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Abstract. In this paper, we study the family of algebraic K3 surfaces generated by the smooth
intersection of a ð1; 1Þ form and a ð2; 2Þ form in P

2
� P

2 defined over C and with Picard num-
ber 3. We describe the group of automorphisms A ¼ AutðV=CÞ on V. For an ample divisor D

and an arbitrary curve C0 on V, we investigate the asymptotic behavior of the quantity
NAðC0ÞðtÞ ¼ #fC 2 AðC0Þ : C �D < tg: We show that the limit

lim
t!1

logNAðC ÞðtÞ

log t
¼ a

exists, does not depend on the choice of curve C or ample divisor D, and that

:6515 < a < :6538:

Mathematics Subject Classifications (2000). 14J28, 14J50, 14G05, 14H37, 11D41, 11D72.
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Introduction

Let V be an algebraic K3 surface defined over a field K � C and let A ¼ AutðV=K Þ

be its group of automorphisms. Let D be an ample divisor in PicðV Þ and let C0 be a

curve on V: Define the quantity

NAðC0ÞðtÞ ¼ NAðC0Þðt;DÞ ¼ #fC 2 AðC0Þ : D � C < tg:

This quantity has been studied for several classes of K3 surfaces. If A is finite (for

example, if the Picard number for V is one, or if the Picard number is two and V

contains a curve with self intersection 0 or �2), then NAðC ÞðtÞ is trivially bounded

for all t: If V has Picard number two, has no curves with self intersection equal to

0 or �2, and K is sufficiently large, then NAðC ÞðtÞ 
� logðtÞ [1]. For the family of

K3 surfaces studied in [2, 4], and [7] (which have Picard number 3 and no �2 curves),

we have NAðC ÞðtÞ 
� t: Similar quantities have been studied by Silverman [19] and

Billard [7]. Such studies are motivated, in part, by the conjectures of Batyrev and

Manin on the distribution of rational points on arbitrary varieties [6].

In this paper, we study the family of K3 surfaces generated by the smooth inter-

section of a ð1; 1Þ form and a ð2; 2Þ form in P
2
� P

2, which is sometimes called

the family of Wehler K3 surfaces, named after the researcher who first studied
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them [20]. The family of Wehler K3 surfaces has an eighteen dimensional moduli

space. The generic Wehler surface has Picard number 2 and no �2 curves. In this

paper, we study the class of Wehler K3 surfaces with Picard number 3. In Section

3, we show the following main result:

THEOREM 0.1. Let V be a Wehler K3 surface defined over C and with Picard

number 3. Let D be an ample divisor and let C be a curve on V: Then, the limit

lim
t!1

logðNAðC ÞðtÞÞ

log t
¼ a

exists and does not depend on the curve C or ample divisor D. Furthermore,

:6515 < a < :6538:

To study NAðC ÞðtÞ; we must first be familiar with the group A. There exists a nat-

ural map (the pullback map) from A into the group of automorphisms of the lattice

PicðV Þ. In [16], Pjatecki��-S̆apiro and S̆afarevic̆ show that this map has a finite kernel,

and describe how to find a subgroup O00 of this group such that the pullback map

sends A into O00 and has a finite cokernel. The main result of Section 2 is an appli-

cation of this fundamental result to our particular case:

THEOREM 0.2. Let V be a Wehler K3 surface defined over C and with Picard

number 3. Then the group O00 is generated by linear maps T1, T2, and T3 where, in a

suitable basis of PicðV Þ � Q ðto be described in Section 2Þ, we have

T1 ¼

0 0 1
3 �1 3
1 0 0

2
4

3
5; T2 ¼

�1 4 1
0 1 0
0 0 1

2
4

3
5; and T3 ¼

1 0 0
0 1 0
4 14 �1

2
4

3
5:

Furthermore, O00
ffi Z=2Z � Z=2Z � Z=2Z.

Hence, the problem of finding a can be reduced to a problem in linear algebra.

This is not to say it becomes trivial. In fact, a can be thought of as the dimension

of a fractal that has no self similarity. The techniques we use to calculate a are along

the lines of those used by Boyd [8–10] to calculate the fractal dimension of the resi-

dual set in the Apollonian packing.

In Section 1, we also point out the following general result:

THEOREM 0.3. Suppose V is a K3 surface defined over a number field K ðor CÞ and

with Picard number n5 3: Let C be a curve on V with nonnegative self intersection k.

Then NAðC ÞðtÞ � tn�2:

This result is essentially due to Pjatecki��-S̆apiro and S̆afarevic̆ [16] and Lax and

Phillips [14]. The author’s contribution is mostly one of observation.

Our interest in NAðC ÞðtÞ is in part motivated by its presumed relation to the more

arithmetic quantity NAðPÞðtÞ for a rational point P in a number field K, using a Weil
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height hD where D is the same ample divisor. Such quantities have been studied by

Silverman [19] for Wehler K3 surfaces with Picard number two, and the author [2]

for a class of K3 surfaces with Picard number three and no �2 curves. It is known

that

NAðPÞðtÞ 
� NAðC ÞðtÞ

for generic rational points P on K3 surfaces with Picard number 2 [1] and the K3

surfaces with Picard number three studied in [2] and [4]. The result is vacuously true

for K3 surfaces with Picard number one, since in that case, A is finite. It would not

surprise me if this relation is true in general. We will elaborate on this thought at the

end of the paper.

1. Background

Let V be an algebraic K3 surface defined over K � C. That is, V is a surface with

trivial canonical divisor and irregularity equal to zero. If C is a smooth curve on

V, then the genus of C is given by the adjunction formula 2g� 2 ¼ C � C. The arith-

metic genus ra of V is 1, so the Riemann-Roch formula on V is

lðDÞ þ lð�DÞ5 ð1=2ÞD �Dþ 2:

Our notation is as in Hartshorne [11]. If lðDÞ > 0 for some divisor D, then D is effec-

tive. Thus, for any divisor D with D �D5� 2, either D or �D is effective. The

Picard group PicðV Þ is a lattice of dimension n4 20. The dimension n is called

the Picard number. Let D ¼ fD1; . . . ;Dng be a basis of PicðV Þ, so

PicðV Þ ¼ a1D1 þ � � � þ anDn : ak 2 Zf g:

Let Q ¼ ½Di �Dj� be the intersection matrix for V with respect to the basis D. By the

Hodge index theorem, the signature of Q is ð1; n� 1Þ. That is, Q has one positive

eigenvalue and n� 1 negative eigenvalues.

