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Abstract

This paper examines in what way providers of specialized Large Language Models (LLM) pre-trained and/or fine-tuned on medical data,
conduct risk management, define, estimate, mitigate and monitor safety risks under the EU Medical Device Regulation (MDR). Using the
example of an Artificial Intelligence (AI)-basedmedical device for lung cancer detection, we review the current riskmanagement process in the
MDR entailing a “forward-walking” approach for providers articulating the medical device’s clear intended use, and moving on sequentially
along the definition, mitigation, and monitoring of risks. We note that the forward-walking approach clashes with the MDR requirement for
articulating an intended use, as well as circumvents providers reasoning around the risks of specialised LLMs. The forward-walking approach
inadvertently introduces different intended users, new hazards for risk control and use cases, producing unclear and incomplete risk
management for the safety of LLMs. Our contribution is that the MDR risk management framework requires a backward-walking logic. This
concept, similar to the notion of “backward-reasoning” in computer science, entails sub-goals for providers to examine a system’s intended
user(s), risks of new hazards and different use cases and then reason around the task-specific options, inherent risks at scale and trade-offs for
risk management.
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Introduction

This paper is concerned with the regulation of large language
models (LLMs) in medicine under the EU Medical Device frame-
work:1 how can providers use a pre-trained and general-purpose
system, fine-tuned to a specificmedical task, andmake claims about
their safety and performance when deployed for clinical decision-
support?2 LLMs are current advancements in artificial intelligence
(AI) which are intended to generate human-like text and which can
be repurposed and adapted to a range of different domains and
tasks.3 Our work contributes to discussions on the novel risks and
regulatory challenges of these advanced AI systems in EU policy
and academic scholarship, which situate issues to demonstrate
claims regarding the safety, performance and effectiveness of LLMs
when these models are adapted to a medical purpose.4 The aim of
this paper is to review these concerns, while making tensions for
providers to reason around the risks of LLMs apparent. Focusing on
the regulatory tensions in the EU Medical Device Regulation
(MDR)5 — one of two regulatory frameworks applicable to the
certification of LLMs as medical device6— we specifically focus on
the MDR’s risk management framework for the provider to define,
estimate, mitigate and monitor performance and safety risks and

how the general capabilities of these specialized models contravene
the well-established risk management approach in the MDR.

Risk management is the backbone for manufacturers and pro-
viders of AI-based medical devices to demonstrate their safety and
performance, as well as clinical benefit under the MDR.7 This risk
management process also covers software, hardware and compo-
nents entailing AI techniques, such as machine learning and deep
learning techniques intended to assist in the detection of lung
cancer in X-rays. Using an example of an AI lung cancer detection
tool, we examine how providers need to identify and mitigate
associated risks, such as measurement errors or automation bias,
and evaluate these problems within the system’s intended use, as
well as establish post-monitoring of the device’s safety and per-
formance across its lifecycle.8 Without a robust risk management
plan, claims about the system’s intended use and risks will be
unclear or underspecified, thereby endangering patient safety.

Providers of medical LLMs are required to adopt this sequential
approach to risk management under the MDR; that is, to define the
intended use and use this forward-walking logic along estimation,
mitigation, and monitoring of risks. Medical LLMs, such as the
specialized models fine-tuned in the medical domain, evaluated,
and locked down through instruction tuning, prompt engineering
and reinforcement learning from human feedback (RLHF) are
positioned to challenge these well-defined risk management prin-
ciples. The nature of a general-purpose system, allowing providers to
optimize a model for a medical related task— for example, medical
question-answering on the presence of lung cancer — preclude
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normative propositions around the device’s intended use. Instead, a
forward-walking logic may produce incomplete specifications about
the stages of risk management, undermining the robust and overall
appreciation concerning the safety and performance of
medical LLMs.

Specifically, fine-tuning and optimizing medical LLMs may
produce three different areas of concern for providers conducting
effective riskmanagement. First, dynamic specifications around the
medical LLMs task-specific options need to be defined by virtue of
the intended use(r)’s and interactions with the model. Second,
hazards and sources of potential harm cannot be estimated based
on the LLM’s intended use but require the provider to focus on
trade-offs arising from fine-tuning. Finally, the provider’s articula-
tion of the intended use needs to be far more open-ended to judge
certain specific risks at scale— including hallucinations where the
model produces fabricated output including incorrect information
— which must be monitored after the system’s deployment.

To include these new specifications — task-specific options,
trade-offs, and inherent risks at scale — for the certification of
medical LLMs under the MDR requires a revision of the logic
underpinning risk management. Providers of medical LLMs need
to walk “backward” to identify and evaluate a model’s intended use
under the MDR. This entails a combination of hypothesis-driven
work and the sub-goals, task-specific options, trade-offs, and inher-
ent risks for the provider to demonstrate the system’s intended use.
Using this approach will ensure thatmedical LLMs can be subject to
risk management under the MDR.

