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OPTIMAL CLAIMS WITH FIXED PAYOFF STRUCTURE

BY CAROLE BERNARD, LUDGER RÜSCHENDORF AND STEVEN VANDUFFEL

Abstract

Dybvig (1988) introduced the interesting problem of how to construct in the cheapest
possible way a terminal wealth with desired distribution. This idea has induced a series
of papers concerning generality, consequences, and applications. As the optimized claims
typically follow the trend in the market, they are not useful for investors who wish to use
them to protect an existing portfolio. For this reason, Bernard, Moraux, Rüschendorf and
Vanduffel (2014b) imposed additional state-dependent constraints as a way of controlling
the payoff structure. The present paper extends this work in various ways. In order to
obtain optimal claims in general models we allow in this paper for extended contracts. We
deal with general multivariate price processes and dispense with several of the regularity
assumptions in the previous work (in particular, we omit any continuity assumption).
State dependence is modeled by requiring terminal wealth to have a fixed copula with a
benchmark wealth. In this setting, we are able to characterize optimal claims. We apply
the theoretical results to deal with several hedging and expected utility maximization
problems of interest.

Keywords: Cost-efficient payoff; optimal portfolio; state-dependent utility

2010 Mathematics Subject Classification: Primary 91G10; 91B16

1. Introduction

We consider optimal investment problems in a financial market given by a market model
S = {St }0≤t≤T in a filtered probability space (�, A, {At }0≤t≤T , P). Here S may consist of
several stocks and also bank accounts. Our basic assumption is that state prices at time t are
determined by a pricing process ξ = {ξt }0≤t≤T that is adapted to the filtration. Typically, ξ is
the (discounted) pricing density process of a martingale pricing rule. Typical examples include
exponential Lévy models that use an Esscher pricing measure for which the pricing process
has the form ξt = gt (St ); note that this covers the case of the multidimensional Black–Scholes
market. But we could also think of a stochastic volatility model in which ξt is a function of the
process {Su}0≤u≤t and some additional volatility process {σu}0≤u≤t .

Let XT be a payoff at time T (i.e. XT is AT -measurable) with payoff distribution F

and cost c(XT ) := E[ξT XT ]. The aim of an investor with law-invariant (state-independent)
preferences—as in many classical behavioral theories, including mean-variance optimization
(see Markovitz (1952)), expected utility theory (see von Neumann and Morgenstern (1947)),
dual theory (see Yaari (1987)), rank-dependent utility theory (see Quiggin (1993)), cumulative
prospect theory (see Tversky and Kahneman (1992)), and sp/a theory (see Shefrin and Statman
(2000))—is to construct a payoff X∗

T with the same payoff distribution F at the lowest possible
cost, i.e.

c(X∗
T ) = inf{E[ξT YT ] : YT ∼ F }, (1.1)
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176 C. BERNARD ET AL.

where YT ∼ F means that YT has the same payoff distribution F as XT . Note that the right-
hand side of the problem in (1.1) depends only on the distribution F and not on the specific form
of the payoff XT ; in what follows, XT denotes any generic payoff with distribution function F .

The optimization problem in (1.1) represents the static version of the optimal portfolio
problem (see He and Pearson (1991a, 1991b)). The optimal payoff can (in a second step)
always be attained by hedging strategies in complete markets. Characterizations and sufficient
conditions for representation of the optimal claims in incomplete markets by continuous-time
trading strategies have been established in the literature and are related to the optional decom-
position theorem (see Jacka (1992), Ansel and Stricker (1994), Delbaen and Schachermayer
(1995), Goll and Rüschendorf (2001), and Rheinländer and Sexton (2011)).

The cost minimization problem in (1.1) has been stated and solved under various assumptions
on the distributions in Dybvig (1998), Bernard et al. (2014a), Carlier and Dana (2011), Rüschen-
dorf (2012), and elsewhere. Several explicit calculations of optimal claims (in this paper we
use the notions of payoffs and claims synonymously) have been given in the framework of
the Black–Scholes model (see Bernard et al. (2011, 2014a)) and in exponential Lévy models
(see von Hammerstein et al. (2013) and Vanduffel et al. (2009)). In Section 2 we introduce
the class of extended payoffs; these payoffs are based on the market information AT up to
time T but also allow for external randomization. We refer to them as randomized payoffs.
The use of randomization allows us to construct optimal claims explicitly without imposing
regularity conditions as in Bernard et al. (2014b). Indeed, we provide a simple proof showing
that optimal claims are dependent only on ξT and possibly some independent randomization V .
In the particular case of Lévy models this result implies path independence of optimal claims,
i.e. optimal claims are of the form X∗

T = f (ST ) or f (ST , V ).
Bernard et al. (2014a, 2014c) pointed out that solutions to the cost minimization problem