Let A ¼ AutðV=K Þ be the group of automorphisms on V. For an automorphism

s 2 A, the pullback s� acts linearly on PicðV Þ. Since s preserves intersections, we

further have that s� is in

O ¼ OðZÞ ¼ fT 2Mn�nðZÞ : TTQT ¼ Qg:

For an ample divisor D, the hypersurface xTQx ¼ D �D is a hyperboloid of two

sheets, one of which contains D. Let us distinguish this sheet with H, and define

Oþ
¼ Oþ

ðZÞ ¼ fT 2 O : TðHÞ ¼ Hg:

The surface H can be thought of as a model of n� 1-dimensional hyperbolic geome-

try imbedded in a Lorentz space, where the Lorentz inner product is the negative of

the intersection product. The distance jABj between two points A and B in this

model H is given by

ATQB ¼ A � B ¼ jjAjjjjBjj coshðjABjÞ ¼ �D �D coshðjABjÞ;
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where jjAjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A � A

p
. With this metric, the group of isometries on H is Oþ

ðRÞ,

where the definition of this group is the obvious analog of Oþ
ðZÞ. For more details

of this model, we refer the reader to Ratcliffe [18] or a more elementary treatment by

the author in [5].

Let E be the set of effective divisor classes in PicðV Þ. That is, E 2 E if we can write

E ¼ a1C1 þ � � � þ amCm with ai5 0 and Ci a divisor class that can be represented

with a curve in V. Let

W ¼ fC 2 PicðV Þ : C � C5 0;C � E5 0 for all E2 Eg:

It is clear that if s 2 A, then s�ðW Þ ¼W, so let us define

O00
¼ fT 2 Oþ : TW ¼W g:

If there are any �2 curves on V, then there exists a large subset of Oþ that cannot be

in O00. For an element C 2 PicðV Þ such that C � C ¼ �2, let us define the reflection

through C by RCD ¼ Dþ ðC �DÞC: Note that RC is in O, since it preserves intersec-

tions. However, by the Riemann–Roch theorem, either C or �C is effective. Hence,

since RCC ¼ �C, we have that RC 62 O00. Let O0 be the subgroup of O generated by

the reflections through �2 curves. Note that TRCT
�1 ¼ RTC. Hence, O0 is a normal

subgroup of O. In [16], Pjatecki��-S̆apiro and S̆afarevic̆ show that the natural map

F:AutðV=CÞ ! O00

s 7!s�

has a finite kernel and co-kernel, and that O00
ffi Oþ=O0.

As a corollary, we get the following rather nice and general result which, as far as

I know, has not been expressed in print.

THEOREM 1.1. Suppose V is an algebraic K3 surface defined over a field K � C and

with Picard number n5 3: Let C be a curve on V with nonnegative self intersection k.

Then NAðC ÞðtÞ � tn�2:

Proof. By the result of Pjatecki��-S̆apiro and S̆afarevic̆, we know that F has a finite

kernel. Thus, for any K � C, we know NAðC ÞðtÞ � NOþðC ÞðtÞ, where we have abused

notation a little by letting C represent both the curve and the divisor class it

represents in PicðV Þ. Recall that, if k > 0, then the surface fx 2 Rn: xTQx ¼ kg is a

(hyper)hyperboloid of two sheets and the sheet H that contains C is an

n�1-dimensional hyperbolic space. (To avoid overusing the prefix ‘hyper-’, in the

rest of this proof we will use the appropriate terminology for n ¼ 4.) The group Oþ is

a discrete subgroup of the group of isometries on H. If D is ample, then in particular

D �D > 0, so there exists a constant l ¼ k=
ffiffiffiffiffiffiffiffiffiffiffi
D �D

p
such that lD 2 H. The surface in

H described by the equation D � x ¼ t is a sphere of hyperbolic radius

r ¼ logðtÞ þ Oð1Þ. To see this, we note that

D � x ¼
1

l
ðlDÞ � x ¼

k

l
coshðjD0XjÞ;
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where D0 and X are the points in H represented by lD and x. Thus,

jD0Xj ¼ arccosh lt=k
� �

¼ logðtÞ þ Oð1Þ:

In particular, this distance is constant so we get a sphere. Thus, our problem now is

to count the number of lattice points in a ball of radius r. In Euclidean geometry,

such problems have almost trivial geometric solutions. In hyperbolic geometry, the

geometric arguments do not work, since the volume of a ball and the surface area

of its boundary have the same order of magnitude. However, using analytic methods,

Lax and Phillips [14] show that, with reasonable assumptions, the expected indeed

occurs. Precisely, for a lattice with a fundamental domain that has finite volume

and is bounded by a finite number of planes, they show that the number of lattice

points in a ball of radius r grows asymptotically like the volume of the ball divided

by the volume of the fundamental domain of the lattice. It is known that arithmetic

groups (like Oþ) have such fundamental domains [17]. Thus,

NAðC ÞðtÞ � NOþðC ÞðtÞ 
� erðn�2Þ 
� tn�2:

Furthermore, NAðC ÞðtÞ 
 tn�2 if V contains no �2 curves and K is sufficiently large.

Suppose now that k ¼ 0. Then the equation xTQx ¼ 0 is homogeneous and

describes an n� 2-dimensional ellipsoid in P
n�1. If d is the greatest common factor

of the components of C and s� 2 O00, then d divides all components of s�C since s� is

linear and has integer entries. Since s� ¼ ðs�Þ�1 is in O00 and also has integer entries,

d must be the greatest common factor of s�C. Thus every element of O00
ðC Þ can be

thought of as a rational point on this ellipsoid. Furthermore, the function

HðxÞ ¼ D � x is an exponential height on the ellipsoid. Finally, it is well known that

the number of rational points on an ellipsoid of dimension n� 2 with exponential

height bounded by t is Oðtn�2Þ. Since O00
ðC Þ is a subset of these points, we have

NAðC ÞðtÞ � tn�2. &

2. Wehler K3 Surfaces

Let V be the smooth intersection of a ð1; 1Þ form and a ð2; 2Þ form in P
2
� P

2. In [20],

Wehler shows that such a surface is a K3 surface.

Let ðX;Y Þ 2 P
2
� P

2, and let X ¼ ðX0;X1;X2Þ. We can write the ð1; 1Þ form as

X2

i¼0

FiðY ÞXi ¼ 0; ð1Þ

where FiðY Þ is linear in Y. We can similarly write the ð2; 2Þ form asX
04i4 j42

GijðY ÞXiXj ¼ 0; ð2Þ

where GijðY Þ is quadratic in Y. Let p1 and p2 be the projections of V onto, respec-

tively, the first and second copies of P
2. Let us fix Y 2 P

2. From (1), we can solve

for one of the Xi in terms of Xj and Xk. Plugging this into (2), we get a quadratic
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in Xj and Xk that has coefficients that are functions of Y. Hence, if these coefficients

are not all zero, then p�1
2 ðY Þ is exactly two points (counting multiplicity). The coef-

ficients are all zero for at most a finite number of points, for otherwise, V would be

singular. Hence, p2 is a double cover of V over P
2 at all but a finite set of points.

