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Orthodox bands of modules

F. Pastijn

In this paper we shall consider orthodox bands of commutative
groups, together with a ring of endomorphisms. We shall
generalize the concept of a left module by introducing orthodox
bands of left modules; we shall also deal with linear mappings,
the transpose of a linear mapping and with the dual of an

orthodox band of left modules.

We shall use the notations and terminology of [1] and [3].

1.

DEFINITION. Let R, +, © be a ring with zero element O and
identity 1 . Let S be a semigroupand B xS ->S , (o, z)+—axr a

mapping satisfying the following conditions:
(1) alxy) = (ox)(ay) for every o € R and every x, y €85 ,
(ii) (a+B)x = (ax)(Bx) for every o, B € R and every x €S ,
(1iii) (o o B)x = a(Bx) for every a, B € R and every x € S ,
(iv) 1lx = x for every x € S .

The structure defined this way will be called an orthodox band of left

R-modules. The next theorem justifies our terminology.

2.

THEOREM 1. Let R, S and the mapping R x 8§ >~ S be as in the
definition of Section 1. Then S 1is an orthodox band of abelian groups
and the maximal subgroups of S are left invariant by the elements of R .
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Proof. Let x be any element of S , and o any element of R ; we

then have
(0x)(0x) = (0+0)x = Ox ,
(ax)(0x) = (a+0)x = o = (O+a)x = (Ox)(ax) ,
(ax) ((-a)x) = (a~a)z = 0x = (-o+a)z = ((-a)z)(azx) .

This implies that for any & € # and any x € S, oaxr belongs to the
maximal subgroup of S with identity Ox ; +the inverse of ox in this
maximal subgroup must be (-0)jxr . More specifically 1lx = x belongs to
the maximal subgroup of S with identity Ox , and its inverse in this
maximal subgroup must be (-1l)x . We conclude that S must be a
completely regular semigroup and that all maximal subgroups of S are left

invariant by the elements of R .

For every x, y € § we have

22
(zy)(zy) = (141)(xy) = ((1+1)x) ((1+1)y) = =%~ .

Let ¢, f be any idempotents of S , then the foregoing implies that
(ef)2 = e2f2 = e¢f ;3 hence ES = {x €S l x2 = x} must be a subsemigroup
of § . Let x and y belong to the same maximal subgroup of S ; then
the foregoing implies

- 2 2 = -

zy = ((-Vz)z"y" ((-1)y) = ((-Dz)ayzy((-1)y) = y= 3

hence S 1is a union of abelian groups. We have yet to prove that S is

an orthodox union of abelian groups [Z2].
Let e¢ and f be any idempotents of S , and x € He’ y € Hf . We

put (~1)x = x' and (-1)y = y' . Then

ef = (eJ")2 = (141)(ef) = (1+1)(z(z'f)) = xz(ac'f‘)2 = xzx'f':c'f = (zf)(z'f)
and analogously
ef = (z'f)(zf) .
Since ef, x'f , and xf are elements of the rectangular group Def [23,
the foregoing implies that xf and a'f are mutually inverse elements of
£ -

the maximal subgroup He Dually, ey and ey' are mutually inverse
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elements of the maximal subgroup Hef . Since (xy)y' = xf and

(xf)y = xy we have axyRxf ; hence xyRef . Analogously, since
x'(xy) = ey and xz(ey) = xy we have ayley ; hence axylef . We conclude
that xyHef . Green's relation H must then be a congruence on S . Thus

S is an orthodox band of commutative groups [2].

3.

