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Abstract. Let n and r be positive integers with 1 < r < n, and let Xn =
{1, 2, . . . , n}. An r-set A and a partition π of Xn are said to be orthogonal if every
class of π meets A in exactly one element. We prove that if A1, A2, . . . , A(n

r) is a list of
the distinct r-sets of Xn with |Ai ∩ Ai+1| = r − 1 for i = 1, 2, . . . ,

(n
r

)
taken modulo

(n
r

)
,

then there exists a list of distinct partitions π1, π2, . . . , π(n
r) such that πi is orthogonal

to both Ai and Ai+1. This result states that any constant weight Gray code admits a
labeling by distinct orthogonal partitions. Using an algorithm from the literature on
Gray codes, we provide a surprisingly efficient algorithm that on input (n, r) outputs
an orthogonally labeled constant weight Gray code. We also prove a two-fold Gray
enumeration result, presenting an orthogonally labeled constant weight Gray code
in which the partition labels form a cycle in the covering graph of the lattice of all
partitions of Xn. This leads to a conjecture related to the Middle Levels Conjecture.
Finally, we provide an application of our results to calculating minimal generating sets
of idempotents for finite semigroups.

2000 Mathematics Subject Classification. 94B25, 05A18, 20M20.

1. Introduction and background. We prove a combinatorics result concerning
constant weight Gray codes, with application to minimal generating sets of finite
semigroups. The paper contributes techniques, algorithms, and problems aimed at
understanding the combinatorics of functions on finite sets and their efficient listing.

Let Xn = {1, 2 . . . , n}. In the 1950’s Frank Gray [9] developed algorithms that for
a positive integer n, list the 2n subsets of Xn in such a way that successive subsets differ
minimally, having a singleton symmetric difference (including the first and last set).
The lists, now known as Gray codes, were used by Gray to minimize errors in certain
analog computer operations.

For a given positive integer r with 1 ≤ r < n, refer to an r-element subset of Xn as
an r-set. Gray [9] also constructed listings of the r-sets of Xn so that successive r-sets
differ minimally, having two element symmetric difference (equivalently, successive r-
sets intersect in an (r − 1)-set). These r-set listings became known as constant weight
Gray codes; we specify parameters by calling such a code a constant weight (n, r)-Gray
code. A partition π of Xn is said to be a weight-r partition if π has r classes. In the
present paper, we prove that every (n, r)-Gray code admits what we call an orthogonal
labeling by weight-r partitions. An orthogonal labeling of a constant weight (n, r)-Gray
code leads to a listing of a minimal generating set for the finite semigroup K(n, r),
consisting of all transformations on Xn with image sets of r or fewer elements. We
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describe connections between orthogonal labeling and semigroup theory in Section 5,
where we also pose problems in combinatorics and semigroup theory.

1.1. Definitions and statements of theorems. Let n and r be positive integers such
that 1 < r < n. We consider the graph Gn,r = (Vr, Er) where the vertex set Vr is the set
of the r-sets of Xn and the edges Er connect precisely those pairs of sets in Vr that have
(r − 1)-element intersection. A Hamiltonian cycle of a graph G is a cycle that passes
through each vertex of G exactly once; G is Hamiltonian if it has a Hamiltonian cycle.
It is well-known that Gn,r is Hamiltonian [2], [3], [17], [21]. Note that (n, r)-Gray codes
and Hamiltonian cycles in Gn,r are one and the same. In the sequel we use the more
modern terminology, referring to an (n, r)-Gray code as a Hamiltonian cycle in Gn,r.
In Section 3, we provide a construction for a certain Hamiltonian cycle in Gn,r that
arises in connection with the well-known reflected Gray codes [17], [2].

An r-set A ⊆ Xn and a weight-r partition π are said to be orthogonal if A is a
transversal of π ; that is, if every class of π contains a single element of A. In what
follows, for clarity we omit commas from subsets, from lists of subsets and from cycles
in graphs.