In this class of K3 surfaces, the generic surfaces V were studied by Wehler [20]. In

this case, both p1 and p2 are everywhere double covers; the Picard number for V is

two; and V contains no �2 curves. If H1 and H2 are hyperplane sections in respec-

tively the first and second copies of P
2, then fD1;D2g is a basis for PicðV Þ where

Di ¼ p�i Hi. The intersection matrix is

Q ¼ ½Di �Dj� ¼
2 4
4 2

� 	
:

In this paper, we study the Wehler K3 surfaces with Picard number three. These

are the varieties for which (say) p1 is everywhere a double cover, but for which there

exists exactly one point P 2 P
2 such that p�1

2 ðPÞ is more than two points. Then

p�1
2 ðPÞ is the set of points ðX;PÞ which lie on the ð1; 1Þ form. That is, p�1

2 ðPÞ is a line

in V. In particular, it is a smooth rational curve and, hence, is a �2 curve in V (by the

adjunction formula).

Such surfaces are plentiful, since their moduli space is 17-dimensional. For exam-

ple, the ð2; 2Þ form

ðX0X1 þ X2
2ÞY

2
0 þ ðX0X2 þ X2

1ÞY
2
1 þ ðX2

0 þ X2
1 � X2

2ÞY0Y2þ

þ ðX2
0 � X1X2ÞY0Y1 þ ðX2

0 � X2
1 þ X2

2ÞY1Y2 ¼ 0

includes all points ðX;PÞ where P ¼ ð0; 0; 1Þ. Any ð1; 1Þ form whose intersection with

ðX;PÞ is a line and that intersects this ð2; 2Þ form smoothly yields a Wehler K3 sur-

face with Picard number three.

As before, let Di ¼ p�i Hi for i ¼ 1 and 2. Let D3 ¼ p�1
2 ðPÞ. The calculations for the

intersections of D1 and D2 with each other and with themselves are no different than

in [20] and [19]. Note that D2 �D3 ¼ 0, since if H2 does not contain P, then p�1
2 H2

and p�1
2 ðPÞ are disjoint. As noted before, a point is on D3 if it has the form ðX;PÞ

and lies on the ð1; 1Þ form. Therefore, the projection p1ðD3Þ of D3 onto P
2 is a line

L, and this projection is one-to-one. Thus, D1 �D3 ¼ H1 � L ¼ 1. The intersection

matrix with respect to the basis D ¼ fD1;D2;D3g is therefore

QD ¼ ½Di �Dj� ¼

2 4 1
4 2 0
1 0 �2

2
4

3
5:

We include the subscript D on Q to emphasize the basis used, since in the course of

this paper, we will change the basis a couple of times.

For a point ðX;Y Þ on V, let p�1
1 ðX Þ ¼ fðX;Y Þ; ðX;Y 0Þg (p1 is everywhere a double

cover), and define s1ðX;Y Þ ¼ ðX;Y 0Þ. Since Y and Y 0 are roots of a quadratic, we

can write Y 0 as a rational function in X and Y in a neighborhood of this point. Since
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this can be done for any point in V, the map s1 is a morphism, and since s2
1 is the

identity, s1 is an automorphism of V.

We can similarly define s2 by s2ðX;Y Þ ¼ ðX 0;Y Þ, for Y 6¼ P. We can extend s2 to

D3 in a natural way. This is done by first solving for (say) X0 in (1) and plugging into

(2) to get a quadratic equation of the form A11ðY ÞX 2
1þ A12ðY ÞX1X2 þ A22ðY ÞX 2

2 ¼ 0.

Let P ¼ ðP0;P1;P2Þ. Without loss of generality, we may assume P0 6¼ 0. Hence, we

can consider an affine neighborhood of P by setting ð y1; y2Þ ¼ ðY1=Y0;Y2=Y0Þ. Let

us also write ð p1; p2Þ ¼ ðP1=P0;P2=P0Þ. Let us set S0y1 ¼ S1y2. Then, we can think

of AijðY Þ as functions of y1 and S 2 P
1. Let us write aijð y1;S Þ ¼

AijðS1;S1y1;S0y1Þ. Note that aijð p1;S Þ ¼ 0, so ð y1 � p1Þ divides aij for all i and j.

Thus, we can divide through by this factor, which gives us a quadratic with the same

solutions ðX1;X2Þ for all Y 6¼ P and in a neighborhood of P. But the coefficients of

this equation are not all zero when Y ¼ P. Thus, we can extend s2 to D3. This exten-

ded map is a morphism of V and hence, s2 is in A.

Let us now calculate s2� ¼ ðs�1
2 Þ

�. Since s2 is an involution, s2� ¼ s�2. Thus,

s2�Di �Dj ¼ Di � s�2Dj ¼ Di � s2�Dj. Note that s2�D2 ¼ D2 and s2�D3 ¼ D3. Thus,

s2�D1 �D2 ¼ D1 � s�2D2 ¼ D1 �D2 ¼ 4; ð3Þ

s2�D1 �D3 ¼ D1 � s�2D3 ¼ D1 �D3 ¼ 1; ð4Þ

s2�D2 �D2 ¼ D2 �D2 ¼ 2;

s2�D2 �D3 ¼ D2 �D3 ¼ 0;

s2�D3 �D3 ¼ D3 �D3 ¼ �2:

So the only difficult intersection to calculate is s2�D1 �D1. We do this by writing

s2�D1 ¼ aD1 þ bD2 þ cD3, and noting s2�D1 � s2�D1 ¼ D1 �D1 ¼ 2, so 2a2 þ 2b2�

2c2 þ 8abþ 2ac ¼ 2. Together with the Equations (3) and (4) above, we can solve

for a, b, and c, and find s2�D1 ¼ �D1 þ 4D2 �D3.

At this point, it is useful to define the dual basis D� of PicðV Þ � Q. Let us write

½D�D ¼ ½a; b; c� if D ¼ aD1 þ bD2 þ cD3. We define the dual basis D� such that

½D�D� ¼ ½D �D1;D �D2;D �D3�. The change of basis matrix from the basis D to the

basis D� is given by Q�1
D . Hence, in this basis, we get

QD� ¼ ðQ�1
D Þ

TQDQ
�1
D ¼ Q�1

D ¼
1

22

�4 8 �2
8 �5 4
�2 4 �12

2
4

3
5;

and by the above calculations,

½s2��D� ¼

�1 4 �1
0 1 0
0 0 1

2
4

3
5:

The calculation of s1� is not as easy. We know s1�D1 ¼ D1. Let

s1�D2 ¼ aD1 þ bD2 þ cD3;

s1�D3 ¼ dD1 þ eD2 þ fD3:
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We have six unknowns, and the six equations:

s1�D2 �D1 ¼ D2 � s�1D1 ¼ D2 �D1 ¼ 4;

s1�D3 �D1 ¼ D3 � s�1D1 ¼ D3 �D1 ¼ 1;

s1�D2 � s1�D2 ¼ D2 �D2 ¼ 2;

s1�D3 � s1�D3 ¼ D3 �D3 ¼ �2;

s1�D2 � s1�D3 ¼ D2 �D3 ¼ 0;

s1�D2 �D3 ¼ D2 � s�1D3:

Solving, we get eight possibilities for ½s1��D� . Of these, six have nonintegral entries

and one is the identity. Thus, ½s1��D� cannot be any of those, and we get

½s1��D� ¼

1 0 0
4 �1 0
1 0 �1

2
4

3
5:

Before continuing, let us introduce a new basis for PicðV Þ. Let H2 be a hyperplane

section that contains P. Then D2 ¼ p�1
2 H2 contains p�1

2 P ¼ D3, so has two compo-

nents. Hence, B2 ¼ D2 �D3 is an effective divisor, generated by an irreducible curve.