REMARK. Let S be an orthodox band of abelian groups. Then, by
Yamada's Theorem ([2] and [10]), there exists a band E and a
semilattice of abelian groups € , both having the same structure semi-
lattice Y , such that S 1is the spined product of & and E over

Y:S=@Qx_ E. Let @ = U G and E= U E ; then S consists of
Y K K
K€Y K€Y

ordered pairs (xk, eK] , K €Y, z. € Gk s 8 € Ek . Multiplication is

defined by
(xx’ ex)(yu’ fh) = (xkyu’ exfh)
for any A, 4 €Y , xy € GA R yu € GU s ey € EA , fh € E'u . The

identity element of Gk s, K €Y , will be denoted by l|<

The following result will generalize a theorem of [4] about semi-
lattices of left modules. By combining the next theorem and Theorem 1, we

obtain a characterization of orthodox bands of abelian groups.

4.

THEOREM 2. Let S be any orthodox band of abelian groups, and let
Z be the ring of integers. Let e be any idempotent of S , and x and

x' mutually inverse elements of the maximal subgroup H, . Define the

mapping L %x S+ S, (k, x) — kx by

kz = X  if k>0

e if k

=z% if k<o,

Then S 1is an orthodox band of left I-modules.
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Proof. Conditions (i), (ii), (iii), and (iv) of the definition in

Section 1 are checked by some easy calculations.

5.

DEFINITIONS and REMARKS. Let S ©be an orthodox band of left
R-modules, and T a congruence on the semigroup S . The natural

homomorphism of § onto S5/T will be denoted by T# . T will be called

R-stable if and only if xty implies (ax)t{ay) for every x,y € § and
every o € R ; we can then define a mapping R x (§/t) > S/t by

(0, z) — ax = ax ; S/t will then be an orthodox band of left R-modules.

Let S and T be orthodox bands of left R-modules. The mapping
® : S~>T will be called A-linear if and only if

"

(i) &(xy) = (dx)(®y) for every x,y €S ,

ad(x) for every x € S and every o € R .

]

(i1} d(ox)
®(S) will then be an orthodox band of left R-modules.

The subset 4 of S will be called R-stable if and only if ax € 4
for every x € A and every o € R . If ¢ 1is an R-linear mapping of S
into T , &(S) will be an R-stable subsemigroup of T , and the kernel
of ¢ will be an R-stable subsemigroup of S . Any R-stable subsemi-
group of an orthodox band of left R-modules must of course be an orthodox
band of left R-modules. If T 1is an R-stable congruence on S , the
union of all T~-classes containing an idempotent will be an R-stable

subsemigroup of S .

The mapping ¢ : § > 7 will be R-linear if and only if oY% is an
R-stable congruence on S . The equivalence relation T on S is an
R-stable congruence if and only if T# is an KR-linear mapping. The
mapping ¢ : S > ES , x> 0r is an R-linear mapping of S onto the band
consisting of all idempotents of S ; (I>-1(I> is then the R-stable
congruence H

Let S be the spined product of a semilattice of abelian groups &
and a band & ; we shall use the same notation as in the remark of Section

3 . @ is the greatest inverse semigroup homomorphic image of S , and the
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mapping A : S+ @ , [xk, ek)kﬁ-xk is a homomorphism of S onto € ; we

shall put A_lA =0 ; this congruence ¢ is the minimal inverse semigroup
congruence on S , and we shall show that o0 1is PR-stable. Let G be the
greatest group homomorphic image of @ , and T : @ >~ G , thﬂ-iK be a
homomorphism of @ onto G , F_lF being the minimal group congruence on
@; if =z, and y, are any elements of § , then xAF-leu if and only

if there exists a k € Y , Kk < A AU , such that xAlK = yulK ; we shall

put (FA)_l(FA) = p ; this congruence p 1is the minimal group congruence

on S , and we shall show that p 1is R-stable.

6.

THEOREM 3. The minimal inverse semigroup congruence on an orthodox
band of left R-modules is R-stable.

