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ABSTRACT. Using the finite-element code Elmer, we show that the full Stokes modeling of the ice-
sheet/ice-shelf transition we propose can give consistent predictions of grounding-line migration. Like
other marine ice-sheet models our approach is highly sensitive to the chosen mesh resolution. However,
with a grid size down to <5 km in the vicinity of the grounding line, predictions start to be robust
because: (1) whatever the grid size (<5 km) the steady-state grounding-line position is sensibly the
same (6 km standard deviation), and (2) with a grid-size refinement in the vicinity of the grounding line
(200m), the steady-state solution is independent of the applied perturbation in fluidity, provided this
perturbation remains monotonic.

INTRODUCTION
Marine ice sheets rest on beds that lie below sea level and
their drainage takes place through surrounding ice shelves.
Grounded ice-sheet flow is dominated by horizontal shearing
while the ice-shelf flow is dominated by longitudinal
stretching and lateral shearing. The two types of flow couple
together across a transition zone near the grounding line,
where longitudinal and shear stresses are of the same order
of magnitude. A long debate on the dynamics of such ice
sheets was initiated in the 1970s, when Weertman (1974)
proposed that a marine ice sheet which lies on an upward-
sloping bed is unstable. Recently, the instability hypothesis
has been strongly reinforced, based on a boundary-layer
theory due to Schoof (2007b). Moreover, Vieli and Payne
(2005) showed the poor ability of marine ice-sheet models to
give consistent prognostic results and, more particularly, they
highlighted the influence of the grid size on model results.
One of their main conclusions was that no reliable model
was able to predict grounding-line dynamics at the time of
their study.
As a consequence, there is an urgent need to improve

marine ice-sheet models in order to (1) corroborate recent
theoretical predictions, and (2) obtain confident simulations
of the grounding-line dynamics. We recently proposed a
full Stokes resolution of the ice-sheet/ice-shelf transition
(Durand and others, in press). This approach has been built
on abundant literature dealing with the coupling between a
grounded ice sheet and a floating ice shelf and identifying
this transition zone as a crucial control of the marine ice-
sheet dynamics (e.g. Weertman, 1974; Van der Veen, 1985;
Chugunov and Wilchinsky, 1996; Hindmarsh, 1996; Vieli
and Payne, 2005; Schoof, 2007a,b). The main equations
developed by Durand and others (in press) are recalled
here. We then emphasize the impact of the mesh resolution
on the calculated steady state with the proposed method.
Finally, we show that consistent results can only be obtained
if a small grid mesh is prescribed in the vicinity of the
grounding line.

EQUATIONS
Notations and main hypothesis
The problem to be solved consists of the gravity-driven flow
of isothermal, incompressible and non-linear viscous ice.
The geometry is restricted to a two-dimensional plane flow
perpendicular to the y direction. Ice flows along the x
direction, and the z axis is the vertical upward-pointing axis.
Notation is detailed in Figure 1. The ice sheet flows over a
rigid bedrock, z = b(x), assuming a non-linear friction law
for the grounded part, and extends further as an ice shelf over
the ocean. In the case of the ice shelf, the ice slides perfectly
over the sea. The last grounded point defines the grounding
line and is denoted xG hereafter. The left-hand side of the
domain is assumed to be symmetric and the shelf ends at the
right-hand side of the domain.
The constitutive law for the ice behavior is a Norton–Hoff

type law (Glen’s flow law in glaciology):

Sij = 2ηDij , (1)

where S is the deviatoric stress tensor, Dij = (ui,j+uj,i )/2 are
the components of the strain-rate tensor and u is the velocity.
The effective viscosity, η, can be expressed as

η = B−1/nγ (1−n)/ne , (2)

where the strain-rate invariant, γe, is defined as

γ2e = 2DijDij . (3)

In the following applications, n is set to 3 and ice is assumed
isothermal, such that the fluidity parameter, B, remains
constant (see values in Table 1).