(1.1) are not suitable for investors who are exposed to some external risk against which they want
protection. These investors are prepared to pay more to obtain a certain distribution, simply
because they want the optimal payoff to pay out more in some desired states. For example, a
put option gives its best outcomes in the worst states of the market and thus allows investors
to protect the value of an existing investment portfolio that is long with the market. The same
observation is also at the core of insurance business. People buy a fire insurance contract
and not a cheaper financial contract with identical distribution (‘digital option’) because the
insurance contract provides wealth when it is actually needed; see also Bernard and Vanduffel
(2014a). In other words, two payoffs with the same distribution do not necessarily present
the same ‘value’ for an investor; see also the discussion in Vanduffel et al. (2012). Therefore,
in Section 3, following the development in Bernard et al. (2014b), we introduce and discuss
additional restrictions on the form of the payoffs. These restrictions are determined by fixing
the desired copula of the claim with a random benchmark AT . This type of constraint allows
an investor to control the states of the economy in which he/she wants to receive payments.
Note that, when AT is deterministic, no restriction is imposed and we again obtain the optimal
payoffs in the classical context of no constraint. Our main result is to determine payoffs with
minimal price and given payoff distribution F under state-dependent constraints in general
markets. In comparison to the results in Bernard et al. (2014b), by using the extended notion
of (randomized) claims we obtain optimal solutions that are functions of ξT , AT , and some
independent randomization. This characterization extends the concept of ‘twins’ as optimal
solutions, as in Bernard et al. (2014b).

We use this characterization result to deal with several hedging and investment problems
of interest. In Section 4 we provide the optimal claim for an expected utility maximizer
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with state-dependent constraints. In Section 5 we solve some optimal hedging problems, and
also determine the optimal contract for an expected return maximizer with constraints on the
minimum and maximum desired returns.

2. Randomized claims and cost-efficient payoffs

Denote by L(AT ) the class of all AT -measurable claims (payoffs) at time T . For the
construction of optimal claims, it is useful to extend the notion of claims (payoffs) to randomized
claims (randomized payoffs). We generally assume that the underlying probability space
(�, AT , P) is rich enough to allow us to construct, for each element YT , a random variable V

that is independent of YT and uniformly distributed on (0, 1).
A ‘randomized claim’ is a claim of the form f (YT , V ) involving a randomization V that is

independent of YT . The use of randomized claims is an essential point in this paper; it allows
us to solve portfolio optimization problems in general market models. Under the continuity
assumptions used in Bernard et al. (2014b), we can avoid this additional randomization. At
first glance, it may seem strange to an investor to use an independent randomization for the
construction of an investment. A similar objection also concerns the use of randomized tests
in classical testing theory. As in testing theory, where one obtains existence of optimal tests
only in the class of randomized tests, we can expect optimal claims to exist only within the
more general class of randomized claims. In some market models it may be possible to use
that model to construct this independent randomization. This underlies the concept of twins in
Bernard et al. (2014b), but in general the investor should be prepared to roll a die in order to
be better off. In what follows we use randomized claims without further ado.

For a given payoff distribution F, a claim X∗
T ∈ L(AT ) with payoff distribution F is called

cost efficient if it minimizes the cost c(YT ) over all claims YT with payoff distribution F , i.e. if
X∗

T solves (1.1) (see Bernard et al. (2014a)). For the construction of cost-efficient payoffs, we
use the following two classical results.

Result 2.1. (Hoeffding–Fréchet bounds (see Hoeffding (1940) and Fréchet (1940, 1951)).)
Let X and Y be random variables with distribution functions F and G, and let U ∼ U(0, 1)

be uniformly distributed on (0, 1). Then

E[F−1(U)G−1(1 − U)] ≤ E[XY ] ≤ E[F−1(U)G−1(U)]. (2.1)

The upper bond is attained only if (X, Y ) ∼ (F−1(U), G−1(U)), where ‘∼’ refers to equality
in distribution, i.e. X and Y are co-monotonic. The lower bound is attained only if (X, Y ) ∼
(F−1(U), G−1(1 − U)), i.e. X and Y are anti-monotonic.

Result 2.2. (Distributional transform (see Rüschendorf (1981, 2009)).) For a random variable
X ∼ F and a random variable V ∼ U(0, 1) that is independent of X, the distributional
transform τX is defined by

τX = F(X, V ), (2.2)

where, with a slight abuse of notation, F(x, λ) := P{X < x} + λ P{X = x}; note that
F(x, λ) = F(x) when F is continuous. Then

τX ∼ U(0, 1) and X = F−1(τX) almost surely (a.s.). (2.3)

The variable τX can thus be seen as a uniformly distributed variable that is associated to (or,
transformed from) X.
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178 C. BERNARD ET AL.

For a payoff distribution function F , denote by K(F ) the class of all claims that have payoff
distribution F :

K(F ) = {YT ∈ L(AT ) : YT ∼ F }.
Combining the Hoeffding–Fréchet bounds in (2.1) and the distributional transform in (2.2)
allows us to obtain in a straightforward way the following general form of the cost-efficient
claim.

Theorem 2.1. (Cost-efficient claim.) For a given payoff distribution F, the claim

X∗
T = F−1(1 − τξT

) (2.4)

is cost efficient, i.e.
c(X∗

T ) = inf
YT ∈K(F )

c(YT ). (2.5)

Proof. By (2.3), the distributional transform τξT
= F(ξT , V ) is uniformly distributed on

(0, 1) and ξT = F−1(τξT
) a.s. This implies that the pair (ξT , X∗

T ) is anti-monotonic and, thus,
(2.5) is a consequence of the Hoeffding–Fréchet lower bound in (2.1).