Defining the “Forward-Walking” Logic

The following sections will introduce the main logic underpinning
riskmanagement under theMDR, and how performance and safety
assurances regarding specialized, medical LLMs fit into this frame-
work. To elaborate on this, we first need to clarify three elements—
the identification, risk estimation, mitigation, and monitoring —

under the MDR.9

By way of illustration, imagine a provider who wants to deploy a
new AI-based medical device to automate the analysis of X-rays and
assist with the detection of lung cancer. To conduct riskmanagement
would require the provider to construct an “iterative process.”10 This
may entail the operational implications and limits of the device, the
context in which the device is intended to be used, who can use this
system and for what clinical conditions, amongst other factors.11 In
addition, some risks— for example, measurement errors and usabil-
ity risks— require providers to adopt certain safeguards.12 This may
range from design specifications to instruction for use, such as data
quality requirements or a warning system for ensuring human
oversight.13 Finally, providers need to monitor the system’s intended
use, associated risks, and effectiveness of risk control when deployed
on the ground.14 Figure 1 and the proceeding discussion simplify the
stages of risk management, considering this illustrative example.

Define the Intended Use and Reasonably Foreseeable Misuse

Providers need to articulate potential hazards of our lung cancer
detection software. This involves specifying the “intended use”
and “reasonably foreseeable misuse,” incorporating specific prop-
erties for effective risk management.15 Following this thought
process, the manufacturer could specify information about the
different stages and types of lung cancer, indications for the
system’s use in cancer care, operating principles for the system
to discriminate between different stages of lung cancer in a med-
ical image, the type of user profile and training required for
assisting clinical decision-making, the type of environment used
in emergency care, and the subpopulations for which the system
has been tested and evaluated.16

The definition of the intended use and reasonably foreseeable
misuse is important as it effectively informs the next and sequential
steps in the risk management cycle. For example, if the manufac-
turer does not identify details about the AI cancer detection per-
formance and its functionality, as well as risks of misuse of the
device, then any subsequent risk analysis would likely produce an
overestimation or underestimation of risk (Figure 1, Point B).

Figure 1. An illustration of the risk management lifecycle is based on the manufacturer’s articulation of the intended purpose and use in the MDR. We describe this approach as
“forward-walking” to emphasize that risk assessment stems from a clearly articulated intended use and progresses through the stages of riskmanagement to ensure the safety and
performance of the device. These stages reinforce each other, constituting an iterative process and a feedback loop for ensuring patient safety.
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Moreover, and particularly in relation to novel technologies, post-
production activities to monitor and respond to any emergent risks
are also important features that help providers to respond to
adverse events and new instances of misuse17 (Figure 1, Point C).

Estimate and Mitigate Risks Associated with the Intended Use

Above, we elaborated on why the definition of the intended use is
important when looking holistically at the risk management cycle.
Turning to the estimation and mitigation of the system’s risks, this
stage allows the manufacturer of the AI lung cancer detection
software to pinpoint so-called “hazards and hazardous situations”
and estimate the associated risks, based on “probability and severity
of occurrence of harm.”18 This could entail the estimation of a range
of risks — for instance, measurement errors and risks of over-
reliance — that could lead to a “sequence of events” causing false
diagnosis and patient harm.19 Subsequently, and based on a “risk
acceptability policy,” the developer may implement and assess “risk
controls.”20 For instance, data quality controls and instructions for
use can limit the performance and usability risks to an acceptable
level when evaluated and validated. In this respect, the provider
would have a risk policy in place. Using this risk policy after risk
mitigation, the manufacturer decides on the overall risk to judge
whether all risks have been reduced “as far as possible”21 and to an
acceptable degree.22 A unique risk of our AI lung cancer detection
software is that any new interactions, such as learning based on new
and real-world data and interaction with the intended users
(Figure 1, Point E), or through bias mitigation (Figure 1, Point
D), may introduce new risks of bias and fairness.23 The manufac-
turer thereby needs to conduct iterative evaluations of risk and
control to ensure that device performance remains “suitable for its
intended use” without adversely undermining that risk policy.24

Monitor the Risk Profile and Intended Use

Hence, the device’s risk policy including the risk profile initiates an
iterative process for the developer to uphold the system’s intended use
and reasonably foreseeable misuse throughout its lifecycle. For our AI
lung cancer detection software, the developer needs not only to ensure
that the device is performing as intended, but that the propositions
about risks and evidence-based conclusions (the so-called “benefit-
risk determination”), such as its indications for use in cancer care,
remain valid throughout the system’s lifecycle.25 In this regard,
“postproduction activities and data” enable updates to the risk man-
agement files and adjustments to risk estimates and controls after the
system’s deployment.26 By way of illustration, postproduction data
may reveal emergent risks about the AI cancer detection software,
such as the system learning to detect different stages of cancer for new
subpopulations, or other issues, such as new problems of automation
bias arising from risk control.27 Moreover, risks of misuse, particu-
larly “off-label” use, form part of “post-market surveillance” and the
monitoring framework.28 If these instances happen, then the devel-
oper needs to investigate whether the device’s intended use still meets
the risk acceptability criteria and adopt risk control measures.29

