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ABSTRACT: Constraints on cluster kinematics proper motions, radial 
velocities and tidal radii are reviewed. Analysis of the cluster 
radial velocity distribution suggests a rotation law for the system 
in which the specific angular momentum is nearby independent of 
galactocentric distance, and the residual velocity dispersion is 
isotropic. However, the absence of severely tidally truncated 
clusters indicates that nearly radial orbits are absent from this 
distribution. The kinematic properties of the remote halo clusters 
remain largely indeterminate. Absolute proper motions measured 
directly with respect to background galaxies and quasars are needed 
to determine the kinematics of these objects, and also to elucidate 
the process of tidal stripping. 

1. INTRODUCTION 

The kinematics of the galactic globular cluster system have long 
been a subject of great interest for two important reasons: (i) they 
serve as a dynamical probe of the galactic mass distribution; and 
(ii) they provide a fossil record of the early dynamical and chemical 
evolution of the Galaxy. Historically, globular clusters have enjoy-
ed a favored status over single stars for these purposes, because 
they are easily identifiable entities over the entire Galaxy, and 
because they are usually bright enough to be studied spectroscopic-
ally by photographic means. Recent advances in detector technology 
promise to make kinematic studies of distant halo giants feasible, 
mitigating some of these advantages, but globular clusters remain the 
probes of choice, despite their limited numbers, because their dis-
tance scale is much more secure than that of single stars. 

Most of our present knowledge of cluster kinematics has been 
derived from studies of their radial velocities. These have the 
advantage of being relatively quick and easy to obtain. Very high 
accuracy is now possible using modern cross-correlation techniques 
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(whether digital or analog), which are very well-suited to the late-
type giants which dominate cluster light. This advance has made 
possible detailed studies of stellar kinematics within clusters, as 
described elsewhere in this Symposium. Nevertheless, radial velocity 
data alone carry some significant drawbacks for studies of kinematics 
of the cluster system: First, information regarding the tangential 
velocities of clusters (with respect to the galactic center) is only 
accessible for clusters near the solar circle or inside it. These 
velocity components make no significant contribution to the observed 
radial velocities of clusters far outside the solar circle. Second, 
with only one-dimensional velocity data for individual clusters, one 
can obtain only a statistical description of cluster orbits within 
the Galaxy. Furthermore, the number of clusters known is so small 
that only the first and second moments of the velocity distribution 
are statistically significant: kinematic details are washed out. 

In principle, cluster proper motions could provide us with much 
more information regarding their kinematics. In the first place, 
they are two-dimensional data. Combined with radial velocities, 
which are now available for the vast majority of clusters, they 
constitute a complete kinematic description of the cluster system. 
Moreover, they provide the only observational constraint on rotation 
of the cluster system about the i - 0, b - 0 axis. (It should be 
recalled that the Magellanic Stream is nearly perpendicular to this 
axis [Wannier and Wrixon 1972]. Any direct kinematic evidence of its 
dynamical interaction with the galactic globular cluster system will 
be manifested observationally in proper motions of the affected 
clusters.) The difficulties in obtaining absolute proper motions of 
clusters are of course well-known: A long time base is both desirable 
and necessary in most cases. (This is itself a distinct handicap in 
modern astronomy.) The potentials for systematic errors are legion, 
making reductions difficult and time-consuming. The accuracy of most 
studies of cluster proper motions to date is poor, owing to the large 
and unavoidable dispersion in proper motions of the (foreground) 
reference stars. This statistical uncertainty is further compounded 
by the inadequacy of current models for the kinematics of field 
stars, which renders the correction from relative to absolute proper 
motions highly uncertain. 