Remark 2.1. When FξT
is continuous, the additional randomization V can be omitted and (2.4)

coincides with the classical result on cost-efficient claims (see Dybvig (1988) and Bernard et
al. (2014a)). When ξT = gT (ST ) for an appropriate function gT , we deduce that

X∗
T = h(ST )

for some function h. Thus, any path-dependent option can be improved by a path-independent
option. For this observation, see Bernard et al. (2014a).

Remark 2.2. Several explicit results on lookback options, Asian options, and related path-
dependent options have been given in the context of Black–Scholes models and Lévy models
in Bernard et al. (2011, 2014a) and von Hammerstein et al. (2013).

Remark 2.3. It is not difficult to see (cf. the proof of Theorem 4.1) that optimal claims that
follow from optimizing a law-invariant objective (e.g. expected utility) at a given horizon T

must be cost efficient.

3. Payoffs with fixed payoff structure

If ξT is a decreasing function of ST (this property is predicted by economic theory and
confirmed by many popular pricing models, including increasing exponential Lévy-type
models) then an optimized payoff X∗

T is increasing in ST . The optimal payoff can thus be
quite different from the initial payoff XT and may perform poorly when the market asset ST

reaches low levels. These qualitative features do not demonstrate a defect of the solution,
but rather show that portfolio optimization which considers only distributional properties of
terminal wealth is not suitable in all situations. For example, some investors buy put options
to protect their existing portfolio (as a source of benchmark risk) and they are not interested
in the cost-efficient alternatives because these are long with the market and do not offer the
protection that is sought. These observations led Bernard et al. (2014b) to include constraints
in the optimization problem that can depend on the states in which payments are received. In
this paper we build further on this development. We restrict the class of admissible options
in the portfolio optimization problem by requiring admissible claims to pay out more in some
desired states (e.g. when ST is low) and less in other states, i.e. we consider only state-dependent
constraints.
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Figure 1: Various dependence prescriptions.

To model state-dependent constraints, we use a random benchmark AT and couple the
admissible claims YT to the behavior of AT . Specifically, let AT be some random benchmark
such as, e.g. AT = ST or AT = (ST − K)+, or some other available claim in the market, and
let C denote a copula describing the desired payoff structure of admissible claims. The copula
C is not necessarily the copula of a given initial claim with the benchmark AT , but rather a
tool to describe those states of the benchmark in which the investor wants to receive income
(or protection). We consider a claim YT to be admissible if the copula of the pair (YT , AT ) is
C, i.e.

C(YT ,AT ) = C.

The copula C determines how the payoff structure of YT is coupled to the benchmark AT . In
this way we can prescribe that payoffs should be (approximately) increasing or decreasing in
AT or take place for either large or small AT (see Figure 1).

Modify the portfolio optimization problem in (1.1) so as to include a fixed payoff structure,
namely, determine X∗

T ∼ F with copula C(X∗
T ,AT ) = C such that

c(X∗
T ) = inf{c(YT ) : YT ∼ F, C(YT ,AT ) = C}. (3.1)

Since the joint distribution function G of (YT , AT ) is given by

G = C(F, FAT
),

problem (3.1) is equivalent to the cost minimization problem when fixing the joint distribution
of (YT , AT ) to be equal to G, i.e.

c(X∗
T ) = inf{c(YT ) : (YT , AT ) ∼ G}. (3.2)

For the construction of the solution of the portfolio optimization problem in (3.1) or (3.2),
we use the concept of the conditional distributional transform.

Definition 3.1. The conditional distributional transform of X given Y is defined by

τX | Y = FX | Y (X, V ),

where, for all y, V is independent of (X | Y = y).

It is clear that, by the distributional transform property (2.3),

τX | Y ∼ U(0, 1) and τX | Y is stochastically independent of Y. (3.3)

In the following theorem we determine the optimal solution of the portfolio optimization
problem in (3.1) or (3.2). Based on the concept of randomized claims, it gives an extension
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of Theorem 3.3 of Bernard et al. (2014b) to the case of general market models, avoiding the
regularity conditions imposed in that paper. Let XT be a payoff with distribution F and such
that (XT , AT ) has copula C, or, equivalently, (XT , AT ) ∼ G.

Theorem 3.1. (Cost-efficient claim with fixed payoff structure.) Let XT be a claim with
(XT , AT ) ∼ G. Then

X∗
T := F−1

XT | AT
(1 − τξT | AT

)

is a cost-efficient claim with fixed dependence structure, i.e. X∗
T is a solution of the portfolio

optimization problem with fixed payoff structure

c(X∗
T ) = inf{c(YT ) : (YT , AT ) ∼ G}.

Proof. Let U = τξT | AT
, and write X∗

T = F−1
XT | AT

(1 − U). Then

(X∗
T | AT = a) = (F−1

XT | AT =a(1 − U) | AT = a) = F−1
XT | AT =a(1 − U)

because U and AT are independent (see (3.3)). Consequently, we obtain (X∗
T , AT ) ∼ (XT ,

AT ) ∼ G and, thus, X∗
T is admissible. Furthermore, since, conditionally on AT = a,

((X∗
T , ξT ) | AT = a) ∼ ((F−1

XT | AT =a(1 − FξT | AT =a(ξT )), ξT ) | AT = a),

we conclude that X∗
T and ξT are anti-monotonic conditionally on AT = a. From the Hoeffding–

Fréchet bounds in (2.1), this then implies that

E[X∗
T ξT ] = E[ E[X∗

T ξT | AT ] ] ≤ E[ E[XT ξT | AT ] ] = E[XT ξT ],
i.e. X∗

T is cost efficient in the class of portfolios with fixed dependence structure.