Following this description of the risk management framework,
its logic underpins a sequential and iterative process to ensure the
performance and safety of a medical device. This means that
manufacturers of AI-based medical devices need to have a plan
and system in place to manage risks— like the measurement error
and usability concerns in our example — throughout the lifecycle.
Moreover, manufacturers need to remain responsive to change in
the overall risk policy.

In doing so, the manufacturer needs to assure: “Am I building
the right thing for task X and does this tool perform as intended for
this specific task in an intended development setting and through-
out deployment?” Notably, this framework directs manufacturers
to reason around the risks ofmedical devices in a specific way, using
the intended use as a starting point and then moving forward to the
stages of risk estimation, control, and monitoring sequentially.

Does Forward-Walking Work with Medical Large Language
Models?

The second part regarding the question of how performance and
safety assurances regarding specialized, medical LLMs fit into this
MDR framework is descriptive and normative. It is descriptive
because it asks, “How do providers of medical LLMs demonstrate
that the sequential approach has been followed?” As noted above,
risk management is also a framework for manufacturers to reason
about the risks of AI-based medical devices. Therefore, whether
current design and fine-tuning of medical LLMs disturb proposi-
tions about the device’s intended use is a normative question that
needs to be clarified. Both lenses— the descriptive and evaluative
— are needed for ensuring that medical LLMs fulfill standards of
safety and performance and do not endanger patient safety.

Medical LLMs are positioned to challenge the MDR risk man-
agement framework. We choose the term “medical LLMs” to
describe specialized LLMs that have been pre-trained and/or fine-
tuned onmedical data.30 An example of a fine-tunedmedical LLM
is Google Med-PaLM 2, which has been evaluated through
instruction tuning, including training on multiple-choice ques-
tions.31 Other approaches may also incorporate a reward model
trained on human feedback (i.e., RLHF).32 Lehman et al. give
additional examples of adapting LLMs for medical tasks.33 These
may entail a general-purpose model injected with clinical data
during pre-training or fine-tuning stages.34 Moreover, we observe
a trend regarding the design of base models that includes an
embedding layer for a set of prediction tasks,35 as well as a shift
toward small language models.36 We welcome these develop-
ments, in principle, incorporating these future directions in our
recommendations section. Specialized, medical LLMs are part of
“rethinking” the approach to the design of general-purpose sys-
tems, leveraging the general capabilities of Large Generative AI
with an “intended purpose” and use in mind.37

However, these specializedmedical LLMs do not correspond to
normative propositions required for the provider defining an
intended use for risk management. Fine-tuning is a form of
sophisticated task-optimization that can lock in model behavior
while decreasing its complexity. By way of illustration,Med-PaLM
has been evaluated by clinicians and non-clinicians for its general
capabilities to engage with “medical exam questions.”38 Accordingly,
it has been tested for its utility for medical question-answering using
qualitative criteria, such as “scientific consensus,” truthfulness, or
correct reasoning.39 Using this evaluative approach, the new
“Med-PaLM-2” can introduce different data types and different
modalities across medical disciplines.40 But as rightly put by
Davenport, “[p]racticing medicine does not consist of answering
medical questions … [and] the diagnosing (and possibly solving)
of genuine clinical problems.”41 Specialized LLMs do not fulfill
normative propositions about the context, the interactional impli-
cations, and evidence-based claims required, and are far from
reflecting a robust account of an intended use. The upshot of this
is that current design of these models inhibits narratives — for
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example, “multiple-choice accuracy” and “model capabilities” —
that can actually produce worse outcomes for patients who do not
readily “fit” the textbook style of questions.42

We further argue that fine-tuned and specialized LLMs will chal-
lenge providers to adopt a forward-walking logic for risk manage-
ment. That is, task optimization clashes with the MDR requirement
for articulating an intended use, as well as circumvents providers’
sequential and iterative framework.

The Descriptive and Normative Lens of the Forward-Walking
Logic

Medical LLMs pose unique risks for their evaluation under the
MDR risk management framework. This can arise from dynamic
interactions with the model via prompt engineering, trade-offs and
limitations that can arise from examples of instruction tuning and
RLHF. The following sections contend that the LLM’s general
capabilities require providers to adopt more fine-grained and
dynamic specifications. These specifications should include nor-
mative propositions for defining an intended use.

