ON THE DIMENSION OF MODULES
AND ALGEBRAS, I

SAMUEL EILENBERG,* MASATOSHI IKEDA
and TADASI NAKAYAMA

In [5], Ikeda-Nagao-Nakayama gave a characterization of algebras of
cohomological dimenston =#. In a subsequent paper [4] Eilenberg gave an
alternative treatment of the same question. The present paper is devoted to
the discussion of a number of questions suggested by the results of [4] and [5].
Among others it is shown that the conditions employed in stating the main
results in [4] and [5] are equivalent, so that the main results of these two
papers are in accord. Further, the cohomological dimension of a residue-algebra
is studied in terms of that of the original algebra and the (module-) dimension

of the associated ideal. The terminology and notation employed here are that
of [31].

§1. Modules and quasi-modules

Throughout this paper, 4 will denote an algebra over a commutative ring
K. It is always assumed that A has a unit, and this unit acts as the identity
on all 4-modules.

In addition to .4-modules we shall also consider quasi-modules in which it
is no longer assumed that the unit element 1 of A operates as the identity;
however the unit element ¢ of K still operates as the identity. Explicitly a
(left) A-quasi-module is a K-module A together with a homomorphism

A®kA - A
satisfying

r(ia) = (yd)a (r, A€ d;ac A)

where Aa is the image of 1 & a.

Clearly each /-module is a .1-quasi-module. Further each K-module A may
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also be regarded as a -quasi-module with la=0 for all i€ ., a€ A. Ina
sense, these two classes exhaust the picture. Indeed, for each .1-quasi-module

A we have the direct sum decomposition (due to Peirce)
A=1A+A®

where A® consists of all elements a € A with 1la=0. Clearly 14 is a .{-module,
while A® is just a K-module converted into a .I-quasi-module as above.

A A-module A is projective if for every epimorphism (i.e. onto-homo-
morphism)

¢:B-> A

of .4-modules, there exists a .4-homomorphism ¢ : A — B such that ¢¢ = identity.

A is said to be injective if for each monomorphism (i.e. (into-)isomorphism)
¢:A-C
of .{-modules, there exists a .4-homomorphism ¢ : C - A with ¢¢ = identity.

Replacing in the above definitions all modules by quasi-modules we obtain

the notions of a projective quasi-module and of an injective quasi-module.

ProrosITION 1. A A-quasi-module A is projective Linjective] if and only if
1A is a projective [injectivel .I-module and A® is a projective [injective] K-

module.

Proof. Let ¢ : B—> A be an epimorphism of .iI-quasi-modules. Then ¢ de-

composes into two components
¢, :1B - 1A, ¢, : B®* > A®

A map ¢ : A > B with ¢¢ =identity exists if and only if such maps exist for ¢,
and ¢.. This yields the desired conclusion.
This proposition implies that a .4-module A is projective [injective] if and

cnly if it is projective [injective] as a quasi-module.

§2. The Hochschild quasi-operators
It will be convenient to denote by A" the n-fold tensor product A ® ... &® .1

where ® = ®%. We may regard " as a two-sided .{-module by setting

AR . .. Q) = ® ... ® An,
MW® . ..8AA=L®...0 I
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We consider the complex S(.1) with

Sn(A) = A”+2 n =0, 1, « e ey

dAW® ... ®hn) =0 =D ® ... Qi1 ® . o . ® Ants

1=0
and with the augmentation
e:S()=A0 4> A

given by (4o ® A1) = Ahi. This complex is acyclic as can be easily seen using
the homotopy operator ¢ : S,(.1) > Sp+1(A4) given by (x=1® x, x € Sa(A).

If 1 is assumed to be K-projective, then each A" (n>1) is easily seen to
be a A& .I*-projective module, where A is the inverse ring of 4. Thus in
this case S(.1) is .{ ® A™-projective resolution of A. This is the standard complex
of A as defined in [3] (Ch. IX, §2).

Now let A be a left A-module which is K-projective. We consider the

complex (of left .{-modules)
S(A) =S(4) ®, A.
It is easy to see that S(A) is a projective resolution of A. We have

Si(A)=Su(d) ®, A=A""®,A
=" A A=4"""® A

In this notation we have

n-1

dW® ... @n®a)=2(-10® ... ®Aki+1®...Q0®a

=0

F(=1D"2® ... An-1® Ana.
Since the complex S(A) is acyclic, we have
Ba(S(A)) = Zx(S(A)).
Consequently we have the exact sequence
0- Bu(S(A4)) > Su(A) » .. .-»> S(A) - A~ 0.