Remark 3.1. The proof shows that the cost-efficient claim with fixed dependence structure is
characterized by the property that, conditionally on AT , it is anti-monotonic with state price ξT .
Note that Theorem 3.1 holds in the case that C is any copula (not necessarily the copula of
a given initial claim XT with AT ). The construction of X∗

T depends only on F , AT , and the
copula C, i.e. the asserted payoff structure.

Remark 3.2. When the state price ξT = gT (ST ) is a decreasing function of the stock ST ,
as occurs in increasing exponential Lévy models, we deduce that a cost-efficient claim X∗

T is
characterized by the property that, conditionally on AT , X∗

T and ST are co-monotonic.

Remark 3.3. In the case that the independent randomization V can be generated from the
market pair (St , ST ) by a transformation we obtain a cost-efficient claim of the form f (St , ST )

if AT = ST , or f (St , ST , AT ) in the general case. Claims of this form are called ‘twins’ in
Bernard et al. (2014b). It was shown in that paper that, under some conditions, cost-efficient
payoffs are given by twins. With the notion of extended payoffs in this paper we conclude that,
generally, optimal payoffs are of the form f (ST , V ) or f (ST , AT , V ) for some independent
randomization V .

4. Utility optimal payoffs with fixed payoff structure

The basic optimization problem of maximizing the expected utility of final wealth XT at a
given horizon T with an initial budget w, i.e.

max
c(XT )=w

E[u(XT )], (4.1)
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was solved in varying degrees of generality in classical papers by Merton (1971), Cox and
Huang (1989), and He and Pearson (1991a, 1991b). The optimal solution for differentiable
increasing concave utility functions u on (a, b) is of the form

X∗
T = (u′)−1(λξT ), (4.2)

where λ is such that c(X∗
T ) = w. For the existence of λ such that c(X∗

T ) = w, it is assumed
that u′ is strictly decreasing, and u′(a+) = ∞ and u′(b−) = 0.

An extension of the utility optimization problem to the case with a fixed payoff structure
was introduced in Bernard et al. (2014b) as

max
c(XT )=w, C(XT ,AT )=C

E[u(XT )]. (4.3)

To deal with problem (4.3), define

ZT = C−1
1 | AT

(1 − τξT | AT
),

where C1 | AT
= C1 | τAT

is the conditional distribution function (with respect to C) of the first
component given that the second component is the distributional transform τAT

. Then ZT ∼
U(0, 1), ZT has copula C with AT , and the pair (ZT , ξT ) is anti-monotonic conditionally on
AT (see also (3.3)).

Next, we introduce the following condition.

(D) HT = E[ξT | ZT ] = ϕ(ZT ) is a decreasing function of ZT .

Condition (D) does not always hold, but is natural since ZT and ξT are anti-monotonic
conditionally on AT . Strictly speaking, it needs some regularity condition to be satisfied.

The following theorem describes the utility optimal payoff with fixed payoff structure and
given budget w under condition (D).

Theorem 4.1. (Utility optimal payoff with given payoff structure.) Under condition (D), the
solution of the restricted portfolio optimization problem (4.3) is given by

X∗
T = (u′)−1(λHT ), (4.4)

where λ is such that c(X∗
T ) = w.

Proof. The utility optimal payoff must be a cost-efficient claim with fixed payoff structure
(with cost w) as in Theorem 3.1. Otherwise, it is possible to construct a strictly cheaper solution
which yields the same utility while respecting the dependence constraint. Consequently, the
solution XT (when it exists) is characterized by the property that, conditionally on AT , it is
anti-monotonic with state price ξT and, therefore,

XT = F−1
XT | AT

(1 − τξT | AT
).

The payoff F−1
XT

(ZT ) has distribution function FXT
, has copula C with AT , and, conditionally

on AT , is anti-monotonic with state price ξT . By the uniqueness property of cost-efficient
claims, this implies that

XT = F−1
XT

(ZT ) a.s.

In particular, the optimal solution is increasing in ZT and the constraint on its cost can be
written as

c(XT ) = E[ξT F−1
XT

(ZT )] = E[HT F−1
XT

(ZT )],
where HT = E[ξT | ZT ] = ϕ(ZT ) is decreasing in ZT by condition (D).
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The utility optimization problem of interest can thus be rewritten as

max
E[XT HT =w], XT =k(ZT ), increasing k

E[u(XT )].

By considering the relaxed problem

max
E[XT HT =w]

E[u(XT )],
we obtain a utility optimization problem in standard form with price density HT instead of ξT .
By (4.2), its solution is given by

X∗
T = (u′)−1(λHT ) = (u′)−1(λϕ(ZT )),

where λ > 0 is chosen such that E[HT X∗
T ] = w. Since, by condition (D), ϕ is decreasing, it

follows that X∗
T is increasing in ZT and, thus, it also solves the restricted portfolio optimization

problem (4.4).