We illustrate the types of actions a developer could take for
specialized LLMs, which are fine-tuned and adapted to a medical
task. We identify three fine-tuning avenues in literature: utilizing
medical literature and/or data, instruction tuning, and RLHF. We
acknowledge the potential emergence of various approaches dis-
tinct from or intermediary to these methods, such as the role of
Retrieval-Augmented Generation for task and output optimiza-
tion.43 Nevertheless, our research provides a compelling case on
why task optimization substantively contradicts current risk man-
agement reasoning. This allows for future work and alignment,
considering future fine-tuning approaches.

We identify three areas of tensions corresponding to the three
types of actions during the risk management cycle. In a nutshell,
medical LLMs produce a set of deviations from the intended use
and a risk policy during these risk management stages. These
deviations are exemplified in Figure 2:

Imagine, for example, that our AI lung cancer detection software
includes an interface which allows a healthcare professional, work-
ing in general practice, to upload medical records and chest X-rays.
The healthcare professional can prompt the model in real-time for
differential diagnosis during in-patient consultations. The tool is
intended to be used for referrals on suspicion of lung cancer. It is
intended to be used for patients who show common symptoms of
lung cancer and are within an age group of 40–85 years of age. It is
not intended for emergency care, nor for replacing clinical decision-
making on follow-up treatments, such as patient referral to a
computed tomography (CT) scan.

Several Intended Use(r) Profiles

The first area of tension is that with medical LLMs it is difficult to
establish an intended use and reasonably foreseeable misuse for risk
management. This is because with medical LLMs, the instances to
define intended uses are much more dynamic than with task-
specific models.

By way of illustration, the healthcare professional may prompt
the medical LLM to “examine this X-ray and write a report for the
presence of suspicious lung cancer.” However, depending on the
specific prompt, themodelmight give a different answer to a similar
question44 and prompt.45 Moreover, and depending on the level of
detail and specificity of the prompt,46 the model might introduce
new intended uses. Another healthcare professional, working in
general practice, might pose a similar question for the detection of

Figure 2. An outline— non-exhaustive enumeration— of the types of concerns that could arise based on the articulation of the intended purpose and use which in turn, require a
set of different actions. We contend that these actions form three deviations from a risk policy. As a result, medical LLMs pose issues for complete specifications for risk
management, while undermining the feedback loop on estimation, mitigation, and monitoring of risks.
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different lung cancer but formulated in the following way: “Exam-
ine this X-ray to rule out the presence of a lung abscess based on the
patient notes [inserted here].” Here, the model might distinguish
between different indicators, differentiating between lung cancer, a
lung abscess, and empyema,47 and at different stages of severity.
What follows is that the system now includes an intended use the
detection of lung cancer regarding “patients suffering from any kind
of lung disease.”Depending on the healthcare professional’s prompt
the model might be incompatible with the original intended use.

Another issue is confirmation bias. In both illustrations above,
the healthcare professional already has a suspicion that the patient
might suffer from lung cancer or a lung abscess. This situation is not
atypical, as a general practitioner is required to conduct physical
examinations of the patient and gather information on their general
health and symptoms before taking the X-ray. Nevertheless, LLMs
show impressive capabilities to condense a vast amount of infor-
mation and return themost probable response based on the specific
prompt.48 Due to the model’s variability to introduce different
intended uses, this may introduce additional concerns for the
provider to predict reasonably foreseeable misuses. In other words,
if the healthcare professional has omitted certain information in the
patient notes, then themedical LLMwill “insist” on certain patterns
flowing from the prompt.49

The examples illuminate that the intended use and reasonably
foreseeable misuse are not really the starting point for risk manage-
ment. Rather, the dynamic interactionwith intended users shapes the
AI lung cancer detection software’s intended use and reasonably
foreseeable misuse. The required specifications depend on the
model’s output being shaped differently, depending on the intended
user’s interactions and prompts. Following this reasoning, medical
LLMs require more dynamic specifications for the intended use.

New Hazards Arising from Risk Control

We identify another tension, which is, if we were to insist on a
specific intended use, that would produce incomplete specifications
for risk estimation and mitigation from the outset. Incomplete
specifications can give rise to the over- and underestimation of
hazards during the system’s lifecycle. Incomplete risk estimatesmay
produce trade-offs in risk evaluation and mitigation.

