 and
G=Cm�1 is ®nite. Also we have that if � 2 CA�Cm�1�, then � centralises both Cm�1
and G=!�G�, and normalises every subnormal subgroup of G. It is then an immedi-
ate application of Lemma 5 to conclude that some power of � is an inner auto-
morphism. This completes the proof of the theorem.
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