We also note that B1 ¼ s1�D3 ¼ D1 �D3 is represented by an irreducible �2 curve.

Let B ¼ fB1;B2;D3g be our new basis for PicðV Þ. The change of basis matrix from

D� to B� is given by

S ¼

1 0 �1
0 1 �1
0 0 1

2
4

3
5

and

QB� ¼ ðS�1Þ
TQD�S�1 ¼

1

22

�4 8 2
8 �5 7
2 7 �1

2
4

3
5 ¼ Q�1

B :

We also have ½si��B� ¼ S½si��D�S�1, which yields the matrices T1 ¼ ½s1��B� and

T2 ¼ ½s2��B� introduced in Theorem 0.2. This is the basis referred to in that theorem

and the one we will use from now on.

We now have two elements T1 and T2 of the group O. Since D3 is a �2 curve, we

also have the reflection through D3, which yields

R ¼ ½R�B� ¼

1 0 3
0 1 2
0 0 �1

2
4

3
5:

There is another element of O, not generated by T1, T2, R and �1. This is the

map T3 introduced in Theorem 0.2. This map was found by looking for small

divisors with self intersection equal to �2. Not all are generated by D3 and

hT1;T2;R;�1i. By assuming these divisors can be generated from D3 and an element
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of O, we find T3. Note that we do not necessarily know that there exists a s3 such

that T3 ¼ s3�.

THEOREM 2.1. The group Oþ is generated by T1, T2, T3, and R.

The proof I have is an uninteresting method of descent, so I will spare the reader.

For our purposes it is enough to know that the group hT1;T2;T3;Ri has finite index

in Oþ, which we will show after this next result.

THEOREM 2.2. The group O00 is generated by T1, T2, and T3.

Proof. It is clear that T1 and T2 are in O00, since they are images of elements of A.

To show that T3 is in O00, it is enough to show that T3ðC Þ is effective for any �2

curve C. Let us first note that the divisors B2 and B1 þ 2B2 are both in W (just check

that their intersections with their irreducible components are nonnegative). Thus, for

any effective divisor E with ½E�B� ¼ ½a; b; c�, we know that b ¼ B2 � E5 0 and

aþ 2b ¼ ðB1 þ 2B2Þ � E5 0. Given a �2 curve C with ½C�B� ¼ ½a; b; c�, we know

b5 0 and aþ 2b5 0 since C is effective. If T3ðC Þ is not effective then, by Riemann–

Roch, �T3ðC Þ is effective, so

B2 � ð�T3ðC ÞÞ ¼ �T3B2 � C ¼ �b5 0;

ðB1 þ 2B2Þ � ð�T3ðC ÞÞ ¼ �T3ðB1 þ 2B2Þ � C ¼ �ðaþ 2bÞ5 0:

Thus a ¼ b ¼ 0, so �2 ¼ C � C ¼ c2=22, which has no solutions in Z. Hence, no such

C can exist, T3 2 O00, and hT1;T2;T3i4O00.

Using the relation T �1RT 2 O0 for any T 2 Oþ, it is easy to show that any T can

be decomposed as T ¼ T 0R0, where T 0 2 hT1;T2;T3i and R0 2 O0. Thus, O00
¼

hT1;T2;T3i, for otherwise, there would be an element in both O00 and O0.

As mentioned earlier, the action of O00 induces a tiling of hyperbolic geometry. A

Poincaré disc model of this tiling is shown in Figure 1. This model is found as

follows: Since Q is symmetric, there exists a matrix P such that PT ¼ P�1 and

PTQP ¼

�a2
1 0 0

0 �a2
2 0

0 0 a2
3

2
64

3
75 ¼ ATJA;

where

A ¼

a1 0 0

0 a2 0

0 0 a3

2
4

3
5 and J ¼

�1 0 0

0 �1 0

0 0 1

2
4

3
5:

Hence, the map x 7!APTx sends H to the canonical Lorentz model H0 of hyperbolic

geometry described by the hyperboloid x2 þ y2 � z2 ¼ �1 and z > 0. We use stereo-

graphic projection through the point ð0; 0;�1Þ and onto the plane z ¼ 0 to map H0

to the Poincaré disc (see [5] for more details). We note that T2 and T3 are reflections
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(their determinants are �1). The boundary of our choice of fundamental domain

includes the lines through which T2 and T1T3T1 reflect, and the line that joins end-

points of the mirrors and includes the center of the rotation T1 (note that T1 is a rota-

tion through p since its determinant is 1 and T 2
1 ¼ 1). In Figure 1, one of the tiles

for O00 is further tiled by Oþ. It is evident from the figure that the area of the funda-

mental domain for Oþ is p. For those unconvinced that hT1;T2;T3;Ri is all of Oþ,

this observation shows that this group has finite index in Oþ. We also readily see,

from Figure 1, that O00
ffi Z=2Z � Z=2Z� Z=2Z.

3. The Fractal Dimension of A
In this section, we investigate NO00

B� ðaÞ
ðtÞ ¼ #fx 2 O00

B� ðaÞ : hðxÞ < tg: The height we use

is hðxÞ ¼ x1 þ x2 þ 2x3, which is the height given by D ¼ D1 þD2. Since we will not

again change the basis, let us drop the references to the basis B�. The orbit O00
ðaÞ has

a natural tree structure. The fractal dimension of similar trees have been investigated

by the author [3] in reference to orbits of integer solutions of the Hurwitz equation,

and by Boyd [8–10] in reference to the fractal dimension of the Apollonian circle

packing. McMullen [15] has also recently developed an algorithm to approximate

these types of dimensions. In this section, we use the methods of Boyd and the

Figure 1. The tiling induced by O00 (heavy lines). One of those tiles has been further tiled by Oþ (light

lines). The fundamental domain of O00 has infinite area and the fundamental domain of Oþ has area equal

to p.
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author. Unfortunately, each tree seems to have its own subtle characteristics which

make generalized results difficult to extract.