DEFINITION 1.1. Let C = A1A2 . . . A(n
r) be a list of the distinct r-sets of Xn. We

say that C is orthogonally labeled if there exists a list of distinct weight-r parti-
tions π1π2 . . . π(n

r) of Xn such that the partition πi is orthogonal to both Ai and Ai+1

for 1 ≤ i ≤ (n
r

)
, modulo

(n
r

)
. When C is a Hamiltonian cycle in Gn,r it is said to be an

orthogonally labeled Hamiltonian cycle. We say that πi labels the edge AiAi+1 and write
A1π1A2π2 . . . A(n

r)π(n
r) to describe the orthogonal labeling of C.

EXAMPLE 1.2. An example of an orthogonal labeling of a Hamiltonian cycle G4,2

follows. We omit commas between elements and italicize partitions.

{12}134|2{23}124|3{13}14|23{34}123|4{24}12|34{14}234|1

Our interest in orthogonally labeled lists of the r-sets of Xn stems from the J. M.
Howie and R. B. McFadden paper [12], where the authors proved the following
theorem.

THEOREM 1.3 [12]. For positive integers n and r with 1 < r < n there exists an
orthogonally labeled list of the r-sets of Xn.

In general, the lists in the previous theorem are not Hamiltonian cycles in Gn,r. The
authors of [12] were interested in finding minimal generating sets for the semigroup
K(n, r). In Section 5, we describe the connection between Theorem 1.4 below and the
construction of minimal generating sets for K(n, r).

The goal here is not to provide a new proof of Theorem 1.3; as our results show, [12]
is a starting point for non-trivial combinatorial and semigroup theoretic investigations.
We shall state our results and make some comments about the relations between them
before presenting the proofs.

Our first theorem is combinatorial. It states that every Hamiltonian cycle in Gn,r

can be orthogonally labeled. Our proof is algorithmic: on input of a Hamiltonian cycle
in Gn,r we sequentially label its edges by orthogonal partitions.

THEOREM 1.4. For positive integers n and r with 1 < r < n, every Hamiltonian cycle
in Gn,r admits an orthogonal labeling by weight-r partitions.
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Theorem 1.3 follows from Theorem 1.4. Our next result has a different flavor;
instead of beginning with an input of a given Hamiltonian cycle, we input the pair of
integers (n, r). With this input, we output an orthogonally labeled Hamiltonian cycle in
Gn,r in a surprisingly efficient manner. To do so, we use an algorithm from Theorem 1.3
in tandem with an algorithm from the literature on constant weight Gray codes [2].

THEOREM 1.5. Let n and r be positive integers with 1 < r < n. On input (n, r), we
can output an orthogonally labeled Hamiltonian cycle in Gn,r in dn

(n
r

)
time, where d is a

constant independent of n and r.

In [2] the authors provide an algorithm which produces a specific Hamiltonian
cycle Hn,r with sets Hn,r(k). That algorithm calculates Hn,r(k + 1) from Hn,r(k) in
constant time independent of n and r (see Definition 3.1). Each r-set is stored as an
n-vector of 0’s and 1’s. An algorithm so efficient is possible because the two positions
that switch 0 and 1 have a high probability of occurring very near the positions that
were switched at the previous calculation. We therefore pose the following:

PROBLEM 1. Is there an algorithm which on input (n, r) with 1 < r < n outputs
an orthogonally labeled Hamiltonian cycle in such a way that the time needed for
calculations is c

(n
r

)
where c is independent of n and r?

The term combinatorial Gray code came to mean a listing of a set of combinatorial
objects so that successive objects differ in a prescribed minimal way [17]. The next result
involves “two-fold” combinatorial Gray enumeration of interspersed r-sets and weight-
r partitions of Xn. Recall that Part(n) is the lattice of partitions of Xn. Associated with
any finite lattice L is its covering graph Cov(L), the graph whose vertices are elements of
L, where two vertices are adjacent if one of the vertices covers the other in L. Let Partn,r

be the graph whose vertices are weight-r partitions of Xn, with two partitions adjacent
if the vertices are distance-two in Cov(Part(n)). That is, two vertices of Partn,r have an
edge if they are as close as possible in the covering graph determined by Part(n). It is
not difficult to verify that two partitions of weight r are distance-two if and only if they
agree on exactly r − 2 classes.