State equations and boundary conditions
The ice flow is computed by solving the Stokes problem,
expressed by the mass-conservation equation in the case of
incompressibility

trD = div u = 0 , (4)
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Fig. 1. Notation for the problem to be solved.

and the momentum conservation equations

divσ = ρig , (5)

where σ = S − pI is the Cauchy stress with p the isotropic
pressure; ρi is the ice density and g the gravity vector.
In the present problem, the lateral boundaries of the

domain are a dome and a calving front. The dome is assumed
to be axisymmetric for the flow problem, which implies that
ux (0, z) = 0. The calving front is an artificial cutting of the
shelf, which can be seen as the point where icebergs are
calved. The exact position of the calving front is not relevant
to our problem because it does not influence the upstream
flow. This surface undergoes the sea-ice pressure, pw(z, t ),
which evolves vertically as

{
pw(z, t ) = ρwg (lw(t )− z) , z < lw(t )
pw(z, t ) = 0 , z ≥ lw(t ) (6)

where ρw is the sea-water density and lw the sea level.
In addition to the lateral boundaries, the ice body is

bounded by two free surfaces, namely the stress-free upper
surface, z = zs(x, t ), and the bottom surface, z = zb(x, t ),
at the interface between the bed or sea and the ice. The
evolution of the two free surfaces is determined by solving
a local transport equation. Note also that the length of the
sea/ice interface, starting from the grounding line, xG(t ), is
not known in advance and is part of the solution.
The upper surface is a stress-free surface, which implies

that n · (σ · n)|s = patm ≈ 0, where n is the unit normal
vector of the surface pointing outward and the subscript ‘s’
denotes the value taken at the ice/air interface. The equation
governing the upper stress-free surface evolution reads:

∂zs
∂t

+ ux(x, zs)
∂zs
∂x

− uz(x, zs) = a(x, t ) , (7)

where ui (x, zs) denotes the upper surface velocity in the
horizontal (i = x) and vertical (i = z) directions and a(x, t )
is the accumulation/ablation function given as a vertical flux
at the upper surface. In what follows, the accumulation is
supposed constant both in space and in time (see Table 1).
The bottom sea stress-free surface obeys the following

equation:

∂zb
∂t

+ ux (x, zb)
∂zb
∂x

− uz (x, zb) = 0 , (8)

Table 1. Values of the parameters used in this study, which
correspond to steps 5 and 6 of the Marine Ice-Sheet Intercomparison
Project (MISMIP) benchmark, but are expressed differently, as here
the fluidity parameter is B = 2A. However, numerically the
constitutive relations are rigorously the same

Parameter Value Unit

a 0.3 ma−1
B1 3.16× 10−18 Pa−3 a−1
B2 6.31× 10−18 Pa−3 a−1
n 3
C 2.41× 104 Pam−1/3 a1/3
m 1/3
ρw 1000 kgm−3
ρi 900 kgm−3
g 9.8 ms−2

where accretion of sea water by refreezing or melt of bottom
ice is neglected. Note that this equation is still valid for the
points on the bottom surface which are in contact with the
bedrock. Assuming a rigid, impenetrable bedrock, z = b(x),
the following topological conditions must be fulfilled by zs
and zb:

zs(x, t ) > zb(x, t ) ≥ b(x) ∀x, t . (9)

As a consequence, the unilateral link between the ice and the
bedrock can be treated as a contact problem: the ice cannot
penetrate the bedrock but is allowed to move away from
it (Lestringant, 1994). Resolutions of the contact problem
have been inspired by previous studies on subglacial cavities,
namely the works of Schoof (2005) and Gagliardini and
others (2007). At a given point, x, ice is assumed to be in
‘true’ contact with the bedrock (and corresponding boundary
conditions are applied; see below) if the ice touches the bed
and the stress exerted by the ice is larger than the sea-water
pressure. Conversely, the ice is assumed to be in contact with
the sea if the bottom surface is above the bed or if the ice
touches the bed and the sea-water pressure remains larger
than the normal stress, σnn. In other words:

(1) the ice/bedrock boundary condition applies if

zb(x, t ) = b(x) and − σnn|b > pw(zb, t ) , (10)

(2) the ice/sea boundary condition applies if

zb(x, t ) > b(x) ,

or zb(x, t ) = b(x) and − σnn|b ≤ pw(zb, t ) ,
(11)

where the subscript |b denotes the value taken at the
bottom surface. For the flow problem, two different boundary
conditions have to be applied, depending on whether the
ice is in contact with the bedrock or with the sea. For the
ice/bedrock boundary condition (i.e. condition (1) above), a
non-linear friction law is applied:{