As McMullen points out, these dimensions are also related to the smallest eigen-

value l0 for the Laplacian in the hyperbolic space with respect to the fundamental

domain of a Fuchsian group (care of the result by Lax and Phillips [14]). For a

two dimensional hyperbolic space (such as our case), the relation is l0 ¼ að1 � aÞ.
Thus, as a corollary of Theorem 0.1, we get an estimate of the minimal eigenvalue

l0 of the two dimensional hyperbolic Laplacian with respect to the group O00.

A tree is a connected graph with no loops. The group O00 may be thought of as a

graph whose nodes are elements of the group, and whose edges are pairs of elements

ðT;TiT Þ for every T 2 O00 and i ¼ 1, 2 or 3. Since O00
ffi Z=2Z � Z=2Z � Z=2Z, O00

forms a tree. A subset U of O00 is a subtree if it is connected. In this paper, we will

further require that every subtree includes the identity.

Since O00
ffi Z=2Z � Z=2Z � Z=2Z, every element T 2 O00 has a unique representa-

tion of the form T ¼ Tkm � � �Tk1
, where ki 2 f1; 2; 3g and ki 6¼ kiþ1 for all i ¼ 1; 2; . . . ;

m� 1. Three subtrees of O00 which are of particular interest are the subtrees

Ui ¼ fT ¼ Tkm � � �Tk1
: k1 6¼ i;m5 0g:

The tree structure of O00 induces a tree structure on orbits. The forward tree UþðaÞ is

the tree UþðaÞ ¼ fTðaÞ : T 2 Uig where i is chosen so that hðTiðaÞÞ < hðaÞ. If no such i

exists, then UþðaÞ ¼ O00
ðaÞ. We will also set Uþ

a ¼ Ui for the appropriate choice of i

depending on a.

We will also be interested in the subtrees Uða; yÞ ¼ fx 2 UðaÞ : hðxÞ < yg; where U

is a subtree of O00. We note that descent, when it occurs, is unique. That is, if

hðTixÞ < hðxÞ, then hðTjxÞ > hðxÞ for j 6¼ i. Consequently, Uða; yÞ is a subtree.

The boundary @U of a tree U is the set

@U ¼ fTiT : T 2 U;TiT 62 U; i ¼ 1; 2; 3g:

The boundary of a subtree of an orbit O00
ðaÞ is defined in a similar fashion.

The fundamental object we study to evaluate the asymptotic behavior of NO00ðaÞðtÞ

is the function faðsÞ ¼
P

x2O00ðaÞðhðxÞÞ
�s. There exists a real number aðaÞ such that faðsÞ

converges for all s > aðaÞ, and diverges for all s < aðaÞ. This boundary of conver-

gence aðaÞ is related to NO00ðaÞðtÞ by the following classical result:

lim sup
t!1

logNO00ðaÞðtÞ

log t
¼ aðaÞ:

In the study of faðsÞ, we will have occasion to use the following functions:

f þa ðsÞ ¼
X

x2UþðaÞ

ðhðxÞÞ�s; f þa ðs; yÞ ¼
X

x2Uþða;yÞ

ðhðxÞÞ�s:
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Let us also define Nþ
a ðtÞ ¼ NUþðaÞðtÞ.

We make the following definitions because of the results we will find. Let

l1ða; sÞ ¼
ðð3a1 þ 2a3Þ=8Þ�s if a1 5 2a3;

ðð2a1 þ 3a3Þ=7Þ�s if a1 < 2a3;

�

l2ða; sÞ ¼
X1
k¼0

ððð2kþ 3=7Þa1 þ ð11k2 þ 5k=7Þa2 � ðk� 2=7Þa3Þ
�s
þ

þ ðð2kþ 7=4Þa1 þ ð11k2 þ ð61kþ 21Þ=4Þa2 � ðkþ 3=8Þa3Þ
�s
Þ

l3ða; sÞ ¼
X1
k¼0

ðð�ð2k� 1=4Þa1 þ ð11k2 þ 5k=4Þa2 þ ðkþ 3=8Þa3Þ
�s
þ

þ ð�ð2kþ 3=7Þa1 þ ð11k2 þ 61k=7 þ 12=7Þa2 þ ðkþ 5=7Þa3Þ
�s
Þ

lða; sÞ ¼ liða; sÞ if hðTiaÞ < hðaÞ;

Lðs; yÞ ¼
X

a2@Uþðr;yÞ

lða; sÞ;

where r ¼ ½2; 9; 1�. The choice of r ¼ ½2; 9; 1� is very particular. We will explain why

we make this choice later. Let us also define

g1ða; sÞ ¼
ðð2a1 þ 3a3Þ=7Þ�s if a1 5 2a3;

ðð3a1 þ 2a3Þ=8Þ�s if a1 < 2a3;

�

g2ða; sÞ ¼
X1
k¼0

ððð2kþ 1=4Þa1 þ ð11k2 � 5k=4Þa2 � ðk� 3=8Þa3Þ
�s
þ

þ ðð2kþ 11=7Þa1 þ ð11k2 þ 93k=7 þ 4Þa2 � ðkþ 2=7Þa3Þ
�s
Þ;

g3ða; sÞ ¼
X1
k¼0

ðð�ð2k� 3=7Þa1 þ ð11k2 � 5k=7Þa2 þ ðkþ 2=7Þa3Þ
�s
þ

þ ð�ð2kþ 1=4Þa1 þ ð11k2 þ 27k=4 þ 1Þa2 þ ðkþ 5=8Þa3Þ
�s
Þ;

gða; sÞ ¼ giða; sÞ if hðTiaÞ < hðaÞ;

Gðs; yÞ ¼
X

a2@Uþðr;yÞ

gða; sÞ:

The first main result that we aim for in this section is

THEOREM 3.1. For s > 1=2, x much larger than y and y sufficiently large, we have

f þr ðsÞ5Lðs; yÞf þr ðsÞ; f þr ðs; xÞ4Gðs; yÞf þr ðs; xÞ þ Oð yÞ:

This result can be thought of as a self similarity statement. The following two

lemmas are fundamental to finding such a self similarity in the tree O00
ðaÞ.
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LEMMA 3.2. Suppose c > 0. Then

fcaðsÞ ¼ c�sfaðsÞ; f þcaðsÞ ¼ c�sf þa ðsÞ;

f þcaðs; yÞ ¼ c�sf þa ðs; y=cÞ; Nþ
caðtÞ ¼ Nþ

a ðt=cÞ:

Proof. The group O00 is a group of linear operators. Thus,

hðTðcaÞÞ ¼ hðcTðaÞÞ ¼ chðTðaÞÞ:

Hence, c�s factors out of the various f. The y=c on the right-hand side of the third

equality is necessary to make sure the two trees end at the same places. &

LEMMA 3.3. Suppose hðTiðaÞÞ < hðaÞ, hðTiðbÞÞ < hðbÞ, hðTðcÞÞ5 0 for all T 2 Uþ
a ,

and suppose a ¼ bþ c. Then, for s > 0,

f þa ðsÞ4 f þb ðsÞ; f þa ðs; yÞ4 f þb ðs; yÞ; Nþ
a ðtÞ4Nþ

b ðtÞ:

Proof. Again, we use linearity. Note that

hðTðaÞÞ ¼ hðTðbÞ þ TðcÞÞ ¼ hðTðbÞÞ þ hðTðcÞÞ5 hðTðbÞÞ

and make a node-by-node comparison. In the second equation, note that the right-

hand side may have more terms. &

We use these two lemmas to find bounds on f þa ðsÞ in terms of f þr ðsÞ where

r ¼ ½2; 9; 1� and for a such that hðT1ðaÞÞ < hðaÞ.