THEOREM 1.6. Let n and r be positive integers with 1 < r < n. There exists
an orthogonally labeled Hamiltonian cycle A1π1A2π2 . . . A(n

r)π(n
r) in Gn,r such that

π1π2 . . . π(n
r) is a cycle in Partn,r.

In the next subsection, we state a conjecture that, if true, significantly improves
Theorem 1.6.

1.2. Extensions of the Middle Levels Conjecture. Observe that if A1A2 . . . A(n
r)

is a Hamiltonian cycle in Gn,r then for i = 1, . . . ,
(n

r

)
, there exists a transposition βi

of Xn such that Aiβi = Ai+1. In the conjecture below, for n < 2r, we ask if there
exists an orthogonally labeled Hamiltonian cycle whose partitions can be obtained by
successively applying transpositions.

The Middle Levels Conjecture that follows is attributed to Paul Erdos, and there
is an extensive literature on the subject (see for example [18], [5], [4]). The Adjacent
Levels Conjecture is a natural generalization of the Middle Levels Conjecture. It is
known that if the Middle Levels Conjecture is true for all possible cases, then Adjacent
Levels Conjecture is also true for all possible cases [13]. (In [13] it is shown that for
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any given fixed partition type containing more than one non-singleton class there exists a
Hamiltonian cycle that can be labeled by partitions of this type.)

CONJECTURE 1. Adjacent Levels and Middle Levels Conjectures
The Adjacent Levels Conjecture states that for positive integers n and r with 1 < r < n

and n < 2r, there exists a sequence of distinct subsets A1B1A2B2 . . . A(n
r)B(n

r) of Xn such
that for i = 1, . . . ,

(n
r

)
, |Ai| = r and |Bi| = r − 1 and Ai ∩ Ai+1 = Bi, where i + 1 is taken

mod
(n

r

)
.

The Middle Levels Conjecture is the Adjacent Levels Conjecture for the special case
n = 2r − 1.

For a Hamiltonian cycle A1A2 . . . A(n
r) in Gn,r we can obtain Ai+1 by applying a

transposition to Ai, so it is natural to ask if for 1 < r < n there exist orthogonally labeled
cycles such that successive partitions can be obtained by applying a transposition.

CONJECTURE 2. Transposition Listing Conjecture
For positive integers n and r with 1 < r < n and n < 2r, there exists an orthogonally

labeled Hamiltonian cycle A1π1A2π2 . . . A(n
r)π(n

r) in Gn,r such that for each i = 1, . . . ,
(n

r

)
,

there is a transposition αi of Xn with πiαi = πi+1.

If π and θ are weight-r partitions of Xn such that θ = πα for a transposition
α, then π and θ are distance-two in Part(n). In particular, a positive answer to the
Transposition Listing Conjecture for some n and r improves Theorem 1.6 for that n
and r. We show that the Transposition Listing Conjecture is a logical consequence of
the Middle Levels Conjecture.

Given a partition π of Xn that has the non-singleton classes B1, B2, . . . , Bk and that
also may have some singleton classes, we use the notation π = B1|B2| . . . |Bk|singletons
to describe π .

DEFINITION 1.7. For a subset C of Xn let θC be the partition of Xn defined by
θC := (Xn − C)| singletons.

Let A1B1A2B2 . . . A(n
r)B(n

r) be a sequence of sets that satisfies the Adjacent Levels

Conjecture for given n and r. Observe first that for i = 1, . . . ,
(n

r

)
, since Bi = Ai ∩ Ai+1

and |Bi| = r − 1, it follows that A1A2 . . . A(n
r) is a Hamiltonian cycle in Gn,r. Moreover,

observe that Bi ∩ Bi+1 must be an (r − 2)-set and that there exists a transposition βi

such that Biβi = Bi+1.
Observe that θBi is orthogonal to both Ai and Ai+1 and that if βi is the transposition

of Xn that satisfies Biβi = Bi+1, then θBiβi = θBi+1 . In particular, the orthogonally labeled
Hamiltonian cycle A1θB1 . . . A(n

r)θB(n
r)

satisfies the Transposition Listing Conjecture for
n and r. Thus, if the Adjacent Levels Conjecture holds for n and r, the Transposition
Listing Conjecture also holds for n and r. By [13], it follows that if the Middle
Levels Conjecture holds for all possible cases, then so does the Transposition Listing
Conjecture.