Now, imagine that providers introduce RLHF and instruction
tuning to improve the quality and factual consistency of the output.
It reveals that themodel produces “hallucinations,”whichmeans that
it fabricates some responses. This occurs when the healthcare profes-
sional inserts the patient notes and themodel then returns a diagnosis
using a description of patient symptoms that are not present in these
records.50 The human evaluators note that the systemwould fabricate
patient symptoms indicating the presence of pneumonia and return
(mis)diagnosis on empyema. These instances of themodel producing
“factually incorrect output” and/or “fabricated responses” are usually
evaluated based on the model’s general capability to incorporate
“clinical knowledge”51 and/or “clinical reasoning” in its output.52

The provider nowwants to evaluate the device’s risks to produce
factually incorrect output and fabricate responses. However, risks
will have to be estimated based on the system’s general and medical
question-answering capabilitieswithin the device’s intended use. In
our example, this would be difficult as we see that the system may
fabricate information regarding a broad range of lung diseases such
as lung cancer, lung abscess, pneumonia, and empyema.

Using a forward-walking scheme, providers would treat all these
risks as “software failures” or a “novel hazard.”53 This means an
estimation of the risks based on the “risks of the severity of harm

alone,” given that incorrect and/or fabricated responses are “novel
hazards” and “are difficult to estimate” based on the probability of
harm.54 The upshot of this is that providers must rank these errors
for their severity within the model’s broad spectrum and medical
question-answering skills.

By way of illustration, estimating these hallucinations as an
inherent feature of the system55 could distort overall risk estimation
for measuring the severity of risks with an adequate level of
“specificity.”56 On the other hand, treating hallucinations as the
“worst-case severity of harm”57 would undermine riskmanagement
in a different way. Here, the provider would likely overestimate the
risks, with the “worst-case severity of harm”58 leading to the worst
outcomes even with small probability. In one situation we might
have an overall risk assessment where hallucinations would prod-
uce the worst harm, making the system overall unreliable. In a
different context, we might underestimate the risks, because we are
ranking the inherent risks with low severity, while accepting the
“risks of unpredictable reasoning hallucinations.”59 These are the
two options introducing their own trade-offs based on incomplete
specifications during risk estimation.

Nevertheless, risk estimation and evaluation will likely be
“qualitative,” using RLHF and instruction tuning as examples
of how to prevent certain errors from occurring.60 As noted by Elah,
risk control measures can limit the severity of harm in cases where
risks of harm cannot be estimated.61 However, the type of bench-
marking for medical LLMs produces two problems for risk control.
First, themodel’s output for differential diagnosis is rarely “descriptive,”
being a source of agreement anddisagreement between annotators and
clinicians.62 In this regard, benchmarking the model and its general
capabilities against qualitative metrics, such as “comprehensibility,”63

would require the evaluation for an infinite amount of user experi-
ences.64 Second, RLHF and instruction tuning can only optimize
certain “patterns” in model reasoning and knowledge retrieval.65

This can include examples of RLHF used to “penalize obviously
untrue statements,”66 and instruction tuning to improve accuracy
on medical question-answering.67

Referring back to our example, the success of RLHF and instruc-
tion tuning would be rather limited. Human evaluators can certainly
penalize instances where the system provides misinformation. For
instance, Omiye et al. discuss that LLMs provide “indicators about
kidney function and lung capacity … built on incorrect, racist
assumptions.”68 Additionally, more examples of empyema can
improve model reasoning slightly. However, our AI cancer detection
software invents information subtly,69 as the indicators for pneumo-
nia and empyema are not wrong per se. Rather, the patientmight not
suffer from pneumonia in the first place.70 Hence, the provider could
not decrease the risks associatedwith the systemhallucinating certain
responses regarding lung cancer and empyema. Rather, the provider
further optimized the system for additional tasks, while maintaining
the risks of the model hallucinating in a static manner.

Hence, none of these measures decreases the risks in the design
and use in a balanced way. On the contrary, human evaluation can
correct some problematic model outputs, particularly on the rela-
tionship between lung cancer and common patient symptoms,
while the model can still fabricate descriptors on lung cancer.
Moreover, expert evaluation can introduce other biases into the
model due to the “subjectivity of expertise,” for instance.71 These
findings exacerbate the provider’s evaluation of the device’s overall
risk and confidence levels after risk control. There is no balanced
way for providers to demonstrate that risks — from the design to
user specification errors— have been limited “as far as possible”72

and to an acceptable degree for our AI lung cancer detection tool.
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These two types of trade-offs— using incomplete risk estimates
and inconsistent risk control — produce new hazards during the
system’s lifecycle. As noted by Bowan, techniques of “steering
model behaviour” cannot ensure that the model will “behave
appropriately in every plausible situation it faces in deployment”
(emphasis added).73 Weighing risks for their severity will be
increasingly difficult, due to the variability of risks across a broad
spectrum based on the model’s capabilities. This in turn also affects
the effectiveness of risk control and evaluation using task optimiza-
tion for amodel’s knowledge-retrieval and/or reasoning abilities. As
a result, new risks and hazards are likely to arise inconsistently
during the system’s lifecycle. This may indeed entail new errors—
providing unreliable outputs — including suboptimal recommen-
dation, incorrect information,74 and/or harmful advice.75

New Potential Use Cases

We identify a third tension in why medical LLMs clash with the
provider’s forward-walking logic of risk management. This tension
entails the medical LLMs’ “autodidactic function”76 to expand on
new use cases, such as identifying new sub-populations when
applied to real-world data and without direct supervision.