Bernard and Vanduffel (2014b, Propositions 5.1 and 5.2) derived optimal mean-variance
efficient portfolios in the presence of a stochastic benchmark. Their results also follow from
Theorem 4.1. An application of Theorem 4.1 in the univariate Black–Scholes model can be
found in Bernard et al. (2014b). These authors used a Gaussian copula to fix the portfolio
structure and verified that condition (D) is satisfied. Note that this example can be extended to
the multivariate Black–Scholes model (cf. Section 5).

Interestingly, Theorem 4.1 can be extended to the general case without assuming condition
(D) holds. When this is done, the optimal claim is slightly more complex. For the extension, we
need to project the function ϕ from the representation of HT to the convex cone of decreasing
L2-functions M↓ on [0, 1], where

M↓ = {f ∈ L2[0, 1] : f nonincreasing}.
Let ϕ ∈ L2[0, 1], supplied with Lebesgue measure and the Euclidean norm, and let ϕ̂ = πM↓(ϕ)

denote the projection of ϕ on M↓. Then we obtain the following result.

Theorem 4.2. (Utility optimal payoff.) Assume that HT = E[ξT | ZT ] = ϕ(ZT ) with ϕ ∈
L2[0, 1]. Then the solution to the restricted utility optimization problem (4.3) is given by

X∗
T = (u′)−1(λĤT ),

where ĤT = ϕ̂(ZT ) and λ is such that c(X∗
T ) = w.

Proof. The proof is analogous to that of Theorem 5.2 of Bernard et al. (2014b). It is based
on properties of projection on convex cones; these can be found in Barlow et al. (1972).

Remark 4.1. The projection ϕ̂ of ϕ on M↓ is given as the slope of the smallest concave majorant
SCM(ϕ) of ϕ, i.e. ϕ̂ = (SCM(ϕ))′. Fast algorithms exist for determining ϕ̂.

Remark 4.2. The condition ϕ ∈ L2[0, 1] is implied by the condition ξT ∈ L2(P).

5. Optimal hedging and quantile hedging

In this section we use the results of Sections 2–4 to solve various forms of static partial
hedging problems. Let LT be a financial derivative (liability), and let wL = c(LT ) denote the
price of LT with respect to the underlying pricing measure. If the available budget w is smaller
than wL then it is of interest to find a best possible partial hedge (cover) of LT with cost w under
various optimality criteria. This leads to the following basic static partial hedging problems.

https://doi.org/10.1239/jap/1417528474 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528474


Optimal claims with fixed payoff structure 183

The quantile (super-)hedging problem is defined as

max
c(XT )=w

P{XT ≥ LT }.
The utility optimal hedging problem is a natural variant of (5.1) and is stated as

max
c(XT )=w

E[u(XT − LT )],
where u is a given concave utility function which is defined on R and satisfies the same regularity
conditions as in Section 4.

A more general version of the hedging problem in (5.2) is obtained by replacing the expected
utility by some law-invariant, convex risk measure 	 (	 monotonic in the natural order), i.e.

max
c(XT )=w

	(XT − LT ).

We also consider (state-dependent) variants of the partial hedging problems (5.1)–(5.3) in which
the excess XT − LT satisfies additional restrictions, allowing us to control its excess structure.
For example, we may want XT − LT to have a certain copula C with a benchmark AT ,

i.e. C(XT −LT ,AT ) = C, or we may impose certain additional boundedness conditions on XT .

We start with the unconstrained optimal hedging problem (5.2). Its solution is given in the
following proposition.

Proposition 5.1. (Utility optimal hedge.) Let LT be a financial claim with price c(LT ) = wL,

and let w < wL be the budget available for hedging. Then the optimal hedge for the utility
optimal hedging problem (5.2) is given by

X∗
T = LT + (u′)−1(λξT ),

where λ ≥ 0 is such that
c((u′)−1(λξT )) = w − wL.

Proof. By the classical portfolio optimization result (see (4.2)), it follows that the optimal
solution of the utility optimization problem

max
c(XT )=w−wL

E[u(XT )]
is given by

X̂T = (u′)−1(λξT )

with λ chosen in such a way that c(X̂T ) = E[ξT X̂T ] = w − wL. The claim X∗
T := X̂T + LT

therefore has price w, c(X∗
T ) = w. By definition, X∗

T solves the utility optimal hedging problem
in (5.2).

In the following two extensions we fix the joint dependence structure of the excess XT −LT

with a given benchmark AT .

Proposition 5.2. (Utility optimal hedge with dependence restriction on the excess.) Let LT

be a financial claim with price c(LT ) = wL, let w < wL be the budget available for hedging,
and let AT be a given benchmark. Then the restricted utility optimal hedging problem

max
c(XT )=w, C(XT −LT ,AT )=C

E[u(XT − LT )]
has the solution

X∗
T = LT + (u′)−1(λĤT ),

where ĤT = ϕ̂(ZT ) and λ ≥ 0 is such that

c((u′)−1(λĤT )) = w − wL.
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Proof. The optimality of X∗
T is a consequence of Theorem 4.2 and is based on a simple

replacement strategy, as in the proof of Proposition 5.1.

In the following variant of the hedging problem we aim to avoid super hedging LT .

Proposition 5.3. (Utility optimal hedge with negative excess.) Let LT be a financial claim
with price c(LT ) = wL, and let w < wL be the budget available for hedging. The optimal
hedge with a lower-bound constraint, i.e. the solution of

max
XT ≤LT , c(XT )=w

E[u(LT − XT )],
is given by

X∗
T = min{LT , LT + (u′)−1(λξT )}, (5.5)

where λ ≥ 0 is such that
c((u′)−1(λξT )) = w − wL.