With a weight-r partition π of Xn is associated a partition τ of n into a sum of
r positive integers. Corresponding to the class sizes of π we write τ = am1

1 . . . amk
k if π

has mi distinct classes of size ai for i = 1, . . . , k. (So �k
i=1aimi = n and �k

i=1mi = r.) A
partition π of Xn is said to be of type τ if the sizes of its classes determine the partition
τ of n. If an orthogonally labeled Hamiltonian cycle A1π1A2π2 . . . A(n

r)π(n
r) satisfies the
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condition described in the Transposition Listing Conjecture, then all partitions of the
orthogonal labeling have the same fixed type.

EXAMPLE 1.8. Let n = 4 and r = 2. There are two possible partition types with
which we have the potential to orthogonally label a Hamiltonian cycle in G4,2, namely
τ1 = 3 1 and τ2 = 22. However, there are only four distinct partitions of type τ1 and only
three distinct partitions of type 22. Since

(4
2

) = 6, we can not extend the Transposition
Listing Conjecture to the case n = 4 and r = 2.

In fact n = 4 and r = 2 is the only problem case in the following theorem.

THEOREM 1.9 [14]. For positive integers n and r with 1 < r < n, except for n = 4 and
r = 2, there exists an orthogonally labeled Hamiltonian cycle A1π1A2π2 . . . A(n

r)π(n
r) in

Gn,r such that for each i = 1, . . . ,
(n

r

)
, there exists a permutation γi of Xn with πiγi = πi+1.

Theorem 1.9 and the lack of a refutation of the long-standing Middle Levels
Conjecture point to a reasonable likelihood that the Transposition Listing Conjecture
is true. If it is true, then the Transposition Listing Conjecture would enable us to use the
word transposition rather than the word permutation in the statement of Theorem 1.9.

PROBLEM 2. Find an example of positive integers n and r with 1 < r < n, other
than n = 4 and r = 2, such that there exists no orthogonally labeled Hamiltonian cycle
satisfying the condition of the Transposition Listing Conjecture.

2. Orthogonally labeled Hamiltonian cycles (Theorem 1.4). We begin by introduc-
ing a concept used in subsequent constructions. Let C = A1A2 . . . A(n

r) be a Hamiltonian
cycle in Gn,r. For consecutive vertices Ai and Ai+1 in C, let Ci = Ai ∩ Ai+1 be the core
of the edge AiAi+1. Hence with C we may associate a core sequence C1C2 . . . C(n

r). Note
that core sequences depend on the selected orientation; we have chosen to start with
A1, move to A2, and so on. We will use the core sequences to guide the orthogonal
labeling of Hamiltonian cycles in Gn,r.

To each Ai with 1 ≤ i ≤ (n
r

)
, we can associate at most two cores: Ai−1 ∩ Ai and

Ai ∩ Ai+1. Some of the cores in the core sequence may appear more than once; we
call such cores repeated cores. The initial occurrence of a core is the first time that it
appears in the core sequence. An occurrence of a core other than its initial occurrence
will be called a repeated occurrence. A core C is said to occur consecutively if C appears
as . . . CC . . . in the sequence C1C2 . . . C(n

r), or if C = C(n
r) = C1.

LEMMA 2.1. Let n and r be positive integers with 1 < r < n. A given core C may
be associated with at most n − r edges of a Hamiltonian cycle. It can be associated with
n − r edges only if the occurrences of C are consecutive.

Proof. Suppose C is a core in the Hamiltonian cycle A1A2 . . . A(n
r). Since |C| = r − 1

there exist at most n − (r − 1) sets representing vertices for which C is a core, therefore
there are at most n − r edges for which C is a core. If C occurs k times then C is
associated with at least k + 1 vertices. The maximum happens precisely when those
occurrences are consecutive. �

Recall that for C ⊆ Xn, the partition θC of Xn is defined by θC := (X − C)|
singletons. If C is the core associated with the edge AiAi+1, then the partition θC

is orthogonal to Ai and to Ai+1.
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DEFINITION 2.2. Let 1 < r < n − 1 and let C = A1A2 . . . A(n
r) be a Hamiltonian

cycle in Gn,r. Suppose that AjAj+1 is an edge in C and Cj = Aj ∩ Aj+1 is a repeated core.
If the previous occurrence of C = Cj occurs at AiAi+1 (so i < j), let Ai = C ∪ {u}. For
each x ∈ C let δC,x,u be the partition of Xn having precisely two non-singleton classes:
{x, u} and Xn − (C ∪ {u}). Then each δC,x,u is said to be an allowable partition label for
AjAj+1.

