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LETTERS TO THE EDITOR

ON THE ASYMPTOTIC BEHAVIOUR OF THE EXTINCTION TIME OF
THE SIMPLE BRANCHING PROCESS

ANTHONY G. PAKES, * The University of Western Australia

Abstract

The time to extinction of a subcritical Galton-Watson branching process
and the time of last mutation of its infinite-alleles version are maxima of
independent random variables having an upper tail of geometric type, and
hence they are not attracted to any extreme value distribution. It is shown
that Anderson's asymptotic results for maxima of discrete variates are
applicable, and this rectifies a false assertion made in respect to the
infinite-alleles simple branching process.

MAXIMA; EXTREME VALUE DISTRIBUTION

Let L be the time of last mutation in the infinite-alleles version of the simple branching
process as described by Griffiths and Pakes (1988). The underlying branching process is
denoted by {Zn:n ~O} andf(.) is its offspring probability generating function (p.g.f.), {3(.) is
the p.g.f. of the total number of births and u is the probability that a newly born individual
mutates to a new allele. It was shown in Lemma 3.1 of Griffiths and Pakes (1988) that the
distribution function of L is given by

P(L ~ n I z, = i) = [fn(c5)l,

where c5 = {3(1 - u) and fn(.) is the n-fold functional interate of f(.). Hence L has the same
distribution as the maximum of i independent copies of L evaluated for a family tree having a
single ancestor. If c5 = 0 we recover the distribution function of the time T to extinction of
{Zn}.

We shall be concerned with the subcritical case m = Et(Zt) < 1. In this case the conditional
distribution of Zn, given T > n, has a weak limit whose p.g.f. is denoted by Q(.); see Athreya
and Ney (1972). Let ~=logm-t and 1jJ(.) be the inverse of Q(.). Griffiths and Pakes (1988)
purported to prove (theorem 3.1(ii)) that

lim p;(i1jJ(exp-~L) ~x) = 1- exp [-x(l- Q(c5))].
;-+00

This is not true (mea culpa).
When A= E(Ztlog+Zt) < 00 then c = Q'(l-) < 00 and then the asserted result could be

rewritten to say that a centring sequence b(i) exists such that {L - b(i)} converges in law to
the Gumbel extreme value distribution. However, since

(1) Pt(L > n)1 Pt(L > n + 1) = (1 - fn(c5))/(1 - fn+t( c5))~ 11m,

the well-known necessary condition for attraction to the Gumbel distribution is violated; see
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Resnick (1987), p. 45. The error in the Griffiths and Pakes proof occurs where they let i and n
be such that i(1- fn(O))~x; this is not possible for all x.

The situation can be partially salvaged because (1) is necessary and sufficient for
Anderson's (1970) Theorem 2 to be applicable. Recall that c > 1 and c < 00 iff A< 00.

Theorem 1. If m < 1 there is an increasing sequence of constants {b(i)} satisfying

(2) b(i) - C-Ilog i (i~ (0)

and

exp (_e-{;(X-I») ~ lim inf P;(L - b(i) ~x) ~ lim sup P;(L - b(i) ~x) ~ exp (-e-~).
;-+00 ;-+00

When A< 00 then

(3) b(i) = C-I[log i + log «1- Q(6))/c)].

Proof Since 11m = exp (-C) the limit assertion follows from Anderson's theorem and (1).
It remains to derive the above expressions for b(i). Define h: N+~ IR + by h(n) =
-log PI(L > n) and the linear interpolation he : IR +~ IR + by

he(x) =h([x]) + (x)(h(1 + [x]) - h([x]))

where (x ) =x - [x] is the fractional part of x. Then b(i) is determined by

(4) he(b(i» = log i.

As shown by Seneta (1974), proof of Theorem 2,

1-fn(6) = (1- Q(6))e-~nL(e-~n)

where L(.) is non-decreasing, slowly varying at the origin and L(O+) = IIc. Then, with
A(n) = -log L(e-~n),

h(n) = Cn -log (1- Q(6)) + A(n).
Consequently

he(x) = Cx -log (1- Q(6)) + A([x]) + (x)(A(l + [x]) - A([x]))

and in principle b (i) can be determined by solving (4).
Clearly b(i)~ 00 and hence A([b(i)])/b(i)~ O. The estimate (2) now follows. When A< 00

then A([b(i)])~ log c and it follows that b(i) is given by the right-hand side of (3) apart from
terms which are 0(1) as i~ 00. Omitting such terms does not disturb the limit assertion and
hence we may take b(i) according to (3). The proof is complete.

We remark that the theorem applies to the extinction time T provided that in (3) we omit
the term Q( 6). Consequently, when m < 1, the extinction time distribution does not lie in the
domain of attraction of an extreme value distribution, though it does so when m = 1 and some
further moment conditions are satisfied. In fact, if m = 1 and f(s) - s = (1- s)I+a-L(l - s),
where 0 < a ~ 1 and L(.) is slowly varying at the origin, it is easy to use Gnedenko's
characterisation of the domain of attraction of the extreme value distribution G2(x ) =
exp (-x-a-) (Resnick (1987), p. 54) and Slack's (1968) determination of the rate of decay of
1 - fn(s)(n~ (0) to show that if a(i) = i a-/ aL(1/i) then

lim P;(L ~ a(i)x) = G2(x)
;-+00

and this also holds with T replacing L. The case where the offspring distribution has a finite
variance is covered in Griffiths and Pakes (1988), Theorem -3.1(i). In the case of the
continuous-time Markov branching process with m < 1 and A< 00 the extinction time
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distribution is attracted to the Gumbel distribution. These things must surely be well known,
although they seem not to have been put into print-but see Pakes (1989) for the
continuous-time case.

From Theorem 4 of Anderson (1980) we obtain the following local counterpart of Theorem
1.

Theorem 2. For any sequence of integers k(i),

lim P;(L = k(i)) - [Gt(x;) - Gt(x; - ,)] = 0
;---+00

where X; = '(k;(i) - b(i)) and Gt(x) = exp (-e- X
) is the Gumbel distribution function.
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