Proof. When YT = LT − XT , the hedging problem in (5.4) is reduced to the classical
utility optimization problem in (4.1) with the additional constraint YT ≥ 0. The solution of this
problem is easily shown to be the classical solution Y ∗

T restricted to this boundary. Consequently,
we obtain X∗

T = min{LT , Y ∗
T + LT }, as in (5.5).

When enough financial resources w > wL are available, it might be of interest to obtain the
best super hedge XT ≥ LT . We omit details of the proof for this case.

Proposition 5.4. (Utility optimal hedge with boundedness restriction on the excess.) Let LT

be a financial claim with price c(LT ) = wL, and let w > wL be the budget available. The
optimal super hedge, i.e. the solution of

max
LT ≤XT , c(XT )=w

E[u(XT − LT )],
is given by

X∗
T = max{LT , LT + (u′)−1(λξT )},

where λ ≥ 0 is such that
c((u′)−1(λξT )) = w − w0.

The quantile super-hedging problem (5.1) was introduced in Browne (1999) for a determin-
istic target LT in a Black–Scholes model. This result was extended in Bernard et al. (2014c,
Theorem 5.6) to random targets LT ≥ 0 under regularity conditions. The following proposition
solves this problem without posing any regularity conditions.

Proposition 5.5. (Quantile super hedging.) Let LT ≥ 0 be a financial claim with price
c(LT ) = wL, and let w ≤ wL be the budget available. Then the solution to the quantile
super-hedging problem in (5.1), i.e.

max
0≤XT , c(XT )=w

P{XT ≥ LT },
is given by

X∗
T = LT 1{τLT ξT

<λ},
where λ is such that c(X∗

T ) = w.

Proof. The optimal solution X∗
T of (5.1) has a joint distribution G with the ‘benchmark’LT .

Then Theorem 3.1 implies that X∗
T is an optimal claim with fixed payoff structure. Therefore,

conditionally on LT , X∗
T is anti-monotonic with state price ξT and is of the form X∗

T =
f (ξT , LT , V ), where V is some independent randomization.
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Define the sets A0 = {f (ξT , LT , V ) = 0} and A1 = {f (ξT , LT , V ) = LT } so that
P{A0 ∪ A1} = 1, because otherwise it would be possible to construct an improved solution.
Consequently, we deduce that f can be represented in the form

f (ξT , LT , V ) = LT 1{h(ξT ,LT ,V )∈A}
for some function h and measurable set A. Define λ > 0 such that

P{h(ξT , LT , V ) ∈ A} = P{τLT ξT
< λ}.

Then 1{h(ξT ,LT ,V )∈A} and 1{τLT ξT
<λ} have the same distribution while LT ξT and 1{τLT ξT <λ} are

anti-monotonic. Then by using the Hoeffding–Fréchet lower bound in (2.1) we obtain

c(LT 1{τLT ξT
<λ}) = E[LT ξT 1{τLT ξT <λ}] ≤ E[LT ξT 1{h(ξT ,LT ,V )∈A}],

and, thus, LT 1{τLT ξT
<λ} is optimal.

Remark 5.1. It was pointed out to the authors by a reviewer that the optimization results in
Proposition 5.5 and Proposition 5.7 can be cast as unconstrained optimization problems in
Lagrangian form. For Proposition 5.5, this takes the form

sup
XT ≥0

E[1{XT ≥LT } − λξT XT ] + λw. (5.6)

Under a continuity assumption, a solution of (5.6) is achieved by XT = LT 1{λξLT <1} with λ

chosen suitably. The Lagrangian form for the case of Proposition 5.7 is similar.

As a last application on hedging problems, we extend Proposition 5.5 by considering the
combined case of a random claim LT that needs to be hedged and the requirement that the
hedging portfolio has some copula C with a random benchmark AT .

Proposition 5.6. (Quantile hedging with fixed payoff structure.) For a random claim LT ≥ 0,
benchmark AT , and given copula C, the solution to the restricted hedging problem

max
0≤XT , c(XT )=w, C(XT ,AT )=C

P{XT ≥ LT }

is given by
X∗

T = LT 1{ZT ≥λ},
where ZT = C−1

1 | AT
(1 − τLT ξT | AT

) and λ is such that c(X∗
T ) = w.

Proof. Let G be the joint distribution of the optimal claim X∗
T with AT . Then, by the

randomization technique in Section 2, there exists a claim of the form f (ξT , AT , V ) with a
randomization V independent of (ξT , AT ), such that

(f (ξT , AT , V ), AT ) ∼ (X∗
T , AT ) ∼ G and c(f (ξT , AT , V ), AT ) = c(X∗

T ) = w.