Note that there exist r − 1 allowable partitions for AjAj+1. We list some
observations regarding allowable partition labels.

OBSERVATION 2.3. 1. δC,x,u is orthogonal to both Aj and Aj+1.
2. If a core C occurs three times or more, then (because of the way the element u was

determined in δC,x,u), the allowable partition labels for the different edges associated with
repeated occurrences of C are distinct.

Next we show that allowable partitions defined in terms of two (not necessarily
distinct) edges are distinct.

LEMMA 2.4. Let p, s be positive integers such that 1 ≤ p < s ≤ (n
r

)
, and let C and

D be repeated cores, say C is repeated at ApAp+1 and D at AsAs+1. Let δC,x,u be an
allowable partition for ApAp+1 and let δD,y,v be an allowable partition for AsAs+1. Then
δC,x,u �= δD,y,v.

Proof. Assume first that n − r > 2, and suppose that δC,x,u = δD,y,v. Then by
Observation 2.3, C �= D. Note that the singleton classes of δC,x,u = δD,y,v consist of the
elements of C − {x} = D − {y}. Because C �= D, it follows that x �= y. Because |Xn −
(C ∪ {u})| = |Xn − (D ∪ {v})| = n − r > 2, each of δC,x,u and δD,y,v contains exactly one
doubleton class, say {x, u} and {y, v} respectively, and so we have {x, u} = {y, v}. Thus
x = v and y = u. It follows that D ∪ {v} = D ∪ {x} = C ∪ D = C ∪ {y} = C ∪ {u}.

From the definition of allowable partitions for AsAs+1, observe that D ∪ {v} =
D ∪ {x} is the left-most r-set of the last edge with core D prior to AsAs+1. Similarly,
C ∪ {u} = C ∪ {y} is also the left-most r-set of the last edge with core C prior to
ApAp+1. But C ∪ {u} = D ∪ {v}, C �= D and each edge is assigned a single core (since
we have chosen an orientation). This contradiction completes the proof of the Lemma
for n − r > 2.

When n − r = 2, we encounter a difficulty because the allowable partitions each
have two doubleton classes, so we must take up an additional case. We will assume,
without loss of generality, that C(n

r) �= C1. Because n − r = 2, if a core repeats then it
repeats exactly twice, and it repeats consecutively (Lemma 1.1). Let C occur at Ap−1Ap,
where C ∪ {u} = Ap−1 and Ap = C ∪ {a}, and also at ApAp+1 where Ap+1 = C ∪ {b}. Let
D occur at As−1As where D ∪ {v} = As−1 and As = D ∪ {c} and also at AsAs+1, where
As+1 = D ∪ {e}. We assume that p + 1 ≤ s − 1. Then δC,x,u = {x, u}|{a, b}| singletons
and δD,y,v = {y, v}|{c, e}| singletons.

We assume {x, u} �= {y, v}, since the proof of the first part of the Lemma can be
applied when {x, u} = {y, v}. Since {x, u} �= {y, v}, we have {c, e} = {x, u} and {a, b} =
{y, v}. Because y ∈ D we have x �= y. Since the sets of singleton classes of δC,x,u and
δD,y,v are equal, being an (r − 2)-set of both C and D, it follows that D ∪ {x} = C ∪
{y}. Now D ∪ {x} = As or As+1, while C ∪ {y} = Ap or Ap+1. But p + 1 ≤ s − 1, so
{As, As+1} ∩ {Ap, Ap+1} = ∅, contradicting the fact that D ∪ {x} = C ∪ {y}. �
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In view of Lemma 2.4, to construct an algorithm that orthogonally labels the
given Hamiltonian cycle, it suffices to provide an algorithm that specifies how the core
element x ∈ C is chosen in δC,x,u.