τb = t · (σ · n)|b = Cumb ,
u · n = 0. (12)

where τb is the basal shear stress, ub = u · t is the sliding
velocity at the base and t is the tangent vector to the surface
zb. The parameters C and m entering the friction law are
given in Table 1. For the ice/sea boundary condition (i.e.
condition (2) above), the ice is sliding perfectly over the sea,
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Fig. 2. Steady-state surface profiles for different grid resolutions.
Filled areas correspond to simulations with a constant horizontal
grid size over the whole domain: 15, 10, 7.5 and 2.5 km (from
black to light gray). Black thin curve depicts results obtained using
the adaptive mesh refinement method with Δx0 = 2.5 km (light
gray). The inset shows an enlargement near the grounding line of
the upper surface. Black curve with symbols corresponds to the local
steady surface profile obtained using the adaptive mesh refinement
method with Δx0 = 2.5 km; the gray curve with symbols to that
with Δx0 = 200m.

i.e. t · (σ · n)|b = 0, and the normal stress is equal to the
buoyancy sea-water pressure (Equation (6)).
The equations presented above have been implemented

in the finite-element code Elmer (http://www.csc.fi/elmer/).
For gravity-driven ice flow we solve the set of the Stokes
equations neglecting inertia terms. More details on the
numerics are given by Durand and others (in press). Note that
a similar approach, i.e. full Stokes finite-element modeling
of marine ice sheets, was initiated by Lestringant (1994) and
used more recently by Nowicki and Wingham (2008).

SET-UP OF THE SIMULATIONS
Numerical experiments were carried out using the over-
deepening bed presented by Schoof (2007a) which, ex-
pressed in our reference frame, is given by:

b(x) = 720− 2184.8
(

x
750×103

)2
+1031.72

(
x

750×103
)4
− 151.72

(
x

750×103
)6
,

(13)

where x and b are in meters. The values of the different
parameters used in this study are detailed in Table 1. Note
that the set-up of the experiments corresponds to steps
5 and 6 of the Marine Ice-Sheet Intercomparison Project
(MISMIP, http://homepages.ulb.ac.be/˜fpattyn/mismip/). We
used a constant accumulation, a= 0.3ma−1, over the whole
domain, whereas accretion–melting is neglected below the
ice shelf. Initial simulations start with an initial 10m layer of
ice resting on land up to the position where this layer begins
to float (xG = 482.4km for the prescribed ρi and ρw; see
Table 1). Downstream of xG, a 10m thick ice shelf extends
the grounded part. The vertical extension of the domain is
discretized using Nby = 30 equal thickness layers, whereas
the number of elements in the horizontal direction Nbx is
adjusted for the different simulations and given below, for
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Fig. 3. Evolution of xG through time for runs with various constant
horizontal grid size over the whole domain: 20 km (thick black
curve), 15 km (thick gray curve), 10 km (thick gray dashed curve),
7.5 km (thin gray dashed curve) and 2.5 km (thick light gray
curve). The fine black line indicates results using the adaptive
mesh refinement method (Δx0 = 2.5 km). Horizontal dotted line
corresponds to the result obtained with the boundary layer theory
developed by Schoof (2007a) for the same prescribed fluidity, B1.
This latter is insensitive to grid resolution.

each case. Transient simulations are run until steady state is
reached (once the relative variation of volume is <1× 10−6
between two successive time-steps).

SENSITIVITY TO THE HORIZONTAL MESH
RESOLUTION
Using the settings described in the previous section, different
simulations for fluidity, B1 (see Table 1), were driven for a
regular horizontal mesh with horizontal grid sizes of 20, 15,
10, 7.5, 5 and 2.5 km. Steady state was reached (for durations
of 26.9, 30.0, 24.2, 21.2, 20.1 and 21.2 ka, respectively), and
the corresponding ice-sheet and ice-shelf surface profiles are
plotted in Figure 2 (neglecting grid sizes 20 and 5 km for the
sake of clarity). Evolution of xG through time is shown in
Figure 3.
As shown by Vieli and Payne (2005), marine ice-sheet

models are highly sensitive to their horizontal grid size. The
results of the present experiments clearly demonstrate that
the method described above does not derogate from the Vieli
and Payne conclusions, in the sense that important sensitivity
to the grid resolution is clearly highlighted as xG decreases
significantly with increasing horizontal resolution (see Figs 2
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Fig. 4. Steady-state grounding-line position as a function of the
horizontal extension of the grid, Δx0, used for the simulations. Filled
circles indicate results from the constant-grid mesh simulations, and
empty circles those from the adaptive mesh refinement method
described in the text. Crosses depict results obtained with a
vertically integrated model (Hindmarsh, unpublished data), and the
horizontal dotted line represents the result obtained with the semi-
analytical formula due to Schoof (2007a).