Thus, the claim f (ξT , AT , V ) is also optimal.
As in the proof of Proposition 5.5, we define A0 = {f (ξT , AT , V ) = 0} and A1 =

{f (ξT , AT , V ) = LT } for which P{A0 ∪ A1} = 1, so there exists a measurable set A and
a function h such that

f (ξT , AT , V ) = LT 1{h(ξT ,AT ,V )∈A}.
Define λ > 0 by the equation

P{h(ST , AT , V ) ∈ A} = P{ZT ≥ λ}.
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Then 1{h(ξT ,AT ,V )∈A} and 1{ZT ≥λ} have the same distribution. By the Hoeffding–Fréchet
inequalities in (2.1), this implies that

c(LT 1{ZT ≥λ}) = E[ξT LT 1{ZT ≥λ}] ≤ c(LT 1{h(ξT ,AT )∈A})

because, conditionally on AT , ZT is anti-monotonic with ξT LT and, thus, 1{ZT ≥λ} is anti-
monotonic with ξT LT . This implies optimality of X∗

T .

In the final application we consider the related problem of maximizing expected return with
given cost and target bounds. For given bounds a and b with a < b, assume the existence of a
claim XT such that a ≤ XT ≤ b and c(XT ) = w.

Proposition 5.7. (Maximizing expected return with given target bounds.) The solution of the
expected returns maximization problem

max
a≤XT ≤b, c(XT )=w

E[XT ]

is given by the payoff
X∗

T = a1{τξT
>λ} + b1{τξT

≤λ},
where λ is such that c(X∗

T ) = w.

Proof. Assume that X∗
T is not an optimal payoff. Then there exists an admissible payoff YT

such that E[YT ] > E[X∗
T ]. We can then also find a strategy Y ∗

T of the form

Y ∗
T = a1{τξT

>d} + b1{τξT
≤d}

with d chosen such that E[Y ∗
T ] = E[YT ]. Since E[Y ∗

T ] > E[X∗
T ], it follows that d > λ and,

therefore,
c(Y ∗

T ) = E[ξT Y ∗
T ] > c(X∗

T ) = w.

On the other hand, because Y ∗
T has the same expectation and shifts all mass to the boundaries,

YT ≤cx Y ∗
T , where ‘≤cx’ denotes the convex order inequality. Let ŶT = F−1

YT
(1 − τξT

) be the
random variable with ŶT ∼ YT and such that ŶT and ξT are anti-monotonic. Then, from the
Hoeffding inequality and the Lorentz ordering theorem (see Rüschendorf (2013)), we obtain

c(YT ) = E[ξT YT ] ≥ E[ξT ŶT ] ≥ E[ξT Y ∗
T ] = c(Y ∗),

where we have used the inequality ŶT ∼ YT , implying that ŶT ≤cx Y ∗
T . This in turn implies

that c(YT ) > w, and, thus, YT is not admissible. This contradiction implies the result.

Example 5.1. (Maximizing expected return with target bounds in a Black–Scholes market.) In
the n-dimensional Black–Scholes market there is a (risk-free) bond with price process {S0

t } =
{S0

0 ert } for some (small) r > 0 and n risky assets S1, S2, . . . , Sn with price processes

dSi
t

Si
t

= μi dt + σi dBi
t , i = 1, . . . , n,

where the {Bi
t } are (correlated) standard Brownian motions, with constant correlation coef-

ficients ρij := corr(Bi
t , B

j
t+s), t, s ≥ 0 and i, j = 1, . . . , n. Let μ� = (μ1, . . . , μn) and

(�)ij = ρijσiσj , and assume that μi �= r for some i. Let � be positive definite. Then the
state price takes the form (see, e.g. Bernard et al. (2011))

ξt = c

(
St

S0

)−d

,
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where, in terms of the parameters π = (π1, . . . , πn)
�, m and σ 2 defined by

π = �−1 (μ − r 1)

1� �−1 (μ − r 1)
, m = π�μ, σ 2 = π� � π ,

d = m − r

σ 2 , and c = exp

{
−1

2

[
d − 1 +

(
1 + r

σ 2

)2]
σ 2t

}
,

and the process {St } satisfies the stochastic differential equation

dSt

St

= m dt + σ dBt ,

where {Bt } is a standard Brownian motion satisfying Bt = ∑n
i=1 πiσiB

i
t /σ . The process {St }

is the price process that corresponds to a so-called constant-mix trading strategy (at each time
t > 0 a fixed proportion πi is invested in the ith risky asset).

We make the (economic appealing) assumption that m > r. From Proposition 5.7, since τξT

is decreasing in ST , the optimal payoff is of the form

X∗
T = a1{ST <α} + b1{ST ≥α},

where α is such that EQ[1{ST ≥α}] = (werT − a)/(b − a) in which dQ/dP = erT ξT . It follows
that α is given by

α = exp

[(
r − 1

2
σ 2

)
T − σ

√
T �−1

(
werT − a

b − a

)]
.

Acknowledgements

The authors thank the anonymous reviewer and the handling editor for several relevant
suggestions which led to essential improvements in the paper. Carole Bernard acknowledges
support from NSERC. Steven Vanduffel acknowledges support from BNP Paribas Fortis.

References

Ansel, J. P. and Stricker, C. (1994). Couverture des actifs contingents et prix maximum. Ann. Inst. H. Poincaré
Prob. Statist. 30, 303–315.

Barlow, R. E., Bartholomev, D. J., Brenner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order
Restrictions. The Theory and Application of Isotonic Regression. John Wiley, London.