Proof of Theorem 1.4. If r = n − 1 then clearly any list of all the (n − 1)-sets of Xn

is a Hamiltonian cycle in Gn,n−1. By Lemma 2.1 the cores of any such Hamiltonian
cycle are distinct. Thus we can label each edge of the cycle with a partition of the form
θC , where C is the core of the edge.

Now let r < n − 1. We use the core sequence of C to construct an orthogonal
labeling. If the first occurrence of a core C occurs at the edge AiAi+1, label AiAi+1 with
θC . If Cj = Aj ∩ Aj+1 is a repeated core, label it with an allowable partition of the form
δC,x,u. Note that Lemma 2.4 guarantees the existence of an allowable label for AjAj+1

that has not been used earlier in the process. �

REMARK 2.5. Observe that we use only two partition types (n − r + 1) 1r−1 and
(n − r) 2 1r−2 to label a given Hamiltonian cycle in Gn,r. The labeling procedure
described in Theorem 1.4, which we call A, is algorithmic once a method for choosing
x in C is given. The most inefficient aspect of A involves a backtracking procedure: at
each edge it must be determined if the associated core is an initial core or a repeated
core. Depending on the Hamiltonian cycle that is given as input, there may be many
backtracking searches each requiring on the order of

(n
r

)
checks. In particular, we can

not claim that A can be implemented in less than O
((n

r

)2)
time.

In the next section, we describe a certain class of Hamiltonian cycles in Gn,r for
which we can determine in constant time whether a given core is repeated. With such
Hamiltonian cycles, A will turn out to be remarkably efficient.

3. Efficient labeling algorithms (Theorem 1.5). In order to prove Theorem 1.5 we
require an algorithm with the following properties: for positive integers n and r with
1 < r < n, on input (n, r) the algorithm quickly produces a Hamiltonian cycle in Gn,r

with properties that enable it to be orthogonally labeled in an efficient manner. We
present the definition of Hamiltonian cycles Hn,r and demonstrate that they have the
required properties. The cycles Hn,r have been widely studied ([20], [16], [21]), arising
in the context of what are known as reflected Gray codes .

DEFINITION 3.1. Let n, r be positive integers with r ≤ n, and let Hn,r be defined
recursively as follows:

1. Hn,n = Xn.
2. Hn,1 = {1} . . . {n}.
3. For 1 < r < n, given that Hn−1,r−1 = A1A2 . . . A(n−1

r−1), let Hrev
n−1,r−1 ⊕ n be the list

(
A(n−1

r−1) ∪ {n}
)

. . . (A2 ∪ {n})(A1 ∪ {n}),

that results by adjoining n to each set of Hn−1,r−1 and then reversing the order of the
resulting listing.

4. For 1 < r < n, let Hn,r = Hn−1,r (Hrev
n−1,r−1 ⊕ n) be the list that results from

concatenating Hn−1,r and Hrev
n−1,r−1 ⊕ n.
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EXAMPLE 3.2. H2,2 = {12}.
H2,1 = {1}{2}.
H3,2 = H2,2(Hrev

2,1 ⊕ 3) = {12}{23}{13}.
H4,2 = H3,2(Hrev

3,1 ⊕ 4) = {12}{23}{13}{34}{24}{14}.
H4,3 = {123}{134}{234}{124}.
H5,3 = H4,3(Hrev

4,2 ⊕ 5) = {123}{134}{234}{124}{145}{245}{345}{135}{235}{125}.
The next lemma is a collection of observations, each of which follows from the

definition of Hn,r. For a positive integer k with 1 ≤ k ≤ (n
r

)
, denote by Hn,r(k) the k-th

set in Hn,r.

LEMMA 3.3. Let n and r be positive integers with 1 < r < n. Then
1. Hn,r is a Hamiltonian cycle.
2. Hn,r(1) = {1 . . . r} and Hn,r

((n
r

)) = {1 . . . (r − 1)n}.
3. Hn,r

((n − 1
r

))= {1 . . . (r − 1)(n − 1)} and Hn,r
((n − 1

r

) + 1
) = {1 . . . (r − 2)(n − 1)n}.