Since S:(A) are J-projective, it follows that B,(S(A)) is A-projective if and only
if Ldim,A=€n+1.
In addition to the already present A-operators on S,(A4)=A4""® A we

introduce A-quasi-operators as follows
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(=) Arx=dA® x)=ix — 1 ® dx.

We calculate

rx(lxx) =7xdAR2)=7d AR x) =d(yA ® x) = (y) * x
so that indeed we have quasi-operators.

ProrosiTioN 2. If .4 and the left .I-module A are both K-projective then

for each n>0 the following properties are equivalent:

(i) Ldim, A=n,
(ii) the left .1-module B,-:(S(A)) is projective,
(iii) the left .1-module 1 * (1" ® A) is projective,

(iv) the left .4-quasi-module 4”& A is projective.

Proof. The equivalence of (i) and (ii) has already been asserted above.
We prove the equivalence of (ii) and (iii) by showing that B,-:(S(A)) and

1* (A" & A) coincide as .1-modules. We have

1*x=d(1® x) € Bs-1(S(A4)),
di®x)=2+xx=1*QA*x)El*(L"®A)

which shows that Bx-1(S(A)) and 1 * (4" ® A) coincide as groups. Further if
% € Bu-1(S(A)) then dx =0 and thus (*) yields A * x = Ax so that the .1-operators
also coincide.

To prove the equivalence of (iii) and (iv) consider the direct sum de-
composition

IPTRA=1+x(L"Q A +(L*R A)°.

Since 4” ® A is K-projective it follows that (A" ® A)® is K-projective. The con-
clusion thus follows from Prop. 1.

Remark. 1If n=0 then B_,(S(A)) should be interpreted as the image of
the augmentation 41 ® A - A; thus B-;(S(A)) = A. Further if we interpret
A=K then £*® A=A. The quasi-operators are 2 *a=d(1& a)=4a and
coincide with the operators. With these interpretations Prop. 2 remains valid

also for n=0.

§3. Discussion of dim 4.
Using the results of §2 it is now possible to close the gap between [4]

and [5]. First we give a glossary translating the terminology used here into
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that of [5] and [6]:

module—module M satisfying M =1 M,
quasi-module-—rnoditle,
projective quasi-module—(My)-module,

injective quasi-module-— (M, )-module.

Let 4 be a K-algebra. The (cohomological) dimension of 4 may be defined
as follows: dim A= n if and only if the cohomology groups H( A4, A) vanish
for all ¢>#»n and all two-sided A-modules A.

Assume that K is a field and that (4 : K) <. Let N denote the radical
of 4. The main result of [5] may now be stated as follows:

For n>0, the condition
(a) dim A= n
is equivalent with the set of two conditions

(b) A/N is separable,
(c) 1* (4"'® N) is projective.

In view of Prop. 2 (c) is equivalent with

(c") lL.dims N<n
which is in turn equivalent with

() L dim, (4/N) £ n.

This is the form of the result as established in [4]. Actually if (c¢"”) is

used, the main result remains valid also for # = 0.
Remark. In [5] it is proved also that (a) implies
(co) 1% (A" ' ®1) is projective for any left ideal [ of A.

This is equivalent to

(ch) Ldim, [ <m
or
(cth L.dim, (4/0) = n.

This last inequality is a consequence of the general inequality 1. gl. dim 4 =dim .{
(see [4], Corollary 5).
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§4. An inequality
Let .1 and A’ be rings and

oA A

7

a ring homomorphism. By means of this homomorphism, each left A-module

may also be regarded as a left .{-module.
ProrosiTION 3. For each left A/-module A we have
.dim, A =Ldims A+ 1.dim, A

Proof. This proposition could be derived directly from a spectral sequence

established in [3] (Ch. XVI, §5), however we shall give an elementary inductive

proof here.
Let p=1dimy A and ¢=1.dim, A'. Clearly we may assume that p and g

are finite. For each free .4-module F we have 1. dim, F=gq, and therefore for
each direct summand P of F we have l.dim, P=gq. This proves the proposition
if A is .I"-projective i.e. if p=0.

From here we proceed by induction with respect to p. We assume p >0
and assume that the proposition holds for A'-modules A of left dimension (over

") smaller than p. Let

0-B->X->A-0
be an exact sequence of A’-modules with X A'-projective. Then
l.dim, X =0, Ldimy B=p-1
and therefore by the inductive assumption
Ldim, X£p<p+g, l.dim, B <p+gq.
For each left .1-module C we have the exact sequence
Ext}*? (B, C) » Ext{™"' (4, C) » Ext{***' (X, C)

and since the extreme terms are zero, so is Ext}'?*'(A4, C). Thus 1. dim, A

=p+ q, as required.
CoroLLARY 4. If A' is semi-simple, then
1. dim, A=1.dim, A’

for each left .-module A.
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THEOREM 5. Let A be a K-algebra over a field K with (A : K)< «, and let
[ be a two-sided ideal contained in the radical N of A. Denoting A = A/l, we

have
dim A =dim A’ + 1. dim, 4.