As noted by Minssen et al, one challenge for medical device
regulation is “to manage adaptive learning in LLMs.”77 Contrary to
AI-based medical devices retraining “incrementally” on the basis of
new data,78 LLMs are positioned to adapt their responses in “real-
time” depending on the prompt and/or context.79 These aspects—
increased adaptability and decrease of human intervention — in
turn, pose issues for providers, who have to monitor important
changes to the device’s performance and effectiveness80 during the
system’s lifecycle.

Changes to device performance and effectiveness can include new
hazards and/or new claims the provider did not validate ex ante.81

For example, our medical LLM may learn new instances of symp-
toms, indicators, and lung diseases. Moreover, LLMs exhibit “few-
shot or zero-shot learning” where the model can “unintentionally
gain knowledge from implicit tasks in its training corpus.”82 These
instances may create new claims, as well as new instances of failure
models. For instance, wrong predictions of lung cancer require the
provider to reevaluate the performance of themodel. For ourmedical
LLM this means that providers need to have a system in place that
allows for real-time monitoring of these failure modes and usage for
it to ensure that risks are at an acceptable level.83

However, ourmedical LLMdoes not only produce “performance-
related hazards” and “failure modes.”84Many risks of medical LLMs,
including hallucinations, are inherent and systemic in the model
architecture. How would the provider monitor whether the system
arrives at the right answer? And how do you measure that the
healthcare professional poses the right questions to the model? As
noted byHill et al, theMDR’s “post-market surveillance [framework]
focuses on device malfunctions and serious injuries or deaths rather
than maintaining ongoing device performance.”85 With medical
LLMs, the borders between a model’s continuous functionality and
a malfunction are much more fluid than with task-specific models.

Another aspect of riskmanagement is that model reevaluation is
proportional to the system’s original intended use and risk profile.
This means that if our model learns new conditions for the detec-
tion of lung cancer, the provider must identify whether model
behavior fits boundary specifications, such as the acceptable per-
formance thresholds.86 A reference point for the provider is the
device’s intended use for the detection of lung cancer. Nevertheless,
if the model learns new “claims, intended uses or use conditions to
the device,” this might require a new conformity assessment.87 This

may apply to instances where themodelmay gain new “knowledge”
on lung cancer for an extended patient cohort or new health tasks
on the detection of lung diseases.88 Finally, our findings pertaining
to the articulation of the intended use and reasonably foreseeable
misuse further amplify risks for the provider to predict andmonitor
potential misuses and off-label uses of our medical LLM.

With medical LLMs, new potential use cases transcend (un)
intended uses, while producing new hazards and failure modes.
This can undermine the monitoring of emerging risks and hazards,
as well as the reevaluation of the system’s intended use. The
situation would be one in which the provider is testing intended
uses, considering the model’s “broad functionality.”89

The Normative Implications of the Forward-Walking Logic

To summarize our points above, we contend that medical LLMs—
pre-trained models adapted to a medical task— produce different
tensions for providers to conduct risk management under the
MDR. These tensions have normative implications in how pro-
viders of specialized LLMs ensure patient safety under the MDR.
Intuitively, if the provider cannot formulate, refine, and reevaluate
an intended use, that will produce incomplete specifications for risk
management throughout the system’s lifecycle. Different intended
user interactions, a broad spectrum of different risks with varying
severity, and new potential use cases could endanger patient safety
in multiple ways. We noted risks of the overestimation and under-
estimation of hazards, as well as inconsistent monitoring of
performance-related hazards over ongoing functionality.

The implications of these issues are far-reaching, shaping our
understanding of AI innovations, their intended uses, and utility in
medicine. Considering the general capabilities, the uncertainty of
risks and even hype surrounding their potential uses, regulators and
providers need to reason around risk management with caution. As
noted by Harrer, there are often “no second opportunities to get
things right after releasing AI technology prematurely or hastily in
the healthtech sector: user and regulator trust are easy to lose and
very hard to regain.”90 The question arises, “What does a good risk
management system look like under the new premises?”

Walking Backward to Ensure Risk Management

We argue that an effective risk management system needs to flow
backward, starting from the provider exploring model capabilities to
the set of actions requiring dynamic specifications about the system’s
intended use. The “backward-walking” logic prompts providers to
approach risk management in the following way: “What can this
model dowithin the specificNatural LanguageProcessing (NLP) task
X (i.e., question-answering, named entity recognition, etc.) and
which intended uses would arise from this finding?”