The next Lemma describes a crucial property of the cycles Hn,r that will allow us
to determine in constant time whether a core is repeated.

LEMMA 3.4. Let n and r be positive integers with 1 ≤ r ≤ n and let a core C repeat in
the core sequence of Hn,r. Then all occurrences of C in the core sequence are consecutive.
Moreover, for 1 < r < n the set {1 . . . (r − 1)} occurs as a core exactly once, with
{1 . . . (r − 1)} = C(n

r).

Proof. Note that the lemma holds vacuously for n = r and for r = 1. We treat
first the case when n = r + 1. Let C = A1A2 . . . Ar+1 be any Hamiltonian cycle in
Hr+1,r satisfying A1 = {1 . . . r} and Ar+1 = {1 . . . (r − 1)(r + 1)}. By Lemma 2.1 for the
case r = n − 1, the core sequence consists of distinct sets C1 . . . Cr+1. Since Cr+1 =
{1 . . . (r − 1)}, it follows that the lemma holds for n = r + 1.

Now assume that n > r + 1, and recall that Hn,r = Hn−1,r(Hrev
n−1,r−1 ⊕ n), with the

core sequence C1C2 . . . C(n
r). By inductive hypothesis, repeated cores in Hn−1,r are

consecutive. So are repeated cores in Hn−1,r−1 and therefore so also are those in Hrev
n−1,r−1.

Adjoining {n} to each set in Hn−1,r in the construction of Hrev
n−1,r−1 ⊕ n preserves the

fact that repeated cores here are consecutive and are distinct from cores in Hn−1,r.
To complete the proof of the lemma we only need to consider the cores

C(n−1
r ) = {1 . . . (r − 2)(n − 1)} and C(n

r) = {1 . . . (r − 1)} (see Lemma 3.3), and show that
all occurrences of {1 . . . (r − 2)(n − 1)} in the core sequence of Hn,r are consecutive,
while the core {1 . . . (r − 1)} occurs only once.

Assume that the core {1 . . . (r − 2)(n − 1)} repeats as the core Ci �= C(n−1
r ). Since n is

an element of each core Ci with
(n−1

r

)
< i <

(n
r

)
, we restrict our attention to the cores Ci

with 1 < i <
(n−1

r

)
. These cores are also cores of Hn−1,r = Hn−2,r(Hrev

n−2,r−1 ⊕ (n − 1)).
Since we are concerned with a core containing the element n − 1, we may further
restrict our attention to cores Ci with

(n−2
r

)
< i <

(n−1
r

)
.

If r = 2, then C(n−1
2 ) = {n − 1}, and the core sequence of Hrev

n−2,r−1 consists of empty

sets. Therefore Ci = {n − 1} for all i with
(n−2

2

)
< i <

(n−1
2

)
, and so by the inductive

assumption applied to n − 1 and 2, we conclude that {n − 1} repeats consecutively in
the core sequence of Hn,r.

If r > 2, we prove that {1 . . . (r − 2)(n − 1)} occurs exactly once in the core sequence
of Hn,r. Indeed if {1 . . . (r − 2)(n − 1)} = Ci with

(n−2
r

)
< i <

(n−1
r

)
, then because of the

recursive construction of Hn−1,r, the core Ci = C ∪ {n − 1}, where C = {1 . . . (r − 2)}
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is an element of the core sequence of Hn−2,r−1. By the inductive assumption applied
to n − 2 and r − 1, we have that C occurs uniquely in the core sequence of Hn−2,r−1

as a core of the edge Hn−2,r−1
((n−2

r−1

))
Hn−2,r−1(1). However this edge is removed in the

recursive construction of Hn−1,r−1. Hence the core {1 . . . (r − 2)(n − 1)} occurs exactly
once, as C(n−1

r ) in the core sequence of Hn,r.
To show the uniqueness of the core {1 . . . (r − 1)}, note that in the recursive