Proof. Let z, be any element of § , and let us take any two

. -1

elements ﬁrK, eK) and (xK, f%) in A xK . Let o be any element of
R . Since H is an R-stable congruence on S , aﬂxK, eK) belongs to
the H-class (G X e of S containing Gr , e ) y hence

K K K> K
aLxK, eK) = (yK, eK) for some yK € GK . Analogously,
a(xK, fk) = [zK, fk) for some 2, € GK . Let (lK, gK) be L-related
with (1K, eK) and R-related with (1K, fK) , and let (1K, hK) be
R-related with (lK, eK] and L-related with (lK, f%) . Since by the
restriction of R xS >S5S to R x (GK x gK) and R X (GK x hK) s

respectively, GK x Iy and GK x hK become left R-modules, we must have

a(lK, gK) = [lK, gK) and u(l . hK) = (lK, hK) . Furthermore, we have

(. 5) (G £ 0,0 g,)
a1 1) (e, £)) (00,0 g,))
(@ #) G f)( a))

= afe,» ¢ = (b, )

(e, . e,)

1
z—\

1]
Q
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hence z =y ., and A(a(:x:K, eK)) = A(a(xK, fK))

7.
COROLLARY 1. By the mapping R x @ +~ @ ,

(o, xK] > o =A[0LA_13:K] R

Q becomes a semilattice of left R-modules, and A an  R-linear mapping
of § onto Q.

8.

COROLLARY 2. Let @ be any semilattice of left R-modules, and Y
the structure semilattice of @ ; let E be a band with the same

structure semilattice Y ; let U G'< and U E’K be the semilattice
KEY KeY

decompositions of @ and E respectively; let S be the spined product
Q@ %, E of @ and E over Y . By the mapping R *x S > S,

(o, [xK, eK)] — [ouz:K, eK) for every o € R, and every k €Y ,

z. € GK s e 3 E'K s S Dbecomes an orthodox band of left R-modules.

Conversely, any orthodox band of left R-modules can be so constructed.

9.

COROLLARY 3. Let S be an orthodox normal band of left R-modules,

and let §= U S  be the semilattice decomposition of S . For any X,
KEY

WE€Y, A=u, the structure homomorphism ¥ is an R-linear mapping

A,H
of the orthodox rectangular band of left R-modules S)\ into the orthodox

rectangular band of left R-modules Su .

Proof. In a semilattice of left H-modules the structure
homomorphisms are R-linear [6]. The theorem now follows from Corollary 2

and from a result about normal bands [17].

10.

REMARK. Structure theorems for semilattices of left R-modules [6],
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together with Corollary 2 yield structure theorems for bands of left
R-modules.

11.

THEOREM 4. The minimal group congruence on an orthodox band of left
R-modules is R-stable.

Proof. Let ix be any element of (G , the greatest group homomorphic

image of an orthodox band of left ARAR-modules S . Let us take any two
elements xy and yu in F-lix . There exists a kK €Y, K=<A AU,

such that 1ka = leu . Let o be any element of R . From
o)1 = (o) (o2 = alm1) = aly1) = (w) (@) = (),

and ax, €G, , o, € GU , we conclude that o, € F-lF(axx), and thus

A
ox, = &Qu . This implies that the minimal group congruence r‘lr on &

must be R-stable; consequently, the minimal group congruence

(FA)-lFA =p on S must be R-stable.

12.

~

COROLLARY 4. By the mapping R x G+ G, (a, &K) > of, = oz,

G becomes a left R-module, and the mapping TA an R-linear mapping of
S onto G.

13.

DEFINITIONS. An orthodox band of right R-modules S can be defined
in a way analogous to the way an orthodox band of left R-modules is
defined. Condition (iii) of the definition in Section 1 must then be
replaced by (iii)'; (o o B)x = B{oxr) for every o, B € R and every
x €5 . It will be more convenient to denote the mapping R X S + S by

(a, x) — 2o ; (iii)' then becomes
(iii)' =x(a o B) = (x0)B for every a, B € R and every x € S .

If § 1is at the same time an orthodox band of left R-modules, and an
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orthodox band of right R-modules, then we shall say that S is an
orthodox band of R-bimodules.