Crucially, our approach differs from the “forward-walking logic”
as it allows providers to implement more dynamic, nuanced, and
open-ended propositions about the model’s general capabilities to
articulate an intended use. This is because providers are required
to focus on what we call “sub-goals” for the articulation of the
system’s intended use. Referring back to our initial example on the
medical LLM for the detection of lung cancer, providers would be
focusing on the set of actions adapting the model for a specific NLP
or generative task. In the realm of computer science literature, a
technique known as “backward-reasoning” or “backward-chaining”
is an inference method for the model to provide evidence for a
“goal” or “a hypothesis.”91 Rather than proceeding from initial data
and facts in a “forward-chaining” manner, developers start with an
initial “goal” and “sub-goals” driven by data to arrive at a conclusion
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that confirms a set of facts.92 Our understanding of a backward-
walking approach similarly follows an implicit goal. Providers may
have an idea about the LLM’s intended use for lung cancer detection
to work with, but they need to work backward— from the types of
actions to the types of concerns to risk management— to get there.
This approach complements rather than replaces the current risk
management approach in the MDR, focusing specifically on the
“sub-goals” to define, estimate, mitigate and monitor of risks of
specialized LLMs. Figure 3 introduces and simplifies this idea of
backward-walking logic within the MDR risk management frame-
work.

The backward-walking logic entails the consideration of sub-
goals — what the different intended user(s), risks of new hazards
and different use cases are — and finding connections along a
spectrum of three elements. These include the task-specific options,
inherent risks at scale, and trade-offs.

Task-Specific Options

The first connecting factor is that providers must identify how
dynamic human-AI interactions produce different use cases and
intended users. A lot of research is directed toward advanced
prompt engineering to evaluate the LLM’s clinical reasoning abil-
ities. For example, Wei et al. propose a method for the model to
break up its task into smaller reasoning steps.93 Another method
would be for the provider to constrain the model responding to a
specific scope and/or excluding certain out-of-scope (including
harmful) responses to user prompts.94 Finally, Thirunavukarasu
et al. advocate that the model output needs to display an “uncer-
tainty indicator” for accuracy.95 These are indeed useful methods
for the provider to define reasonably foreseeable misuses and test
design specifications for their usability. In this regard, it is argued
that prompt engineering is going to be an “essential skill” for the
intended user, the healthcare professional, to understand the prac-
tical utility and limitations of the LLM for a desired task.96

For providers incorporating these methods and considerations
into their definition of the intended use, clear demonstrations of the
system’s safety and performance regarding an actual task are
required. Providers evaluating the model through prompt engin-
eering, RLHF, and instruction tuning must arrive at a set of task-
specific options. These task-specific options could include what
types of questions this model can be used for, how these questions
need to be formulated, and what the scenarios are in which the use
of this model solves an unmet clinical need. These are some ways
that providers can test and refine the intended use from the begin-
ning. Our breakdown of the intended use to task-specific options is
intended to go further than the evaluation of the system’s medical
question-answering capabilities, to look at the different interactional
implications to test, refine and optimize the model’s output.

In this regard, we see the emergence of small languagemodels, as
well as domain-specific models to enhance the provider’s refine-
ment of task-specific options. For example, Google recently devel-
oped a series of “health-specific embedding tools” using a domain-
specific model and compressed in a general-purpose system.97

Nevertheless, this assessment also includes trade-offs. For
instance, small language models and specialized, medical LLMs
do not eliminate risks of the model hallucinating.98 Therefore, the
provider needs to examine how different intended uses produce
trade-offs for risk estimation and control.

Trade-Offs

The trade-offs in risk estimation and risk mitigation are important
sub-goals for providers to judge the effectiveness of risk control.
Hallucinations in (medical) LLMs illustrate an important area for
providers to examine these trade-offs. There is some literature that
intends to evaluate issues surrounding hallucinations in medical
LLMs. Omiye et al. note that prompts that include “insufficient
information” worsen model hallucinations.99 Hence, usability testing
might give some insight into how and to what extent some risks of

Figure 3. A revised logic of the MDR risk management frame-
work using a “backward-walking” approach. Providers will use
the model “general capabilities,” such as how well the medical
LLM summarizes medical knowledge and engages in medical
question-answering to define and reevaluate an intended use.
The backward-waking logic works alongside the different devi-
ations— intended users, new hazards, and potential use cases
— to identify common and connecting factors. These are for
providers to identify task-specific options and trade-offs, and to
consider inherent risks at scale.

Journal of Law, Medicine & Ethics 7

https://doi.org/10.1017/jme.2025.10132 Published online by Cambridge University Press

https://doi.org/10.1017/jme.2025.10132


automation bias can be minimized through the user’s formulation of
the prompt. It is important to note that the provider needs to
document these trade-offs, which risks can be mitigated, and to what
extent that depends on the formulation of the task and/or instructions.