LEMMA 3.4. Let a ¼ ½a1; a2; a3� and a
0
2 ¼ 3a1 � a2 þ 3a3. Suppose ai5 0; a 0

2 5 0,

and hðaÞ > 14. Suppose there exists j ¼ 2 or 3 such that 0 < hðTjT1aÞ < hðT1aÞ < hðaÞ.

Then,

f þa ðsÞ > l1ða; sÞf
þ
r ðsÞ; Nþ

a ðtÞ > Nþ
a ðtl1ða; 1ÞÞ; f þa ðs; yÞ < g1ða; sÞf

þ
r ðs; yÞ:

Proof. Note that the forward tree with respect to a, r and ½0; 1; 0� are all U1.

Recall that B1 ¼ ½�2; 1; 3� and D3 ¼ ½3; 2;�2� are both effective, so both hðTB1Þ5 0

and hðTD3Þ5 0 for all T 2 O00.

Let us write a as a linear combination of r, D3 and ½0; 1; 0�:

½a1; a2; a3� ¼ ðð2a1 þ 3a3Þ=7Þ½2; 9; 1� þ ðða1 � 2a3Þ=7Þ½3; 2;�2�þ

þ ðða1 � 2a3Þ=7 � a02Þ½0; 1; 0�:

If j ¼ 2, then �2a3 þ 4a02 þ a1 < 0. Thus, if a1 5 2a3, then j ¼ 3 and hence,

2a3 þ 7a02 � a1 < 0, so the coefficients of D3 and ½0; 1; 0� are positive. Hence, by

Lemmas 3.2 and 3.3,

f þa ðs; yÞ4 c�sf þr ðs; y=cÞ;

where c ¼ ð2a1 þ 3a3Þ=7. Since hðT1aÞ > 0, we know 5a1 þ 3a3 > 2a, so

49c

2
> 7a1 þ 7a3 > 2a1 þ 2a2 þ 4a3 ¼ 2hðaÞ > 28 > 49=2:
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Thus, c > 1, and f þr ðs; y=cÞ < f þr ðs; yÞ, so

f þa ðs; yÞ < ðð2a1 þ 3a3Þ=7Þ�sf þr ðs; yÞ:

Suppose now that a1 < 2a3. Then the coefficient of ½0; 1; 0� is also negative, and

again by Lemmas 3.2 and 3.3,

f þa ðsÞ5 ðð2a1 þ 3a3Þ=7Þ�sf þr ðsÞ; Nþ
a ðtÞ5Nþ

r ð7t=ð2a1 þ 3a3ÞÞ:

We can also write

½a1; a2; a3� ¼ ðð3a1 þ 2a3Þ=8Þ½2; 9; 1� � ðða1 � 2a3Þ=8Þ½�2; 1; 3�þ

þ ðða1 � 2a3Þ=4 þ a02Þ½0; 1; 0�:

Hence, if a1 5 2a3, then

f þa ðsÞ5 ðð3a1 þ 2a3Þ=8Þ�sf þr ðsÞ; Nþ
a ðtÞ5Nþ

r ðð8t=ð3a1 þ 2a3ÞÞ:

If a1 4 2a3, then as before, ða1 � 2a3Þ=4 þ a02 < 0, so

f þa ðs; yÞ4 ðð3a1 þ 2a3Þ=8Þ�sf þr ðs; yÞ:

As before, since hðaÞ > 14, we have ð3a1 þ 2a3Þ=8 > 1. &

Finding bounds on f þa ðsÞ for a for which T2 or T3 give descent is a little more pro-

blematic. The main difference is that the products T2T3 and T3T2 both have eigen-

values of 1 with multiplicity three, so the growth of solutions on the branches

generated by T2 and T3 is very slow. This is why we consider the infinite branch gene-

rated by T2 and T3, and the boundary of this branch.

LEMMA 3.5.

T1ðT3T2Þ
k
¼

�4k 22k2 þ 8k 2kþ 1

�18kþ 3 99k2 þ 3k� 1 9kþ 3

�2kþ 1 11k2 � 7k k

2
64

3
75;

T1T2ðT3T2Þ
k
¼

�4k 22k2 þ 8k 2kþ 1

�18k� 3 99k2 þ 69kþ 11 9kþ 6

�2k� 1 11k2 þ 15kþ 4 kþ 1

2
64

3
75;

T1ðT2T3Þ
k
¼

4k 22k2 � 8k �2kþ 1

18kþ 3 99k2 � 3k� 1 �9kþ 3

2kþ 1 11k2 þ 7k �k

2
64

3
75;

T1T3ðT2T3Þ
k
¼

4kþ 4 22k2 þ 36kþ 14 �2k� 1

18kþ 15 99k2 þ 129kþ 41 �9k� 3

2kþ 1 11k2 þ 7k �k

2
64

3
75:
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This can be proved using induction. Note that, for large k, the nodes T1ðT3T2Þ
ka,

etc., are very close to a multiple of r ¼ ½2; 9; 1�. This explains our choice for r.

LEMMA 3.6. Suppose s > 1=2 and hðTiðaÞÞ < hðaÞ for i ¼ 2 or 3. Then

f þa ðsÞ > liða; sÞf
þ
r ðsÞ;

f þa ðs; yÞ < giða; sÞf
þ
r ðs; yÞ þ Oða�s2 Þ:

Proof. First, suppose i ¼ 2. For the first inequality,

f þa ðsÞ ¼
X1
k¼0

ððhððT2T3Þ
kaÞ�s þ ðhðT3ðT2T3Þ

kaÞ�s þ f þ
T1ðT2T3Þ

ka
ðsÞ þ f þ

T1T3ðT2T2Þ
ka
ðsÞÞ

>
X1
k¼0

f þ
T1ðT2T3Þ

ka
ðsÞ þ f þ

T1T3ðT2T3Þ
ka
ðsÞ:

Now apply Lemmas 3.4 and 3.5. For the second inequality,

f þa ðs; yÞ4
X1
k¼0

ððhððT2T3Þ
kaÞÞ�s þ ðhðT3ðT2T3Þ

kaÞÞ�sþ

þ f þ
T1ðT2T3Þ

ka
ðs; yÞ þ f þ

T1T3ðT2T3Þ
ka
ðs; yÞÞ:

The sum

X1
k¼0

f þ
T1ðT2T3Þ

ka
ðs; yÞ þ f þ

T1T3ðT2T3Þ
ka
ðs; yÞ

is estimated using Lemmas 3.4 and 3.5, and gives us g2ða; sÞ. For the sum

X1
k¼0

ðhððT2T3Þ
kaÞÞ�s þ ðhðT3ðT2T3Þ

kaÞÞ�s;

we look at hððT2T3Þ
kaÞ�s, and leave the other term to the reader. Note that

ðhððT2T3Þ
kaÞÞ�s ¼ ðhð½�ð2k� 1Þa1 þ ð11k2 � 7kÞa2 þ ka3; a2;�

� 4ka1 þ ð22k2 þ 8kÞa2 þ ð2kþ 1Þa3�ÞÞ
�s

¼ ð55a2k
2 þ ð�10a1 þ 9a2 þ 5a3Þkþ ða1 þ a2 þ 2a3ÞÞ

�s:

Since T2 gives descent, we know 4a1 þ a3 < 2a2, so each coefficient is positive. Thus,

X1
k¼0

ðhððT2T3Þ
kaÞÞ�s <

X1
k¼0

ð55a2k
2Þ

�s
¼ Oða�s2 Þ;

since s > 1=2. The other term is similar, as are the arguments for i ¼ 3. &

We are now ready to prove Theorem 3.1:

Proof of Theorem 3:1: For y sufficiently large, we can write

f þr ðsÞ ¼ f þr ðs; yÞ þ
X

a2@Uþðr;yÞ

lða; sÞf þa ðsÞ > Lðs; yÞf þr ðsÞ:
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For x much larger than y, we can also write

f þr ðs; xÞ4 f þr ðs; yÞ þ
X

a2@Uþðr;yÞ

ðgða; sÞf þr ðs; xÞ þ Oða�s2 ÞÞ:

Note that a2 5 9, and by Theorem 0.3, there are Oð yÞ terms in the sum over Uþðr; yÞ.

There are also Oð yÞ terms in the sum f þr ðs; yÞ, each of which is less than one. Thus,

f þr ðs; xÞ4Gðs; yÞf þr ðs; xÞ þ Oð yÞ: &

COROLLARY 3.7. Suppose s1 > 0 and s2 > 0, both depending on y, are chosen such

that Lðs1; yÞ ¼ Uðs2; yÞ ¼ 1. Then s1 4aðrÞ4 s2:

Proof. From Theorem 3.1, we have f þr ðsÞ > Lðs; yÞf þr ðsÞ. Note that Lðs; yÞ is a

decreasing function in s. Thus, if s < s1, then Lðs; yÞ > 1. But if f þr converges at s, then

we can divide both sides above by f þr ðsÞ, which yields the contradiction 1 > Lðs; yÞ.

Thus, f þr cannot converge at s for any s < s1. Note that T2B2 ¼ T3B2 ¼ B2 and

T1½2; 9; 1� ¼ ½1; 0; 2� ¼ B2, so frðsÞ ¼ 5�s þ f þr ðsÞ. Thus, frðsÞ cannot converge at s for

any s < s1, either. Thus, s1 4aðrÞ.
For the upper bound, we have, from Theorem 3.1,

f þr ðs; xÞ < Gðs; yÞf þr ðs; xÞ þ Oð yÞ:

Suppose we fix s < aðrÞ. Then f þr does not converge at s, so we can choose x so that

f þr ðs; xÞ is as large as we like. Dividing through by f þr ðs; xÞ, we get 14Gðs; yÞ, so

s4 s2. Since this is true for all s < aðrÞ, we get aðrÞ4 s2. &

It is easy to write a program to estimate Lðs; yÞ and Gðs; yÞ for any s and y. This

is how the bounds for a are found. We give some technical details and results in

the following section. It is worthwhile noting that this algorithm converges (albeit

extremely slowly):

THEOREM 3.8. Let s1 and s2 be the positive solutions to Lðs1; yÞ ¼ Gðs2; yÞ ¼ 1.

Then, for sufficiently large y,

0 < s2 � s1 <
5

7 logð y=13Þ
:

Proof. Let us look at l1ða; sÞ and g1ða; sÞ. If a1 5 2a3, then

ð3a1 þ 2a3Þ=8 > ð2a1 þ 3a3Þ=7 > ð16=21Þð3a1 þ 2a3Þ=8:

If a1 < 2a3, then

ð2a1 þ 3a3Þ=7 > ð3a1 þ 2a3Þ=8 > ð7=12Þð3a1 þ 2a3Þ=8:

Thus, l1ða; sÞ < g1ða; sÞ < ð12=7Þsl1ða; sÞ. Note that s2 4 1 (by Theorem 0.3), and for

s4 1, we have

g1ða; sÞ < ð12=7Þl1ða; sÞ; Gðs; yÞ < ð12=7ÞLðs; yÞ:
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Now, suppose hðaÞ > y. Since the components of T1a are nonnegative for all

a 2 O00
ðrÞ, we know 3a1 � a2 þ 3a3 5 0. If a1 5 2a3, then

ð3a1 þ 2a3Þ=85 ð8a1 þ 24a1 þ 14a3 þ 10a3 þ 16a3Þ=ð8 � 13Þ > y=13:

If a1 < 2a3, then

ð2a1 þ 3a3Þ=75 ð7a1 þ 19a1 þ 2a1 þ 21a3 þ 14a3=ð7 � 13Þ > y=13:

Thus, l1ða; 1Þ < 13=y.

By the mean value theorem, there exists an s between s1 and s2 so that

Lðs2; yÞ � Lðs1; yÞ

s2 � s1
¼

@Lðs; yÞ

@s
:

Differentiating the expression for Lðs; yÞ with respect to s, we get

Lðs; yÞ ¼
X

a2@U�ð yÞ

l1ða; sÞ ¼
X

a2@U�ð yÞ

l1ða; 1Þ
s;

@Lðs; yÞ

@s
¼

X
a2@U�ð yÞ

logðl1ða; 1ÞÞl1ða; 1Þ
s4 � logð y=13ÞLðs; yÞ:

Since s < s2, we have Lðs; yÞ > Lðs2; yÞ > ð7=12ÞGðs2; yÞ ¼ 7=12. Thus,

ð7=12Þ � 1

s2 � s1
4 � ð7=12Þ logð y=13Þ:

Rearranging gives us the desired result. &

A consequence of finding a lower bound s1 on the limit supremum aðrÞ is that it is,

in fact, a lower bound on the limit infimum. The key ingredient is Theorem 3.1 of [3],

a result that I first saw in Boyd [10]. I will leave the details of its application to this

case to the reader. Using this and the previous result, we conclude that the limit exists.

