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Abstract

The following questions are studied: When is a semigroup graded ring left Noetherian, re-
spectively semiprime left Goldie? Necessary sufficient conditions are proved for cancellative
semigroup-graded subrings of rings weakly or strongly graded by a polycyclic-by-finite (unique
product) group. For semigroup rings R[S] we also give a solution to the problem in case S is
an inverse semigroup.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 34, 16 A 03,
20 M 25.

0. Introduction

We are interested in the following questions: When is a semigroup graded
ring (for example a semigroup ring) left Noetherian, respectively semiprime left
Goldie? These turn out to be very difiBcult questions as they are even unsolved
for group rings. However some results on Noetherianess are known if the ring is
graded by a (polycyclic-by-) finite group (see [4], [16]). Therefore we are able to
solve both questions (Section 1) for rings weakly or strongly graded by a can-
cellative monoid which is contained in a polycyclic-by-finite (unique product)
group.

For non-cancellative semigroups the problems seem even more complicated.
In Section 2 we give a solution for semigroup rings R[S], where S is an inverse
semigroup.
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[2] Chain conditions and semigroup graded rings 373

1. Cancellative semigroup graded rings

For the theory on semigroups and graded rings we refer to [3] and [12]. We
briefly give some basic definitions and notation. Unless specifically stated, all
rings are non-zero and all semigroups are non-zero.

Let S be a semigroup. A ring R is called an 5-graded ring if there exists ad-
ditive subgroups Rs of R, indexed by the elements of S, such that R = 0 s € S Ra

and RaRt C Rat for all s,t <= S. Moreover, if l(Ra) = r(Ra) = 0 for all s € S
then we call R weakly graded. By 1{A), respectively r(A), we denote the left
(respectively right) annihilator of a subset A in a ring R. An 5-graded ring R
is called strongly graded if RsRt = Rst for all s,t e S. Clearly every strongly
group-graded ring with unity is weakly graded and it is easy to construct ex-
amples of weakly group graded rings which are not strongly graded. If R is a
ring and S a semigroup then by R[S] we denote the semigroup ring. If S is
cancellative and R has a unity then R[S] is a weakly S-graded ring.

Let T be a subset of semigroup S and let R be an 5-graded ring. By R[T] we
denote 0 ( € T Rt- If T is also a semigroup then R[T] is a T-graded ring, and we
can also consider it as an S-graded ring.

A left ideal L of an S-graded ring R is called homogeneous if L = 0 s e S Ls,
where Ls = Rs C\ L. If S is a monoid then its identity element is denoted by e.
If S is a semigroup then by S1 we denote the smallest monoid containing S.

Let R be a G-graded ring with unity, where G is a group. In [9] we considered
the left graded-maximal ring of quotients of R, denoted Qgr_Max(^)> which is a

G-graded ring and which is the graded version of the well known left maximal
ring of quotients Qu&x(R). We recall that

that is, the direct limit of the system

{HOMR{L, R), vLtL,: UOMR{L, R) — HOMR(L', R),

L D L',L and L' are dense homogeneous left ideals of R}.

Note that UOMR(L,R) = ®heGEOMR(L,R)h: where UOMR{L,R)h is the
additive abelian group of all i2-linear maps / : L —* R which are graded mor-

phisms of degree h, t h a t is (Lg)f C Rgh for all g EG. A left ideal L of R is dense

if and only if for all x € R we have r{y e R | yx € L} = {0}. The following

characterization for Qgr.Max(^) c a n ^ e f ° u n d i n [9]-

PROPOSITION 1.1. Let G be a group and R and a G-graded ring with unity.
Then Q = <2gr.Max W I s uniquely determined (withing the category of graded
rings) by the following four properties:

(1) R is a graded subring of Q, that is, Rg C Qg for all g € G;
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(2) for every q £ Q there exists a dense homogeneous left ideal L of R such
that Lq C R;

(3) if q G Q and Lq = 0 for some dense homogeneous left ideal of R, then
<7 = 0;

(4) if f e HOMJI(L,R),L a dense homogeneous left ideal of R, then there
exists q € Q with xf = xq for all x S L.
Hence it follows that

And thus, if R is trivially graded Ql
MAX(Ql

Mstx(R)) = <2'Max(#). Moreover, if R
is weakly G-graded then

PROPOSITION 1.2. Let R be a weakly G-graded ring with unity, where G is
a group. If S is a submonoid of G such that G is the group of left quotients of
S, then

For this we consider R\s\ as a G-graded ring.

PROOF. This result has been proved in [9], using Proposition 1.1. But here is
a short direct proof. For any t = s~1Si 6 G, s, sx e 5 , and any b € Rt consider
the graded homomorphism /&: R[s\Rs —• R\s]RSl give by fb(x) = xb. Then the
rule b —» /;, defines an embedding R —><9gr_Max (iZ[sj) and the result follows.