and 3). Predictions of the model can be dramatically affected,
particularly in the presence of an overdeepening bed, as the
grounding line is not stable on reverse bed slope (Schoof,
2007a; Durand and others, in press). Indeed, in a reverse-
slope region, surrounded by two areas of normal slopes
that are two branches of stable solutions, for large grid
size, the branch corresponding to the larger solution is
sometimes selected (probably erroneously). Such a situation
is illustrated in Figure 2, as the larger grid sizes (>15 km)
lead to steady positions of the grounding line beyond the
unstable area. In practice, typical grid resolutions used for
ice-sheet modeling (>10 km) are unable to predict a steady
position for the grounding line. It should be noted that
computing times increase from 2 to 20days for 20 and 2.5 km
grid resolutions, respectively, using a 2.6GHz processor.
This severely constrains further investigations of the model
behavior with high-resolution grid sizes.

ADAPTIVE MESH REFINEMENT AROUND xG
A crucial validation of the present model would be to find
a maximal horizontal grid size below which grounding-
line dynamics are no longer mesh-dependent. As mentioned
above, accessing fine grid resolutions (<1 km) would require
large computational facilities and rapidly becomes unman-
ageable. Therefore, we developed a method that allows an
adaptive refinement of the mesh around the grounding line.
A constant grid size, Δx0, is set over a distance, Lf , centered
around xG. Upstream of xG − Lf/2 and downstream of xG +
Lf/2, a geometric progression of the horizontal extension
of the mesh is prescribed. The total number of elements
in the horizontal direction is adjusted to obtain reasonable
increases (i.e. <10% increase from one element to the next).
Readjustment of the mesh is repeated after each displace-
ment of the grounding line. Note that with this method,
the total number of nodes is constant; only the horizontal
distribution of the nodes is modified. Sensitivity tests have
shown very similar behavior of the grounding-line dynamics

whatever the value of Lf . Despite the limited impact of Lf , the
horizontal mesh extension around xG was kept constant, as
this allows regular displacement of the grounding line during
the simulation (i.e. a multiple of Δx0 at each time-step).
In Figure 2, the steady surface profile for a simulation

with Δx0 = 2.5 km over a Lf = 10 km range around xG
is shown. A good match between this last surface profile
and that obtained with a 2.5 km regular mesh is observed.
Relative differences between the two simulations in terms of
steady-state grounding-line position and volume are <2%.
Note also that the two simulations show very similar transient
behavior, as illustrated by the evolutions of xG versus time
plotted in Figure 3. Some conclusions can already be drawn
from the comparison of these two simulations. First, this fully
validates the adaptive mesh refinement method used here,
which then allows for exploration of the model behavior for
further refinements of the grid around the grounding line.
Second, this shows that the state of a marine ice sheet is
strongly influenced by the behavior of a narrow column
centered over xG, confirming the theoretical assertion of
Schoof (2007b).
Simulations were performed for Δx0 ranging from 100

to 2500m. For each run, the steady-state position of the
grounding line is plotted versus Δx0 in Figure 4. Results
from simulations with a regular mesh size are also shown.
As observed in Figure 2, horizontal extension of the ice
sheet significantly decreases with increasing grid resolution.
However, for Δx0 ≤ 5 km there is not such a clear trend.
Unfortunately, because the computing resources required
for simulations with Δx0 ≤ 100m are huge (>2weeks),
we were unable to establish whether the model converges
toward a unique value of xG when Δx0 tends to 0. If such
convergence exists, it is obviously not monotonic. Despite
this limitation, the model seems to give consistent results
for resolution finer than 5 km as in this case, the standard
deviation of xG at steady state being 5.5 km. A similar
exercise with grid resolutions ranging from 2.5 to 20 km was
performed using a vertically integrated stress approximation
model with a differentiated margin condition to calculate
the margin velocity (Hindmarsh, unpublished information).
These results are also plotted in Figure 4. Sensitivity to grid
resolution appears to be less important than with the full
Stokes finite-element model; for example, although xG does
not converge to a particular value with a smaller grid, it never
crosses the upward-sloping area for large grid sizes in that
case. Variability from one model to the other is large; in
particular, the full Stokes finite-element approach presents a
difference of ∼100 km in the grounding-line steady position
with the boundary layer results. Note that this discrepancy
decreases to ∼40 km when xG at steady state moves away
from the unstable region (Durand and others, in press).
Further validation of the model requires us to test whether,