There are a couple more results contained in the statement of Theorem 0.1. We

must show that aðaÞ is independent of a:

THEOREM 3.9. Suppose the components of b are positive for all but finitely many

b 2 O00
ðaÞ. Then aðaÞ ¼ aðrÞ.

Proof. For y sufficiently large, we can write

faðsÞ ¼ faðs; yÞ þ
X

b2@Uða;yÞ

f þb ðsÞ5
X

b2@Uða;yÞ

lðb; sÞf þr ðsÞ:

If s < aðrÞ, then f þr ðsÞ diverges, so faðsÞ also diverges. Thus, s < aðaÞ. Since this is true

for all s < aðrÞ, we get aðaÞ5aðrÞ. But we can also write

faðs; xÞ ¼ faðs; yÞ þ
X

b2@Uða;yÞ

f þb ðs; xÞ4
X

b2@Uða;yÞ

gðb; sÞf þr ðs; xÞ þ Oð yÞ;

where y is large enough so that Uða; yÞ includes the finitely many elements referred to

in the statement of the theorem, and large enough to accommodate Lemma 3.4.

ORBITS OF CURVES ON CERTAIN K3 SURFACES 131

https://doi.org/10.1023/A:1023960725003 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023960725003


Suppose aðaÞ 6¼ aðrÞ. Then we can choose s such that aðrÞ < s <aðaÞ. But then, f þr ðsÞ

converges, so f þr ðs; xÞ is bounded independent of x. Hence, the right-hand side is

bounded for all x, while the left hand side is not. Thus, we must have

aðaÞ ¼ aðrÞ. &

Note that, if C0 is a curve, then the components of ½C�B� are positive for all but

finitely many C 2 AðC0Þ. Thus, aðC Þ ¼ aðrÞ for all curves C. So let us define

a ¼ aðrÞ. We have so far shown that

lim
t!1

logðNAðC Þðt;DÞÞ

log t
¼ lim

t!1

logðNO00ðrÞðtÞÞ

log t
¼ a

exists and does not depend on the choice of curve C. Let us finally establish that this

limit is also independent of our choice of ample divisor D. I am indebted to the

referee for pointing out this result.

THEOREM 3.10 Let D0 be an arbitrary ample divisor in PicðV Þ. Then

lim
t!1

NAðC Þðt;D
0Þ

log t
¼ a:

Proof. Since D and D0 are ample, there exists an integer n such that nD0 �D is

ample. Thus, for any curve C, we know ðnD0 �DÞ � C5 0 so nD0 � C5D � C. Thus,

NAðC0Þðt;D
0Þ ¼ NAðC0Þðnt; nD

0Þ4NAðC0Þðnt;DÞ;

so

lim sup
t!1

logNAðC Þðt;D
0Þ

log t
4 lim

t!1

logNAðC Þðnt;DÞ

log t

4 lim
t!1

logNAðC Þðt;DÞ

logðt=nÞ
¼ a:

The other direction is established using a similar argument and the existence of an m

such that mD�D0 is ample. &

4. Technical Details

To find the bounds on a, we must be able to estimate Lðs; yÞ and Gðs; yÞ. The evalua-

tion is straight forward, except that we must be able to evaluate sums of the form

S ¼
P1

k¼0ðAk
2 þ Bkþ C Þ

�s for A, B and C5 0. Let us write fðxÞ ¼ Ax2 þ Bxþ C,

SðmÞ ¼
X1
k¼m

ð fðkÞÞ�s and S ¼
Xm�1

k¼0

ð fðkÞÞ�s þ SðmÞ:

We use Euler–Maclaurin summation (see, for example, [12]) to get the estimates

SðmÞ ¼

Z 1

m

ð fðxÞÞ�sdxþ
ð fðmÞÞ�s

2
þ
sð fðmÞÞ�s�1f 0ðmÞ

12
þ Rðm; sÞ;
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where Rðm; sÞ < 0 and is bounded below by

�
ð fðmÞÞ�s�3

ð f 0ðmÞÞ3ðs3 þ 3s2 þ 2sÞ

720
þ
ð fðmÞÞ�s�2f 0ðmÞAðs2 þ sÞ

120
:

If B2 � 4AC5 0, then we can estimate the integral with

ð fðmÞÞ�sþ1=2ffiffiffiffi
A

p
ð2s� 1Þ

4
Z 1

m

ð fðxÞÞ�s dx4
2ð4AÞs�1

ð f 0ðmÞÞ�2sþ1

2s� 1
:

Otherwise B2 � 4AC4 0 and

2ð4AÞs�1
ð f 0ðmÞÞ�2sþ1

2s� 1
4

Z 1

m

ð fðxÞÞ�s dx4
ð fðmÞÞ�sþ1=2ffiffiffiffi
A

p
ð2s� 1Þ

:

Using m ¼ 1, our approximation for Lð:6515; 107Þ is �:001378 and our approxima-

tion for Gð:6538; 107Þ is :001797.

5. Concluding Remarks

Let us elaborate on thoughts introduced in the introduction. As mentioned there,

part of my interest in the quantity NAðC ÞðtÞ is its presumed relation to the more arith-

metic quantity

NAðPÞðtÞ ¼ #fQ 2 AðPÞ : hDðQÞ < tg:

It would not surprise me if for any K3 surface V, generic point P 2 V, and curve

C 2 V, we have NAðPÞðtÞ 
� NAðC ÞðtÞ. Besides the evidence remarked upon in the

introduction, we also note the following: Let D ¼ fD1; . . . ;Dng be a basis for

PicðV Þ, and let D ¼ a1D1 þ � � � þ anDn be an ample divisor. Let hDðPÞ ¼

½hD1
ðPÞ; . . . ; hDn

ðPÞ�. For any s 2 A, we know [13] that hDðsPÞ ¼ s�hDðPÞ þOð1Þ.

The error Oð1Þ depends on s, but not on P. If we ignore the error term, then we

get the desired result.

If O00 is finitely generated, then we can express the error in terms of a finite set of

bounds. Unfortunately, since some elements of O00 have infinite order and eigen-

values of one, the error may dominate the action. In [2], we are able to significantly

improve on the error term because we know how the generators of A act on V. For

the K3 surfaces of this paper, we are at a loss, since we do not know of an auto-

morphism s3 that gives s�3 ¼ T3, if such an automorphism even exists (the image

of A may not include T3). I would therefore be very interested in any example of

a Wehler K3 surface V with Picard number 3 for which one knows a complete

description of the generators of A (or a subgroup of A with finite index in A).

The absence of an error term for the height hDðC Þ ¼ D � C is essentially because we

are working in a local ring. The error for heights over number fields are introduced

because of the Archimedean valuations, and because of the finite number of bad

primes, where reduction by p gives a different Picard group.
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