Let B =R u {=} , and define addition in R  as follows: for any
a, B € R we put
o +B=vy in K if and only'if o +B =y in R,
and we put
G +w=o 40 =0

F. will be a group with "zero" o ., We next define the mapping

Rx K + R by agreeing that for a, 8 in R ,
(¢, B)—> 08 =y if and only if oo B=1y in E ,
and that
(a, @) > o = o ,
We also define the mapping Rx K >R by setting, for a, 8 in R,
(o, B)— Ba =y if and only if Boa =y in R,
and
(a, ®) > og = o .,

By these two mappings 1‘?0o becomes a semilattice of R-bimodules, the
structure semilattice being the two element semilattice. We shall use Ra°

later in this paper.

The next theorem generalizes a result of [9].

14.
THEOREM 5. Let S be an orthodox band of left R-modules, and T
an orthodox band of right R-modules. Let IS 7 be the set of all partial

mappings of S into T . Define a multiplication in IS p a8 follows:
H]
for every ¢, Y € IS g dom Q¥ = dom & ndom ¥, and for every

x € dom Y we put ¥(x) = (ox)(¥x) . Define the mapping

Rx1gp+1gp, (0, @)+t by dom(da) =dom ¢ and (0a)z = (ea)a,

for every « € dom ¢ . IS T will then be an orthodox band of right

R-modules. lg p will be a semilattice of right R-modules if and only if
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T 1is a semilattice of right R-modules.

Proof. For any ¢, ¥ € IS ¢ and any « € B we have
>

dom((®¥)a) = dom ¢¥ = dom & n dom ¥ = dom(da) n dom(¥a) = dom{(dx)(¥a)) ,
and for any x € dom(9¥)o we have

((ev)a)x = ((o¥)z)a = ((¢=)(¥x))a = ((&)o) ((&)a) =
= ((da)z) ((2a)z) = ((oa)(¥a))x ;

hence (d¥)a = (Pa)(¥a) . TFor any o € IS 7 and any o, B € R we have

dom(®(o+B)) = dom & = dom(®ax) n dom(®B) = dom((®a)(2B)) ,
and for any x € dom{®(a+B)) we have
(e(a+8))x = (&) (0+B) = ((ex)a) ((&)B) = ((@a)x) ((88)x) = ((a)(98))x ;
hence &(oa+B) = (da)(¥B) . Furthermore,
dom(¢(at o B)) = dom ¢ = dom(®a) = dom((®a)B) ,

and for any x € dom(®(a o B)) we have

(6(a o B))x = (&x)(a o B) = ((&)a)B = ((¢a)x)B = ((¢a)B)z ;
hence &(a o B) = (¢a)B . Finally, dom(dl) = dom ¢ , and for any
x € dom(9l) we have

(oL)x = (&)1l = &

hence ¢1 = ¢ . We conclude that IS 7 is an orthodox band of right

2

R-modules.
From the definition of the multiplication in IS 7 it follows that
9’
IS p is commutative if and only if T is commutative. From this follows
2

the last part of the theorem.

15.

THEOREM 6. Let S be an orthodox band of left R-modules, S' the
set of R-linear mappings of S <into R , and S* the set of R-linear
mappings of S into R’ . Then S' is an R-stable subsemigroup of 1 S.R

and S* is an R-stable subsemigroup of 1 _ .
S,R
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Proof. We show that S* is an R-stable subsemigroup of 1 - 5
S,R

the proof of the rest is similar. Let x* and y* be any elements of

S* 3 since B~ is a semilattice of commutative groups, x*y* must be a
homomorphism of S into R . TFor any x € S and any a* € S* we shall
from now on put z*(x) =(x, x*) . Forany x €S , any a € R , and any

x*, y* € S* we then have
Cox, x*y* = (ox, x*) + (ox, y*)
=ofx, ¥ + ofx, y®»
altx, aKx, y*))