Accordingly, this sub-goal needs to direct the provider to reeval-
uate the intended use. In our example of the medical LLM for
detection of lung cancer, an open-ended question on the “common
risk factors of lung cancer and lung abscess”may yield a wider array
of responses on diverse topics, while producing a distinct set of
hazards relevant to risk estimation and evaluation. RLHF cannot
limit inherent risks but can provide insights on which residual risks
might be tolerable for a set of actual tasks, questions, and inputs.
Referring back to the importance of task-specific options, this assess-
ment should demonstrate in what way risk control can eliminate
certain risks, and how the residual risks are justified for which tasks.

Inherent Risks at Scale

It is also important for providers to consider the scale of change and
iterations when LLMs operate on the ground. Providers need to
consider themodel’s “fickle”nature to “evolve rapidly” and produce
unpredictable outputs.100 This may entail “real-time monitoring” of
medical LLMs performance and safety.101 Gilbert et al. suggest a
separate oversight layer, entailing the “automated real-time fact check-
ing of model output.”102 Further, regulatory guidance needs to clarify
howproviders can predeterminemodel updates within the confines of
the device’s intended use.103 This would entail new boundary speci-
fications, considering qualitative evaluations fromRLHF, and instruc-
tion tuning. In particular, boundary specifications need to define
different degrees of “systematic” misuse for the provider to identify
and monitor the “correct intended purpose” and use.104

As a result, the backward-walking logic clearly has an added
benefit to ensure patient safety ofmedical LLMs. This is because it is
a framework that encourages providers to engage in more
hypothesis-driven, exploratory work to articulate an intended use.
In doing so, the backward-walking logic does not change the risk
management framework requiring definition, estimation, mitiga-
tion, and monitoring of risks. Nevertheless, it encourages providers
to reason around the risks of specialized LLMs in a balanced way.
Using the connecting factors, the provider can define the device’s
intended use and navigate risk management.

Limitations

There are clear limitations of this research. The backward-walking
logic is a system for providers complying with EU sectoral legisla-
tion when their model is “developed for, or adapted, modified or
directed toward specifically medical purposes.”105 For it to be
effective, however, requires consolidation of the entire value chain
of LLMdevelopment. For example, many open-source LLMswould
count as Software of Unknown Provenance (SOUP). SOUP in a
medical device is software, or a software item, developed by a third
party andwould require the provider of themedical LLM to analyze
these software items within ISO IEC 62304.106 Hence, new require-
ments for technical documentation and transparency upstream are
needed for providers of medical LLMs to test the system and
software components’ overall performance and estimate risks.
The backward-walking logic only intends to inform the responsi-
bilities of the manufacturer of the medical device conducting risk
management. An aspect of future research is understanding the
backward-walking logic directing the actions of general-purpose
system providers and SOUP manufacturers upstream.

Conclusion

The MDR’s risk management framework provides a process for
manufacturers of medical devices to reason around the device’s
intended purpose and use. It clearly outlines a sequential process,
starting from the manufacturer’s definition of the intended use and
reasonably foreseeable misuse, and moving forward to risk control
and reevaluating the device’s intended use. The MDR’s forward-
walking model is designed to assume that a system performs a
specific task, while manufacturers define risks in relation to that
specific task. LLMs break that model to the extent that risk man-
agement can produce incomplete definitions about a system’s
medical purpose and intended use and additional hazards arising
from risk control and offer no system tomonitor task-performance.
Therefore, we argue that the forward-walking logic needs to be
changed, while maintaining the discrete aims of risk management
to follow a specific process. We refine the MDR’s risk management
process in a way that guides providers to explore different tensions.
These include how different intended user profiles, new hazards and
new potential use cases reinforce a definition of the device’s intended
purpose and use. Rather than beginning with an intended purpose
and use, application developers will need to examine the system’s
general capabilities to articulate different intended uses and corres-
ponding risk. We describe this new approach as backward-walking
logic, as it prompts application developers to reflect on the goals of
risk management differently. In this respect, providers need to
reassure themselves what the model can do within the specific NLP
task X (i.e., question-answering, named entity recognition…) and
which intended uses would arise from this finding.

Our approach appreciates that providers need to explore con-
necting factors between the intended uses and risk profiles. This
requires a breakdown of task-specific options for evaluating the LLM,
including assessing model safety and effectiveness in different use
cases and with various intended users. Furthermore, the backward-
walking logic supports providers todocument trade-offs and tensions
of fine-tuning and effectiveness of risk control. Finally, specific risks,
including the risks of hallucinations, require dynamic and open-
ended definitions of a risk profile to enable real-time monitoring.
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