An indirect constraint on cluster orbits comes from their ob-
served limiting radii. These limiting radii are generally attributed 
to the tidal limit imposed by the galactic gravitational field (von 
Koerner 1957, King 1962), and thus, in principle, provide information 
about gradients in that field (and hence local mass densities) of a 
different kind from that obtained through dynamical modeling. 
Indeed, it should be possible to constrain possible cluster orbits 
rather strongly through their use. In practice, limiting radii can 
be readily estimated from star counts (e.g. King, et al. 1968; 
Peterson and King 1975), although the cluster contribution to the 
total star density is rarely distinguishable above background beyond 
one-half the limiting radius. Unfortunately, the accuracy of this 
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method (or indeed of any other method so far devised) is badly 
degraded by a high or variable background of field stars and by dif-
ferential reddening. As a result, large uncertainties remain in the 
determinations for individual clusters, particularly those at low 
galactic latitude. Moreover, the precise limiting radius extrapola-
ted from a given set of observations depends upon the internal kine-
matics of the cluster (see, e.g., Gunn and Griffin 1979), and the 
tidal field implied by that limit depends upon the total cluster 
mass-to-light ratio. The most serious interpretational problems in 
exploiting limiting radii, however, come from (i) severe inadequacies 
in current theories of tidal stripping, which have yet to deal satis-
factorily with the problems of eccentric cluster orbits, internal 
dynamical evolution of clusters, or the fact that marginally unbound 
stars may not be lost from clusters for many dynamical timescales; 
and (ii) the fact that the kinematical implications of tidal radii 
depend on the galactic mass model — the kinematical and dynamical 
problems are not separable. 

Let us turn now to the question of what has been learned of 
cluster kinematics by these methods. 

2. PROPER MOTIONS 

Historically, the first attempts to detect the motions of glo-
bular clusters (and other "nebulae" as well) were astrometric ones. 
During the latter half of the 19th Century, efforts were made at 
nearly every major observatory to secure accurate positions for these 
objects visually, positions which might have served as a basis for 
proper motion studies. Unfortunately, these efforts were devoted 
almost exclusively to the determination of centroid positions, and 
not those of individual stars, and so are too ill-defined to be of 
use for kinematic purposes, except to show that the globular clusters 
were not nearby objects. 

The modern era of globular cluster astrometry began with the 
work of van Maanen (1925, 1927) at Mt. Wilson, and Balanowsky (1928) 
at Pulkovo, who used photographic plates to study the proper motions 
of stars in and around several bright Northern Hemisphere clusters. 
Since this pioneering work, numerous studies of individual clusters 
have been published (albeit almost exclusively for Northern 
Hemisphere clusters). For the most part, these have been relative 
proper motion studies, and so are affected by serious uncertainties 
in the reduction to absolute proper motions. Hallermann (1965) 
attempted to measure the proper motions of 11 clusters directly in 
the NFK coordinate system, Meurers and Prochazka (1969) tied that of 
NGC 6838 (MT1) directly to the FK4 system, and Brosche and coworkers 
have recently measured the proper motions of NGC 4147 (Brosche, et 
al. 1986) and NGC 5466 (Brosche and Geffert 1983) with respect to 
field stars with known proper motions in the Lick extragalactic 
reference system. However, the only attempts to determine cluster 
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proper motions directly with respect to extragalactic objects have 
been a series of studies at Pulkovo of NGC 6205 (M 13) referred to 
the nucleus of NGC 6207 (Gamalej 1948; Fatchikin 1952; Kadla 1963). 
These studies have reached inconsistent results, apparently because 
of difficulties in defining the nucleus of NGC 6207. 

In Figure 1 are illustrated the proper motions of the 15 globu-
lar clusters and 2 dwarf spheroidal satellites of the Galaxy for 
which published data are available. Relative proper motions have 
been reduced to an absolute (inertial) frame assuming the standard 
open for solar motion (A - 270°, D - +30°); this reduction may differ 
considerably from that following from use of the Lick apex 
(Vasilevskis and Klemola 1971), especially for clusters in the 
vicinity of these apexes (e.g., Cudworth 1976a,b, 1979a,b; Cudworth 
and Monet 1979). Proper motions in fundamental coordinate systems 
were corrected to FK4 (Nowacki 1935; Fricke, et al. 1963), as appro-
priate, and the equinox correction to FK5 (Fricke 1982) was then 
applied. The results from different published sources have then 
combined into weighted means. 

The reflex proper motion of the cluster system due to the net 
rotation of the cluster system with respect to the local standard of 
rest is clearly discernable in Figure 1. However, the residual 
proper motions of individual clusters, once this effect is removed, 
are mostly of doubtful significance. 