= ol x, xty*)
We conclude that for any x*, y* € S* , «*y* must be an R-linear mapping
of S into R ; hence x*y* € §* . S* is a subsemigroup of I _ .
S,R
For any z,y € S , any z* € S* , and any o € R we have
(xy, x*a) ={xy, atla
= ((x, Ky, o*))o
=(x, zta +(y, xPo
={z, %) +{y, x*) ;
hence x*a must be a homomorphism of S into Rw . For any x € S , any
x* € S* , and any a, 8 € R we have
(Bx, z*a) ={(Bx, x*)a
=pRlx, %o
= Kz, )
We conclude that for any x* € S* and any a € R, x* must be an
R-linear mapping of S into 1‘?m . Consequently S* must be an R-stable
subsemigroup of I .
S,R

16.

COROLLARY 5. 5* s a semilattice of right R-modules. The
structure semilattice of S* <& isomorphic with the u-semilattice of
prime ideals of S . The mapping 1* : S+ R , x+> 0 1is the identity
of S* and the mapping 0* : S - B, x> o is the zero of S*.
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Proof. R  is a semilattice of right R-modules; hence 1 » 15 a
S,R

semilattice of right R-modules. Since S* is R-stable in I  , S*
S,R

must also be a semilattice of right R-modules.
Let e* be any idempotent of S* ; then Vs = {x eS| {x, e®? = o}

is a prime ideal of S . TFor any & € S\Ve* , {x,e*) € R and

(x, e*) =(x, e*2> ={x, e*) +{x, e*) ; hence (x, e*) = 0 . Conversely,

let P be any prime ideal of S ; then we can define ei‘, € S* by

(z, ez’g)=m for all x € P , and (x,el’§>=0 for all a € S\P .

Furthermore, if e* and f* are any two idempotents of S* , we must have

Ve*f* = Ve* U Vf‘* . Consequently, the semilattice ES* consisting of the

idempotents of S$* is isomorphic with the u-semilattice of all prime

ideals of S . Since ES*

S* , the result stated in the corollary follows.

is isomorphic with the structure semilattice of

17.

COROLLARY 6. S' <8 a right R-module which is an R-stable subgroup
of S*; S' 1is the maximal submodule of S* containing the identity
1* of S*.

Proof. All elements of S' are R-linear mappings of S into R ;
hence they can be considered as R-linear mappings of S into Rw , and

consequently S' < S* . Since S' is R-stable in IS g » and since
>

clearly ISR is R-stable in 1 » §' must be R-stable in T 3
b}

00
S,R SR

from this we infer that S' 1is R-stable in S* .

It is evident that 1* : S+ R, x>0 is the identity of S§' . Let
x* be any element of S' ; then zx*(-1) € S' , and for any x € S we

have

(x, z*) +{x, x*(-1))

(x, %) +(x, x*)(-1) =0 ,

(x, x*(z*(-1)))

and analogously

{z, (x*(—l))x*) =0 ;
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hence x*(x*(-l)) = [.'c*(—l))x* = 1% . This shows that x* and x*(-1)

are mutually inverse elements of the commutative group #,, , the maximal

1

subgroup of S* containing 1* . For any element y* € Hl*’ we must have

Vy* = @ ; hence any element y* € H , belongs to S' . We can conclude

1
that H , =S

18.