LEMMA 1.3. Let R be a semiprime ring with unity. Then R is left Goldie
if and only if Ql

M!LX{R) is left Goldie.

PROOF. This result is well known; see [17].

LEMMA 1.4. Let S be a cancellative semigroup and let R be an S-graded
ring with Rs ^ 0 for all s €E S. If R[s] is left Goldie then S has a group of left
quotients.

PROOF. We show that S satisfies the left Ore condition. The idea of the proof
is well known, see [5]. Suppose Ss C\ St = 0, s,t € S. We claim that Ui^o ^s^
is a disjoint union of left ideals of S. Indeed, suppose a S Sst1 D SsP, i < j \
that is, axst1 = ysP for some x,y € S. It follows that xs = ysP"1 € 5s D St,
a contradiction. Therefore X^^o^ISsv] 1S a direct sum of left ideals of R\s], a

contradiction. Hence the result follows.
If R is a ring we denote by J(R) the Jacobson radical of R.
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PROPOSITION 1 .5 . Let G be a group with submonoid S ^ {e}, and let R
be a weakly G-graded ring with unity such that Re is semiprime. If R[S] is left
Goldie then Re is left Goldie and S has a group of left quotients. If, moreover,
G is polycyclic-by-finite then J(R[s]) is nilpotent.

PROOF. If L is a left ideal of Re then RL is a homogeneous left ideal of R
such tha t (i?[s]i/)e = L. It is then easy to check t h a t R[$] being left Goldie
implies Re is left Goldie. Lemma 1.4 yields t h a t S has a group of left quotients .

If G is polycyclic-by-finite, G has a normal subgroup N of finite index which
is poly-infinite cyclic, in par t icular N is a unique product (u.p.) group (see [15]).
One can easily adap t the proof of Theorem 1.2 of [8] to show t h a t this theorem
remains valid under our assumptions. Therefore J(R\sc\N\) = 0. Now R[$] has
a natura l G/N gradation; the component of degree e being R[snN\- Lemma 2.1
in [10] implies t ha t J(R[g]) is a nil ideal, and hence by Lanski 's Theorem [11],
J(i?[Sj) is nilpotent.

If in the previous theorem the group G is also u .p . t hen the converse of the
theorem is also t rue .

THEOREM 1.6. Let G be a polycyclic-by-finite u.p. group with submonoid
S ^ {e}, and let R be a weakly G-graded ring with unity. Then R[S\ is semiprime
left Goldie if and only if Re is semiprime left Goldie. Moreover, in this case,
J(R[S]) = 0.

PROOF. AS mentioned in the previous proof, under our assumption Theorem
1.2 of [8] remains valid. Hence, if Re is left Goldie then, Re is semiprime if and
only if R[s\ is semiprime, and J(i?[sj) = 0 in this case. Hence Proposition 1.5
yields that Re is semi-prime left Goldie if i?[Sj is semiprime left Goldie.

We now prove the converse. Since R\S] is semiprime if follows from Propo-
sition 1.1, Proposition 1.2 and Lemma 1.3 that it is sufficient to show that
Q = Qgr-Max(^) is left Goldie. Again by Proposition 1.1, Qe = Ql

MAX(Re)-
Since Qu^Re) — Ql

ci{Re),Qe is a left Noetherian ring. Hence, by Quinn's
results [16], Q is left Noetherian; and thus left Goldie.

EXAMPLE. The following example, which can be found in [17], shows that
if R[s] is not contained in a weakly G-graded ring then Theorem 1.6 does not
necessarily hold. Let K be a field and <j> a monomorphism of K which is not
bijective. Let R = K[X, </>], the skew polynomial ring. Let k e K such that
k £ <f>(K), then K[X, 4>]Xk n K[X, <t>]X = 0. Hence R is a domain which does
not satisfy the left Ore condition. Therefore R is not left Noetherian. One easily
verifies that R is not contained in a weakly group graded ring.
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COROLLARY 1.7. Let R be a ring with unity and {e} ^ S a cancellative
monoid. If R[S] is semiprime left Goldie then R is semiprime left Goldie and S
has a group of left quotients, say G. IfG is polycyclic-by-finite and u.p. then the
converse holds; if G is polycyclic-by-finite then the necessary conditions imply
that J{R[S}) is nilpotent.

PROOF. Obviously R is semiprime if R[S] is semiprime. Note also that if S
has G as group of left quotients then the group ring R[G] is weakly G-graded
and R[S] = (i2[G])[5j. The result follows from Lemma 1.4 and Proposition 1.5
and Theorem 1.6. In the remainder of this section we are interested in (left)
Noetherian graded rings. We first state a very well known result (see [1]).