3. RADIAL VELOCITIES 

The relative ease and precision with which cluster radial 
velocities can be determined over galactic distances has made them 
the preferred avenue for kinematic studies. Since the pioneering 
work of Strömberg (1925), numerous statistical analyses of cluster 
motions based on their radial velocities have been published, 
including important papers by Edmondson (1935), Mayall (1946), Perek 
(1954), von Hoerner (1955), Kinman (1959), Matsunami (1964), Woltjer 
(1975), House and Wiegandt (1977), Hartwick and Sargent (1978), Frenk 
and White (1980), Pier (1984), Rodgers and Paltoglou (1984), Zinn 
(1985), Hesser, Shawl, and Meyer (1986), and Norris (1986). Radial 
velocities have, at this writing, been published for a total of 115 
galactic globular clusters, as well as for all 7 dwarf spheroidal 
satellites of the Galaxy, making this the most extensive (as well as 
the most reliable) body of kinematic data presently available. 

Recent studies based on radial velocities, while emphasizing 
different details, have arrived at a fairly consistent picture of the 
global kinematics of the cluster system. In the following discus-
sion, the numerical results quoted are those derived by the author 
from the analysis of the 85 clusters (plus NGC 6569) and 4 dwarf 
spheroidals contained in his radial velocity catalogue (Webbink 
1981). To the extent that they are comparable, however, these 
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Fig. 1. Absolute proper motions of galactic globular clusters and 
dwarf spheroidal satellites. The present positions of the clusters are 
plotted as points in galactic coordinates (i - 0°, b = 0° at the center 
of the figure), with lines indicating the proper motion for 3.6 Myr 
(i.e., 1° - 1 mas/yr). 

https://doi.org/10.1017/S0074180900042388 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900042388


54 

results are entirely consistent with the findings of all of the 
recent studies cited above. 

3.1 Rotation of the cluster system 

In order to explore the rotation of the cluster system, we 
divide the 90 clusters and dwarf spheroidals into six spherical 
shells, each containing 15 objects. For this purpose, the distances 
to individual clusters are based on the assumption that \ (HB) -
+0.60, and the distance to the galactic center is taken to be R Q -
8.8 kpc (Harris 1976). The clusters within each shell are assumed to 
rotate about an axis perpendicular to the galactic plane (the b — 
+90° axis) with uniform linear velocity, with the circular velocity 
at the Sun taken to be θ 0 - 220 km s'

1 (Gunn, Knapp, and Tremaine 
1979). The results of this exercise are listed in Table I. 

TABLE I. 
ROTATION OF THE CLUSTER SYSTEM 

R / R 0 
(km s"1) 

αΐοβ, 
(km s"1) 

0 24±0 01 120±64 100±19 

0 44±0 02 68±51 102±17 

0 74±0 02 67±37 90±8 

1 11±0 04 28±58 145123 

1 .87±0 08 31±140 125110 

7 .94±1 27 2311303 139117 

As was to be expected, the rotation curve of the cluster system (6 c l) 
is not well-defined much beyond the solar circle, but there clearly 
exists differential rotation within the cluster system as a whole. 
For the inner four bins, a trend in which the linear rotation veloci-
ty increases towards the galactic center is apparent, even though the 
data for individual bins have large uncertainties. This trend was 
suspected by Frenk and White (1980), and elaborated considerably by 
Zinn (1985). Also apparent in the third column of Table I is the 
abrupt increase in the line-of-sight velocity dispersion beyond the 
solar circle first noted by Frenk and White. This phenomenon can be 
explained either by an increase in the total velocity dispersion, or 
by a slightly elongated velocity ellipsoid in which the major axis 
points radially toward the galactic center. 

On the strength of the above evidence, we may attempt a second 
solution to the cluster rotation law, treating the entire system as a 
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single entity. We assume a rotation law of the form 

e e l(R> - e e l(R 0) (R/R 0)
a 

and permit as well a rate of expansion of the same form: 

n(R) - n<R 0) (R/R 0)
a. 