THEOREM 7. Let S be an orthodox band of left R-modules and T
any R-stable congruence on S . The mapping & : (S/1)* > S* , z*v+— dz*

defined by (x, ®x*) = (T#:z:, z*) for every x €S is an R-isomorphism of

(S/1)* into S* . Whenever

semigroup congruence on S , this mapping ¢ 1is a surjective

R-isomorphism of (S/1)* omto S* .

lgS TS0, O being the minimal inverse

Proof. Let us suppose that Z*, y* are any elements of (S/t)* , and

x any element of S ; we then have

(T#x, z*y*)
= (the, B +(T#x, y*)
={x, dx*) +{x, dy*)

Cx, (0z*)(y*))

{x, o(x*y*))

hence &(x*y*) = (9x*)(dy*) . Let us suppose that x* is any element of
Y

(5/1)* , o any element of R , and & any element of S ; then

( T#x, x*o)

(T#.’L‘, x*)a

(x, dx*)o

(z, (0Z*)a)

(x, d(x*a))

hence ®(xz*a) = (9x*)a . Since " is an R-linear mapping of S onto

S/t , ®x* € S* for any Z* € (§/T)* . We conclude that ¢ is an
R-linear mapping of (S/t)* into S* . Let us now suppose that
z*, y* € (S/1)* , and ¢x* = ¢y* ; if for some T € S/T ,

(x, x*) # {x, y*) , then for any x € (T#)_li' we should have
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{x, dx*) = (T#.’L‘, x*)

={x, ™)
£z, g*) = <T#x, y*) = (x, dy*) ,

and this is impossible. We conclude that &x* = ¢y* implies Zz* = y* ;

hence & is an isomorphism of (S/t)* into S*
It will be sufficient to show that the mapping & : (S/o)* » $* |

z*—> dx* defined by (x, Ox*) = (0#:::, z*) for every x € 5 , will be an
R-isomorphism of (S/c)* onto S* . Let x* be any element of S* , and

(:::K, eK) and (:z:K, f‘K) any two oO-related elements of S . Since

(xK, eK) and (xK, fK) are D-related in S , they generate the same

principal ideal of S , and thus ¢ (xK, eK) , £*) = o if and only if
( [xK, fK) , £*) = @ , Let us now suppose that [xK, eK) and (:z:K, fK)
both belong to S\Vx* 3 let (1K, gK) be L-related with [xK, eK] and
R-related with [lK, fK) , and (lK, hK) R-related with (xK, eK) and

L-related with (1, f) 5 (1., gJ anda (1

, h ) are both pD-related
K? Tk

with (xK, eK] and [xK, fK) ; hence [1K, gK), (lK, hK] € 5\V_, . Since
these two elements are idempotents of S , and since x* 1is an

homomorphism of S\Vx* into R , we have
((lK’ gK), x*) =« (lK, hK), x*) =0 .
From this it follows that
{ (lK, hnc) [xK, fK) (lK, gK] , T*)
(e n)s &) +z s £)s 28 + (1, g), 2

(o )5 %) -

{ (a:K, eK) , xt)

In any case (m*)-lx* Do . Hence the mapping z* € (5/0)* defined by
(0#3:, x*) ={z, x*) for all x € § 1is well-defined, and we shall have

&r* = x* . Thus, in this case, & must be surjective.
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19.
COROLLARY 7. If S <s an orthodox band of left R-modules, and @

the greatest inverse homomorphic image of S , then S* and Q* are

R-isomorphic.

20.
THEOREM 8. Let S be an orthodox band of left R-modules and T
any R-stable congruence on 5 . The mapping Y : (S/t)' =+ S' ,
z* — Y(x*) defined by (x, Yz*) = (T#x, x*) forany =z €S is an
R-isomorphism of (S/t)' <into S' . Whenever LgS TSP, P being the
minimal group congruence on S , this mapping Y 18 a surjective

R-isomorphism of (8/t)' onto S'

Proof. It is clear that the mapping ¥ must be the restriction of
mapping & (of Theorem 7) to the maximal submodule (S/t)’' of (S/T)* ;

hence V¥ is an R-isomorphism of (S/t)' into S* . Since for every

x € S, and every z* € (S/1)' , we must have (T#.’L‘, x*) € R , we conclude
that VYz* € §' for every x* € (S/t)' ; thus V¥ is an R-isomorphism of
(s/1)' into S'

It will be sufficient to show that the mapping ¥ : (S/p)' + S' ,

x* > YZ* defined by (z, ¥x*) = (p#x, z*) for every x € S will be an
R-isomorphism of (S/p)’' onto S' . Let x* be any element of S'
Since zx* must be a homomorphism of S into the additive group R , we

have (x*)-lx* D p . Hence the mapping z* € (5/p)' defined by

(p#x, x*) = {x, x*) for every x € S is well-defined, and we shall have

Yz* = x* . Thus, in this case ¥ must be surjective.