Bernard, C. and Vanduffel, S. (2014a). Financial bounds for insurance claims. J. Risk Insurance 81, 27–56.
Bernard, C. and Vanduffel, S. (2014b). Mean-variance optimal portfolios in the presence of a benchmark with

applications to fraud detection. Europ. J. Operat. Res. 234, 469–480.
Bernard, C., Boyle, P. P. and Vanduffel, S. (2014a). Explicit representation of cost-efficient strategies. To appear

in Finance.
Bernard, C., Maj, M. and Vanduffel, S. (2011). Improving the design of financial products in a multidimensional

Black–Scholes market. N. Amer. Actuarial J. 15, 77–96.
Bernard, C., Moraux, F., Rüschendorf, L. and Vanduffel, S. (2014b). Optimal payoffs under state-dependent

constraints. Preprint. Available at http://arxiv.org/abs/1308.6465v2.
Browne, S. (1999). Beating a moving target: optimal portfolio strategies for outperforming a stochastic benchmark.

Finance Stoch. 3, 275–294.
Carlier, G. and Dana, R.-A. (2011). Optimal demand for contingent claims when agents have law invariant utilities.

Math. Finance 21, 169–201.
Cox, J. C. and Huang, C.-F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion

process. J. Econom. Theory 49, 33–83.
Delbaen, F. and Schachermayer, W. (1995). The no-arbitrage property under a change of numéraire. Stoch. Stoch.

Reports 53, 213–226.

https://doi.org/10.1239/jap/1417528474 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528474


188 C. BERNARD ET AL.

Dybvig, P. H. (1988). Distributional analysis of portfolio choice. J. Business 61, 369–393.
Fréchet, M. (1940). Les Probabilités Associées à Un Système d’événements Compatibles et Dépendants. I. Événements

en Nombre Fini Fixe (Actual. Sci. Ind. 859). Hermann et Cie, Paris.
Fréchet, M. (1951). Sur les tableaux de corré lation dont les marges sont données. Ann. Univ. Lyon 14, 53–77.
Goll, T. and Rüschendorf, L. (2001). Minimax and minimal distance martingale measures and their relationship to

portfolio optimization. Finance Stoch. 5, 557–581.
He, H. and Pearson, N. D. (1991a). Consumption and portfolio policies with incomplete markets and short-sale

constraints: the finite-dimensional case. Math. Finance 1, 1–10.
He, H. and Pearson, N. D. (1991b). Consumption and portfolio policies with incomplete markets and short-sale

constraints: the infinite-dimensional case. J. Econom. Theory 54, 259–304.
Hoeffding, W. (1940). Maßstabinvariante Korrelationstheorie. Schrift. Math. Instit. Angew. Math. Univ. Berlin 5,

179–233.
Jacka, S. D. (1992) A martingale representation result and an application to incomplete financial markets. Math.

Finance 2, 239–250.
Markowitz, H. (1952). Portfolio selection. J. Finance 7, 77–91.
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. J. Econom. Theory 3,

373–413.
Quiggin, J. (1993). Generalized Expected Utility Theory – The Rank-Dependent Model. Kluwer.
Rheinländer, T. and Sexton, J. (2011). Hedging Derivatives (Adv. Ser. Statist. Sci.Appl. Prob. 15). World Scientific,

Hackensack, NJ.
Rüschendorf, L. (1981). Stochastically ordered distributions and monotonicity of the OC-function of sequential

probability ratio tests. Math. Operat. Statist. Ser. Statist. 12, 327–338.
Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process. J. Statist.

Planning Infer. 139, 3921–3927.
Rüschendorf, L. (2012). Risk bounds, worst case dependence and optimal claims and contracts. In Proc. AFMATH

Conf. Brussel, pp. 23–36.
Rüschendorf, L. (2013). Mathematical Risk Analysis. Springer, Heidelberg.
Shefrin, H. and Statman, M. (2000). Behavioral portfolio theory. J. Financial Quant. Anal. 35, 127–151.
Tversky, A. and Kahneman, D. (1992).Advances in prospect theory: cumulative representation of uncertainty. J. Risk

Uncertainty 5, 297–323.
Vanduffel, S., Chernih, A., Maj, M. and Schoutens, W. (2009). A note on the suboptimality of path-dependent

payoffs in Lévy markets. Appl. Math. Finance 16, 315–330.
Vanduffel, S., Ahcan, A., Henrard, L. and Maj, M. (2012). An explicit option-based strategy that outperforms

dollar cost averaging. Internat. J. Theoret. Appl. Finance 15, 19pp.
Von Hammerstein, E. A., Lütkebohmert, E., Rüschendorf, L. and Wolf, V. (2013). Optimal payoffs in multivariate

Lévy markets. Preprint.
Von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton University

Press.
Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica 55, 95–115.

CAROLE BERNARD, University of Waterloo

University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1, Canada.
Email address: c3bernar@uwaterloo.ca

LUDGER RÜSCHENDORF, University of Freiburg

University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany.
Email address: ruschen@stochastik.uni-freiburg.de

STEVEN VANDUFFEL, Vrije Universiteit Brussel

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Bruxelles, Belgium. Email address: steven.vanduffel@vub.ac.be

https://doi.org/10.1239/jap/1417528474 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528474

	1 Introduction
	2 Randomized claims and cost-efficient payoffs
	3 Payoffs with fixed payoff structure
	4 Utility optimal payoffs with fixed payoff structure
	5 Optimal hedging and quantile hedging
	Acknowledgements
	References