The axis about which the cluster system rotates is left as a free 
parameter, with components θ ζ about the (b - +90°)-axis and 0 y about 
the (i - 90°, b - 0°)-axis. (As noted in the Introduction, rotation 
θ χ about the (i - 0°, b - 0°)-axis is indeterminate from radial 
velocities alone.) In addition, we may treat θ 0, the local circular 
velocity, as a free parameter in the solution: it is indeterminate 
only if a - 1. The best-fit parameters thus obtained are: 

α - -0.98±0.51 

θ 0 - 203±27 km s"
1 

θ ζ(R o) - 34±14 km s'
1 

9 y ( R 0 ) - -1.4±9.2 km s"
1 

n(R Q) - 8.018.8 km s"
1 

Clearly, there is no significant rotation of the cluster system about 
the y-axis, nor is there evidence of any net expansion or contraction 
of the cluster system, contrary to the conclusions of Clube and 
Watson (1979). If we therefore set 0 y ( R Q ) - n(R 0) - 0, we obtain: 

α - -1.08±0.97 

θ 0 - 196±27 km s"
1 

9 z(R 0) - 25±13 km s"
1 

It appears that the cluster system rotation law is approximately one 
in which the mean specific angular momentum is independent of galac-
tocentric distance. Note also that the deduced local lag in rotation 
of the cluster system, θ ζ(R Q) - θ 0, is practically independent of the 
assumed rotation law. 

3.2 Velocity ellipsoid of the cluster system 

We may now remove the systematic effects which the rotation of 
the cluster system contributes to the observed radial velocities, 
according to the final set of parameters deduced above, and examine 
the properties of the cluster velocity dispersion tensor (cf., e.g., 
Ogorodnikov 1965). We adopt a spherical polar coordinate system in 
which the Π-axis points from the galactic center to the cluster 
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position, the θ-axis points in the direction of galactic rotation, 
parallel to the galactic disk, and the Φ-axis is orthogonal to the 
other two. (Note that the Θ-Φ notation is reversed from that of 
Norris [1986], but the same as that of Pier [1984].) The deduced 
dispersion tensor is listed in Table II. 

TABLE II. 

THE GLOBULAR CLUSTER VELOCITY DISPERSION TENSOR 

a u

2 (in 104 kins'1) 

j\i Π θ Φ 

Π +1.42±0.27 -0.0910.33 -0.1410.37 

θ -0.0910.33 +1.3710.43 +0.0810.51 

Φ -0.1410.37 +0.0810.51 +0.9010.65 

The off-diagonal components of this tensor are all consistent 
with zero, implying that the principal axes of the velocity ellipsoid 
(resolved in this way) coincide with those of the adopted coordinate 
system. The values for the diagonal components agree well with those 
found by Pier (1984), and Norris (1986) for the cluster system, 
except for Pier's inexplicably large value for σ 2 They differ 
from those found by Woolley (1978; see also Pier 1984) for halo RR 
Lyrae stars (σ^ 2 - 2.1110.54; aQ$

2 - 1.55+0.54; σ 2 - 0.50+37) only 
in having a somewhat smaller radial component. Inaeed, within the 
errors, the cluster velocity ellipsoid is isotropic, as deduced by 
Frenk and White (1980). 

4. TIDAL LIMITS 

The identification of the limiting radius of globular clusters 
with the galactic tidal cutoff (von Hoerner 1957; King 1962) opened 
the possibility that this information could be turned to advantage in 
exploring cluster kinematics. The physical argument is a simple one: 
the cluster achieves tidal equilibrium only when it has been stripped 
down to those members whose orbits remain bound to the cluster in the 
presence of the strongest tidal field experienced by the cluster, 
namely, that at perigalacticon. Given an estimate of the total clus-
ter mass (from its integrated luminosity and mass-to-light ratio), 
the maximum tidal stress, and hence perigalactic distance, can be 
calculated. This method has been applied to numerous individual 
clusters, and in recent years to the cluster system as a whole 
(Peterson 1974; Rastorguev and Surdin 1980; Seltzer and Freeman 1981; 
Innanen, Harris, and Webbink 1983). As noted in the Introduction, 
however, this method is plagued not only by large observational 
uncertainties, but also by unsolved theoretical problems and the 
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dependence of answers on an assumed galactic potential. In recent 
years, a controversy has arisen over whether clusters ever actually 
achieve tidal equilibrium, and on what timescale (see, e.g., Seltzer 
1985; Angeletti and Giannone 1984; Angeletti, Capuzzo-Dolcetta, and 
Giannone 1984; and references therein), and over the relationship 
between the observed spatial cutoff and the tidal energy cutoff 
(Innanen, Harris, and Webbink 1983). 