21.
COROLLARY 8. If S is an orthodox band of left R-modules, & the

greatest inverse homomorphic image of S , and G the greatest group
homomorphic image of S , then S' and Q' are both R-isomorphic with
right R-module G' which is the dual of left R-module G .
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22.
THEOREM 9. Let S be an orthodox band of left R-modules, and

§= U S5 = U ¢ xE its semilattice decomposition. For any A €Y,
K K
KEY KEY

the mapping li : S+ R defined by (=x, 1;) =0 <if and only if

x € U SK , and (x, 1;) = o otherwise, is an idempotent of S* . The
K=

maximal submodule H 4 of S* containing 1;\ i8 R-isomorphic with
A

(u SK]’ and with the right R-module G, , which is the dual of the left
K=\
R-module GA .

Proof. For any A € Y , U S'< is an R-stable subsemigroup of § ,

KZA

and G)\ will be the greatest group homomorphic image of U S . From
KZA

Corollary 8 it follows that ( u SK)' and G)'\ are R-isomorphic right

KZA
R-modules. It is easy to show that S\( U SK) is a prime ideal of § .

K=A
From results in the proof of Corollary 5, it then follows that l;\ must be
an idempotent of S* . We remark that for any x* € % , zx* € Hl* if and
A
only if Vox = {x €5 || Cx, z*) =} = 5\( U SK) . Hence the mapping
K=A
Hlae > ( U SK]' , x*e>zxt | U SK is an R-isomorphism of Hl* onto
A K=\ K=\
(u s)'.
k=x <
23.

COROLLARY 9. We use the same notations as in Theorem 9. Let § be
the greatest inverse semigroup homomorphic image of - S and @ = U G

434
its gsemilattice decomposition. For any A, w €Y, A=y, let (bk . be
the structure homomorphism of @ , and t(’b)‘ u its transpose; then
t]
1* = 1% in 5% ; let o* ., : H , +H , be the structure homomorphism of
u A TN lu l)‘
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S* . Forany X €Y the mapping Y, : H 4~ Gy, zt— ¥,x* defined by
A

R .
x , ¥Y,x*) for all (xK,eK) € U S, is an

(x5 e), a*) = O (T ¥y v

R-isomorphism of Hl 1 omto G}’\ » and the following diagram is commutative:
A

u
Q‘j’kl tq)k,u
Hl;‘T G): .

Proof. The mapping Kg)\ SK > G)\ , [:z:K, eK)!—*@K’AxK is a

homomorphism of E)\ SK onto its greatest group homomorphic image G)‘ H
K=

‘J’)‘ must then be an R-isomorphism of Hli onto G}'\ by Theorem 8.

Let x* be any element of Hl* , and xy any element of G)\ . We

u

proceed to show that <:c)\, tQA,u‘Pux* = (xx, WA(D;,XT*) . Indeed,

t *\ = *
<x>\, by ¥ > oy @y, ¥t

*
(xklu’ ‘l’ux )

= (xK, eK), x*)

> =
for all x> u , QK,uxK x)\lu . eK € }Z"< R

= *
((x}\, e)\), x*) for all ey EE‘A ,

( (x)‘, e,-A), x*li) for all ey € EA s

%
g ey)s ot ) forall e €, ,

* *
(xx, ‘}')‘d)u’)\x ).

3 = *
We conclude that QA’U‘PU = ‘l’>‘<1>u,)\ .
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24.