LEMMA 1.8. Let P be a partially ordered set for the relation <. Suppose
that the following conditions are satisfied:

(1) ascending chain condition (a.c.c), that is, P does not contain an infinite
ascending chain si < 3% < S3 < • • •;

(2) descending chain condition (d.c.c), that is, P does not contain an infinite
descending chain s\ > 82 > 82, • • •;

(3) P does not contain an infinite set of incomparable elements, that is, a
subset A of P is said to consist of incomparable elements if for all a,b 6 A, a ^ 6
and 6^a.

Then P is a finite set.

A graded ring is said to be left gr-Noetherian if it satisfies the ascending
chain condition on homogeneous left ideals. A semigroup S is said to be (left)
Noetherian if it satisfies the ascending chain condition on (left) ideals. Note that
this definition does not agree with the usual definition in the literature (see [7]).

LEMMA 1.9. Let S be an arbitrary semigroup and let R be an S-graded
ring such that Rs ^ 0 for all s € S. If R is left gr-Noetherian then S is left
Noetherian. If, moreover, S is a monoid then Re is left Noetherian.

PROOF. If A is a left ideal of 5 then R[A] is a left ideal of R. If e e 5 and Le

is a left ideal of Re, then RLe is a left ideal of R with RLe f)Re = Le. Because
of the assumption on R the result now follows easily.

The converse of the previous lemma is more of an interest.

PROPOSITION 1.10. Let G be a group and let S be a left Noetherian sub-
monoid. If R is a strongly G-graded ring with unity and such that Re is left
Noetherian then R^s] is left gr-Noetherian.
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PROOF. Let J — X ) s e s J* be a n homogeneous left ideal of R[s\- For every
s G S, denote Ia = Rs-iJs. We claim that L = {Is | s e S} is a finite set.
Clearly L is a partially ordered set for the inclusion relation. To prove that L is
finite we check the conditions (1), (2) and (3) of Lemma 1.8.

(1) L has no infinite ascending chain, because all elements of L are left ideals
in Re and because Re is left Noetherian.

(2) Suppose Iai 2 h2 2 h3 S • • • is an infinite descending chain in L. For
every n G No, let An = {s G S | 7Sn C / s } . Then Ai C A2 $ A3 C . . . . if w e

prove that every An is a left ideal of S1, then we are in contradiction with the
assumption on S; and hence L satisfies d.c.c. Thus fix n € No and we prove
that An is a left ideal of S. For this let s G An, that is, ISn C Is, and let t G 5.
Then

7S = Ra-iJ3 = Rg-iRt-iRtJg = i?(ts)-i/2tJs C i?(ts)-i Jta = 7ts,

hence 7S C 7(s. Hence 7Sn C 7ts, that is, ts € An. Therefore An is a left ideal of
S.

(3) Suppose {7,. | t e No} is an infinite set of incomparable elements of L.
Then, for every n € No, let Bn = {s G S \ ISi C 7S for some 1 < i < n}. With
the notations as in (2), Bn = Ai U • • • U An. Hence Bn is a left ideal of S. Clearly
#i $ 7?2 £ 7?3 C • • •. This is again in contradiction with the left Noetherianess
of S.

So, let {7S l , . . . , ISn } be all non zero elements of L. With notations as in
(2), for each 1 < i < n, Ai is a left ideal of S. Hence At = U"ii Ssitj and
ISi = Yl^Li Re%i,j'- Now because R is strongly graded, each RSiJ is finitely
generated as a left 7?e-module. Let RSi. = X)i'=i^e^*]. We claim that J
is generated as a left 7?[sj-ideal by the finitely many elements r^Xiji, 1 <

i < n, 1 < j < rii, 1 < j ' < mi, i < k < l^jy To prove this let s € 5
be such that Js ^ 0. Then, Js = ReJa = RaIs (note that because e G S, Js

is a left 72e-module). Suppose 7S = 7Si. Then s G Ai and thus s = tstj for
some j . Hence 7Sj_> C 78. Since Si$J G J4» it follows that ISi C 7Si y C 7S.
Thus 7Si = ISij = Ia. It follows that Ja = RJa = RaISi - RtRai}Iaiij =

RtZTURs^Xij' = RtETUE^lReri^Xij,. Thus Js C E ^ s ] ^ ^ , , ' .
Because 7S = 7Si = 73i> it follows that (as in (2)) RSiJISi = RSiiISiJ C J.
Hence all r^Xij, belong to J. The result follows.