Proof. Let N'= N/{. Then N is the radical of A’ and 4/N = A'/N'. Clearly
we may assume that dim A’ < «. This implies that A'/N’ is separable (see
preceeding section). Since both A/N and 4'/N' are separable it follows from

the preceeding section that

dim A =1.dim, (4/N) =1. dim, (4'/N")
dim A’ = 1.dim, (A'/N').

Thus the desired inequality follows from Prop. 3 with A = A'/N'.
Remark. If instead of [C N we have N CI then Cor. 4 is applicable.

§5. Cartan Matrix

In proving that if dim 4 < = then A/N is separable an important role is
played by the Cartan matrix M(.4). In fact, denoting by .. the algebra ob-
tained from . by passing to the algebraic closure L of K, it was proved in [4]
and [5] that if dim 4 < o then det M(A4.) = +1. An algebra A is called primary
if 4/N is simple. A direct product (sum) of a finite number of primary algebras
is called primarily decomposable. An algebra .1 is called absolutely primarily
decomposable if for each extension K' of K, the algebra /g is primarily inde-
composable. It suffices that this be the case for the algebraic ciosure L of K.
For a structural characterization of absolutely primarily decomposable algebras
see [1], §1.

ProposiTION 6. If the algebra A is absolutely primarily decomposable then
dimA=0, ».

Proof. Since dim .1 remains unchanged under extensions of the ground field
we may assume that K is algebraically closed. If is semi-simple (i.e. separable)
then dim 4 =0. We may thus assume that .1 is not semi-simple. Let .1; be one
of the primary components of 4 with a non-zero radical N;. Now all the
primitive idempotents in .{; are isomorphic and if ¢, is one of them then e,Ne,
x0. Thus
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det M(Ay) = (edier : K) = (eiViey © K) + (ei( A1/ Ni)e K)>1.

Since det M(A) is the product of det M(4;) where A; runs through all the primary
components of A it follows that det M(4)>1. Therefore by the result quoted
above we have dim 4 = oo.

There are other situations in which it can be proved that dim A= o by
showing that the matrix M(4;) is not inversible. The converse however is not
true as will be shown by an example. Indeed, we shall construct an algebra
A over any field K such that dim 4 = « but det M{A;) = -- 1.

Let K be an arbitrary field. Given a = (ay, . . . , ai), ai € K, we consider

the matrices

az 0 0 0 0 0 O
a1 0 0 0 O anaz 0 0 0 0 O
a3 2 0 0 0 [¢4] 0 ag 0 0 0 0
ml(af)= a1 0 az 0 O |» M2(Ll)= ar 0 0 a1 O O O |,
/41 0 0 az 0 243 0 00 a1 0 0
a as o7 o oy a0 0 0 0 a2 O
Ay 11 X3 A4 A5 A1z Ag
m(a) 0
m(a) = 0 o) |

The matrices m(a) form an algebra 4 with (4: K)=12. Basis elements
x; €4 (i=1,...,12) are obtained by taking x; = m(a) where a; = d;;.
The elements x; and x; are primitive idempotents with x; + ¥, = 1. Further

computation shows that

x14%1 = 1K+ x10K,

x:14%2 = 2K + 2:K + %K,

X24%1 = 23K + 24K + 5K,

X24%2 = %K + %K + 21K + %K.

This implies that the idempotents x; and x. are not isomorphic and thus form
a maximal set of non-isomorphic idempotents in 4. Thus the Cartan matrix
of A4 is
2 3
M=% 3

with determinant —1. The ground field K played no role in the argument and
the result remains valid for any extension of K.

Next consider the K-homomorphism ¢ : A - K given by
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‘F(m(d)) =y + A10.

We have
c(m(a)m(B)) = anPu+ aw B+ é)]lm Bro-i.
This shows that
e(m(a)m(B)) = ¢(m(B)mla))

and that if ¢(m(a)m(B)) =0 for all m(a) then m(B3) =0. Thus the hyperplane
¢ =0 contains no left ideals (except zero) and contains all commutators. Thus
.1 is a symmetric algebra and therefore also a Frobenius algebra (see [2]).
For such algebras it has been proved in [5] that dim.1=0, «. However .1 is

not semi-simple since i, . . ., %2 are nilpotent. Thus dim A= co.

Remark. The argument that dim 4 = o remains valid if K is an arbitrary
commutative ring (with a unit element). This follows from the generalized
treatment of symmetric and Frobenius algebras that will appear in the next

paper in this series.
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