COROLLARY 10. We use the same notations as in Theorem 9 and
Corollary 9. Let the structure semilattice of S be a lattice. Consider
V= gy Gé » and define multiplication in V by the following: for any

K
@,y €V, = €6, y' €G, put x'y'=[td> x'][% y'] .
u Avu, X Avi,u
Define the mapping R xV >V, (o, x') v+ x'a in the usual way. Then V
is a semilattice of right R-modules, and there exists an R-isomorphism of
V into S* . If Y satisfies the minimal condition, V must be
R-igomorphic with S* .

25.
REMARKS. Corollaries 9 and 10 show that S* could well be named the
dual of S . If Y 4is a lattice, the structure semilattice of V is the
v-semilattice Y . The results of [6] make the connections between the

structure theorems for S and the structure theorems for V more

explicit.

Theorem 7 is quite analogous with a result in [5], §5, about the
character semigroup of a commutative semigroup, and Theorem 9, Corollary 9,
and Corollary 10 are in a certain way analogous with results of [7] and [§]
(see also [3], Chapter 5).

The next theorem generalizes the concept of the transpose of an

R-linear mapping.

26.
THEOREM 10. Let S and T be orthodox bands of left R-modules,
and © : § > T an R-linear mapping. The mapping To . 7% > S*,
% > Tott defined by (x, T0t*) = (@, t*) for all z €S , must be an

TO(T*) 15 embeddable in

R-linear mapping of T* into S* , and
(s/0710)* = (@5)* .
Proof. It must be clear that for any t¢* € T* | we must have

TOt* € S* , since O is R-linear; it is not difficult to show that
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Ib is R-linear.

Let t* and v* be any elements of T* ; then ¢#|0S and v*|0S

are both elements of (O5)* since OS is an R-stable subsemigroup of
T . From the definition of TO we have that TOt* = T@v* if and only if
v*|@S = t*|0S . This implies that the mapping To(r4) > (09)* ,

TOt**—'* t*|0S is an R-isomorphism of TO(T*) into (@S)* .

27.
COROLLARY 11. Let S, T, and © be as in Theorem 10. The mapping
Y9 .1 > g, tr Yot* defined by (=z, TOt*) = {6z, t*) for all
x € S, must be an R-linear mapping of T' into §' , and tO(T') is

embeddable in (S/0710)' = (05)' .

28.

COROLLARY 12. We use the same notations as in Theorem 10 and

Corollary 11. Let Pg and p,, be the minimal group congruences on S

T
and T respectively. Let Yg : (S/pS)' +> 8", xte> ‘PSE* » be the

R-isomorphism defined by ({=x, ‘1’5,5*) = <p§m, 5*) for all x € 8, and let

- - ) - ¥ -
. ' * %) = *
Yy (T/pT] > T, T*e> ¥, 2% be defined by (t, ¥ t% <th, z > for
all t € S . Then there exists an R-linear mapping A : S/ps > T/pT such

that the following diagrams are commtative:

0

S — T s — 7

#
Ps Py
S/DS-T T/pT R (S/DS)' ‘t—A" (T/DT)'

#O is an R-linear mapping of S into the left

Proof., Since P
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-1
R-module T/pT s [p;@] [p;@] must be an R-stable group congruence on

S , and, since is the minimal group congruence on S , we must have

Ps
AR
pg QTO pTG ; this implies that A is a well-defined R-linear
mapping of S/pS into T/pT . tA is then an R-linear mapping of
(T/0,)' into (S/pg)' which is defined by <p# tAE*) = <Ap# E*) for
T s 5% el

#O , we then have

all x €S and all E* ¢ (T/QTJ'; but since Apg = Py

(oga: “n2e) = (ofee. )

(G, ¥ E

<x, [tOWT]E*>

- (el 15 Tong)e)

for all z € S and all Z* € (T/pT)’ . hence A = w;ltow,l, .
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