Note that in the above proof the assumptions that S C G and that R is
strongly G-graded are used only (1) to transform Js to 7S and vice versa and (2)
to obtain that every Ra is a finitely generated left T^-module. Now (1) and (2)
are automatically satisfied if we are interested in semigroup rings of arbitrary
monoids. For this reason and because of Lemma 1.9 we can state
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PROPOSITION 1.11. Let R be a ring with unity and S a monoid. Then R[S]
is left gr-Noetherian if and only if R and S are left Noetherian.

In [7] it is shown that Proposition 1.11 is not longer true (even for S commu-
tative and cancellative) if S does not contain an identity.

The following corollary shows that Proposition 1.11 remains valid for certain
strongly graded rings.

COROLLARY 1.12. Let S be a submonoid of a polycyclic-by-finite group G,
and let R be a strongly G-graded ring with unity. Then /?[Sj is left Noetherian if
and only if Re and S are left Noetherian.

PROOF. Assume that R^s] is left Noetherian. Obviously R[$] is then left
gr-Noetherian. Hence Lemma 1.9 implies that Re and S are left Noetherian.
Conversely, by Proposition 1.10, R\s\ is left gr-Noetherian. Now, considering
R[S] as a G-graded ring the result follows from [16] because G is polycyclic-by-
finite.

Note that if in the above corollary R\s\ is not contained in a strongly graded
ring, then the result is no longer true because of the example after Theorem 1.6.
In the case of left Noetherian semigroup rings Re [S] of cancellative semigroups
it follows that Re[S] is contained in a strongly group graded ring R such that
Re[S] = R[s]- Indeed because of Lemma 1.9 S is left Noetherian and hence has
a group G of left quotients. The group ring R = Re[G] satisfies the conditions.

2. Rings graded by a subsemigroup of an inverse semigroup

In this section we study when semigroup rings of inverse semigroups are
semiprime left Goldie. To do so we first prove two results on rings graded by a
semilattice. A semilattice is a commutative semigroup consisting of idempotents.
It has an ordered structed < defined by s < t if and only if s = st.

LEMMA 2 . 1 . Let R be an S-graded ring, S a semigroup with E(S) a com-
mutative subsemigroup of idempotents of S. Suppose that for all s,t € E(S), Rs

has a unity us and usut = ust. If R is left Goldie then E(S) is finite.

PROOF. {US \ s € E(S)} is a set of commuting idempotents of R. So it must
be finite, because otherwise R has an infinite set of orthogonal idempotents (see
[6], Chapter 3, Ex. 14).
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PROPOSITION 2.2. With notations and assumptions as in Lemma 2.1. More-
over, assume S — E(S). Then R is left Goldie if and only if S is finite and each
Rs, s€S, is left Goldie.

PROOF. Assume S is finite. Let / be the least element of S. Since Rf has
an identity and is an ideal of R,R = Rf © R/Rf. Similarly R = Rf ffi Rg ffi
R/(Rf@Rg) for a minimal nonzero g € S. By an induction R = 0 a € S Rs (note
that R/(Rf © Rg) is S/{f, ^}-graded. Using Lemma 2.1 the result follows

THEOREM 2.3. Let R be a ring with unity and S an inverse semigroup.
Then R[S] is semiprime left Goldie if and only if E(S) is finite and, for every
maximal subgroup G of S, R[G] is semiprime left Goldie. If R[S] is prime left
Goldie, then S is a group. E(S) is the set of idempotents of S.

PROOF. Assume that E(S) is finite. In this case (see for example [10]) it
follows that

fc=0

where the G* are the maximal subgroups of S, and n0 = 1. In particular Go is
an ideal of S and R[Go] is a direct summand of R[S].

Hence R[S] is semigroup left Goldie if and only if each Mnk(R[Gk}) is semi-
prime left Goldie, and this is equivalent to R[Gk] being semiprime left Goldie.
The result now follows from Lemma 2.1 and Proposition 2.2.

If R[S] is prime left Goldie then it follows from the above direct sum that
5 = Go, that is, 5 is a group.

J. Kerr (see for example [2]) has given an example of a commutative Goldie
ring R such that M2(.ft) is not a Goldie ring. It is then clear from the above
proof that the previous theorem no longer holds without the assumption that
R[S] is semiprime.

A similar proof as that of Theorem 2.3 shows (see [18]) that R[S] is left
Noetherian if and only if E{S) is finite and R[G] is left Noetherian for every
maximal subgroup G of S (S inverse semigroup).

To finish we mention the referee pointed out to the author that J. Okinski, in a
recent paper [14], proved the following nice result. If the semigroup ring R[S], S
an arbitrary semigroup, is left and right Noetherian, then S is finitely generated.
As was done in an earlier version of this paper, for cancellative semigroups and
subsemigroups of a semilattice of groups this can easily be proved using the
previous results.
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