for a given grid size, the steady state is influenced by the way
the ice sheet has been built. Following Schoof (2007a), we
chose to vary the fluidity rather than other parameters (e.g.
sea level). In what follows, we chose to use Δx0 = 200m.
This is a compromise between reasonable calculation times
and fine enough resolution to properly describe surface
oscillations induced by changes in basal conditions in the
vicinity of the grounding line (see inset of Fig. 2 and Durand
and others, in press, for more details). A first steady state is
obtained starting from a 10m thick ice layer with a prescribed
fluidity of B2 (see Table 1). Starting from the obtained steady
state with fluidity B2 at t = 0, three simulations were run
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with different variations of the fluidity from B2 to B1: (1) a
steady decrease from t = 0 to t = 30ka followed by 5 ka of
relaxation with B1; (2) ten regular step changes every 3 ka
followed by 5 ka of relaxation; and (3) fluidity set to B1 at
t = 0 and kept constant during the 35 ka of the simulation.
Evolution of the fluidity with time is plotted in Figure 5a
for each run. The corresponding evolutions of xG with time
for the three simulations are plotted in Figure 5b. A notable
feature is the ability of the model to react after even a small
perturbation. Indeed, following values given by Paterson
(1994), each small step of the fluidity in run (2) corresponds
to a temperature shift of ∼0.5◦C. Such sensitivity to small
perturbations has also been observed for small modifications
in sea level, basal sliding or accumulation. For example,
a perturbation of the steady state obtained with B2 with a
1m sea-level drop leads to a 1.8 km advance of xG before
a new steady state is found (data not shown). This is a
very important result as some marine ice-sheet models
have shown very poor sensitivity to much more dramatic
perturbations (e.g. a few kilometers of grounding-line retreat
after a sea-level rise of 125m; see Vieli and Payne, 2005).
Also note that all the simulations have reached their steady
state after the 35 ka of the run. Notably, the positions
of the grounding line after 35 ka are exactly the same:
xG = 822.8km. This is also the steady position reached if
the simulation starts from a 10m thick ice layer with B1.
The sensitivity of the model to perturbations as well as the

reproducibility of the grounding-line positions, whatever the
rate of decrease of fluidity, gives confidence in the model
results.

CONCLUSIONS
We recently proposed a new approach to solve the contact
problem at the interface between the grounded part of
an ice mass and its extension over the sea (Durand and
others, in press). In the proposed approach, the ice flow is
determined by solving the full Stokes problem implemented
in the finite-element code Elmer. Here we have shown that
the proposed method, despite its high sensitivity to the
horizontal mesh resolution, can give consistent results as
long as the horizontal extension of the element is small
enough (<5 km) in the vicinity of the grounding line. Indeed,
standard deviation of the grounding-line positions at the
steady state for simulations with Δx0 < 5 km is ∼6 km.
This value is small in comparison with the previous similar
experiments of Vieli and Payne (2005) (40 km is a classical
grid size for models using the shallow-ice approximation;
Ritz and others, 2001). However, this shows that full Stokes
finite-element modeling of marine ice sheets should be
handled with care, and that intensive grid sensitivity tests
should be conducted. Furthermore, steady-state solutions are
independent of the applied perturbation in fluidity, provided
this perturbation remains monotonic. It is also worth noting
that the model is sensitive to small variations of fluidity which
correspond to a perturbation of <1◦C.
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Fig. 5. (a) Evolution of the fluidity versus time for run (1) in light
gray, run (2) in dark gray and run (3) in black. All simulations
start from the steady state obtained with fluidity B2 (see text and
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REFERENCES

Chugunov, V.A. and A.V. Wilchinsky. 1996. Modelling of a
marine glacier and ice-sheet–ice-shelf transition zone based on
asymptotic analysis. Ann. Glaciol., 23, 59–67.

Durand, G., O. Gagliardini, B. de Fleurian, T. Zwinger and E. Le
Meur. In press. Marine ice-sheet dynamics: hysteresis and neutral
equilibrium. J. Geophys. Res. (10.1029/2008JF001170.)
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