Notwithstanding the unsolved problems which complicate a naive 
interpretation of tidal radii, there exist some properties of the 
distribution of tidal radii which appear to carry significant 
kinematical implications which are independent of the resolution of 
these controversies. Innanen, Harris, and Webbink (1983) point out 
that any truly isotropic velocity dispersion implies the existence of 
an asymmetric tail to the distribution of cluster tidal mass densi-
ties at any given galactocentric distance. The tail extends toward 
high densities, and represents very compact clusters on nearly radial 
orbits. The prominence of this tail depends on the nature of the 
galactic potential, but even for a very "soft" potential (one giving 
a flat galactic rotation curve) the complete absence of such a tail 
in the observed distribution of cluster tidal mass densities implies 
that the population of extant clusters must have a severe deficiency 
of low angular momentum (i.e., highly eccentric) orbits. Evidently, 
the portrayal of the cluster distribution in velocity-space as an 
ellipsoid is very misleading, but the existence of this hole along 
the Π-velocity axis is not (and cannot be) revealed from a moment 
analysis of the observed radial velocities. It is possible that this 
deficiency is related to the larger radial component of the RR Lyrae 
velocity ellipsoid (see above). 

5. PROSPECTUS 

We stand at a crossroads in kinematic studies of the galactic 
globular cluster system. Accurate radial velocities are now known 
for the great majority of clusters — there is little room for 
expansion of this data base. Nevertheless, serious questions remain 
regarding the detailed form of the cluster velocity distribution, 
particularly outside the solar circle (with its attendant dynamical 
implications for the mass of the Galaxy), and regarding the physical 
significance of cluster tidal radii. 

The key to further progress is clearly to obtain absolute proper 
motions of globular clusters directly with respect to background 
galaxies and quasars. At high galactic latitude, these objects 
outnumber field stars at magnitudes (V > 20; Kron 1980) now within 
reach observationally. The time baselines needed for useful results, 
even for distant halo clusters, are not unreasonable, provided that 
background objects can be identified in sufficient numbers, and their 
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relative positions established with sufficient accuracy: 

A t - 4 · 8 ^ <iö^><S?!ö><iotos-i)" 1Ki§ö>- 1 + <ϊ§ϋ> _ 1 ]- 1 / 2 -
where D is the cluster distance, € x y the single-coordinate uncer-
tainty in relative position, e v the single-coordinate uncertainty in 
tangential velocity, n f the number of background reference objects, 
and n c l the number of cluster stars. The technology is within reach 
and the need is clear. 
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hospitality of the Institute of Astronomy, University of Cambridge, 
where the kinematic analysis of cluster radial velocities described 
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DISCUSSION 

KING: The existing tidal radii are only a first try, from star counts. 
One should now do a second generation study, using color-magnitude 
arrays to eliminate most of the field stars. 

WEBBINK: Anything which distinguishes cluster stars from field stars 
will no doubt improve estimates of tidal radii. 

KING: For proper motion studies, QSO's are essential; one QSO is worth 
twenty galaxies. 

WEBBINK: QSO's are certainly far superior as reference objects, but I 
think one will still require large numbers of background objects to 
ensure good proper motion solutions. 

COHEN: The new Palomar Sky Survey will include a very short exposure 
in an effort to extend the system of stars with absolutely known 
positions to the faintest stars measurable on PSSII. This should 
enable absolute proper motions to be determined from plates from large 
reflectors. 

NORRIS: Your analysis of globular cluster kinematics makes no 
distinction between the disk and halo groups of Zinn. Have you 
repeated the analysis for the halo group alone? 

WEBBINK: I have not attempted to do so. The number of free parameters 
in the solution is so large that I doubt one can obtain meaningful 
solutions from a much smaller sample, and the tangential components of 
the velocity ellipsoid become indeterminate unless the sample includes 
a large number of clusters inside the solar circle, where the Sun 
appears nearby at right angles from the galactic center, as seen from 
the cluster. For distant halo clusters, we see only the galacticentric 
radial component. 

CAYREL: My question is about the best observational accuracy 
attainable in proper motion measurement for globular clusters. Is 
there a significant statistical gain due to the fact that each globular 
cluster is made of many point sources and not only one as for a normal 
single star proper measurement? 

WEBBINK: In principal, I suppose what you say must be correct, but I 
would imagine that variations in seeing would make it very difficult to 
take advantage of this structure, and most background galaxies will 
undoubtedly have low signal-to-noise detections. 
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