construction of Hn,r the edge Hn−1,r
((n−1

r

))
Hn−1,r(1) is removed. By the inductive

assumption, Hn−1,r
((n−1

r

)) ∩ Hn−1,r(1) = {1 . . . (r − 1)} and no other edge of Hn−1,r

has associated core equal to {1 . . . (r − 1)}. In particular, for i = 1, . . . ,
(n−1

r

) − 1,
Ci �= {1 . . . (r − 1)}, and the core C(n−1

r ) = {1 . . . (r − 2)(n − 1)} �= {1 . . . (r − 1)}. Also

for i such that
(n−1

r

)
< i <

(n
r

)
, we have n ∈ Ci. It now follows that {12 . . . (r − 1)}

occurs uniquely in the core sequence of Hn,r as the core C1. �

Much attention has been given to developing algorithms which on input (n, r)
efficiently output the cycles Hn,r ([20], [2], [21]), algorithms that do not depend on prior
knowledge of Hn−1,r and Hn,r−1. The amount of computation time needed to transform
Hn,r(k) into Hn,r(k + 1) is constant, independent of n, r and k. The algorithm of [2]
outputs an r-set at each of the

(n
r

)
stages. We use an n-tuple with entries in {0, 1} to

encode an r-set, thereby introducing a factor n in the following upper bound for the
time necessary to output Hn,r.

THEOREM 3.5 [2]. Let n and r be positive integers with 1 < r < n. There exists an
algorithm B with an associated constant c, independent of n, r and k, such that the time
needed to compute Hn,r(k + 1) from Hn,r(k) is bounded above by c. In particular, on input
(n, r), the algorithm B outputs the cycle Hn,r in no more than cn

(n
r

)
time.

The symmetric difference of two consecutive sets in Hn,r has size 2. Therefore, there
exists a transposition λ = (uk, vk) such that Hn,r(k)λ = Hn,r(k + 1), where uk ∈ Hn,r(k)
and vk /∈ Hn,r(k), so that Hn,r(k + 1) = (Hn,r(k) − {uk}) ∪ {vk}. The algorithm B of
Theorem 3.5 efficiently transforms Hn,r(k) into Hn,r(k + 1) using the structure of the
n-tuple that encodes Hn,r(k) to locate in constant time the elements uk, vk.

Algorithm B is initialized with {1 . . . r} in storage at its first stage. More generally,
algorithm B requires n bits of temporary storage at each stage: it has the n-tuple
Hn,r(k) in storage as it begins to compute uk, vk. We determine a new algorithm which
we call B+. We expand B to B+ by making use both of the output of B and also of its
intermediate calculations uk and vk.

Our modification involves 6n bits of temporary storage, eventually of the form:

(Hn,r(k))(uk−1, vk−1)(uk, vk)(ck).

The set Hn,r(k) is encoded as n-tuple, followed by two 2n-tuples holding relevant
information from B, and an n-tuple in which a specially selected element ck of Ck is
recorded. The elements ck are defined according to the following rules. The elements
u0 and v0 are undefined. We let c1 = r and for 1 < k <

(n
r

) − 1

vk−1 = uk ⇒ ck = ck−1

vk−1 �= uk ⇒ ck = vk−1.
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We initialize the temporary memory of B+ with the following 6n-tuple:

( )( , )( , )( ).

For k = 1, we call on B to provide Hn,r(1), and to calculate u1 and v1. We write into
the temporary memory of B+

(Hn,r(1))( , )(u1, v1)(r).

For k = 2, . . . ,
(n

r

) − 1, we call on B to provide Hn,r(k), and to calculate uk and vk. We
write into the temporary memory of B+

(Hn,r(k))(uk−1, vk−1)(uk, vk)(ck).

At this point B+ has the information necessary to compute the corresponding
orthogonal label by a procedure that we will describe in due course.

For k = (n
r

)
, when B has calculated Hn,r

((n
r

))
, we write into the temporary memory

of B+
(

Hn,r

((
n
n

)))(
u(n

r)−1, v(n
r)−1

)
( , )( ).

With algorithm B+ and its temporary memory at our disposal, we will be able to
proceed with the proof of Theorem 1.5. First we examine ck and Ck more closely, and
provide an example.

OBSERVATION 3.6. If 1 < r < n and k = 2, . . . ,
(n

r

) − 1, the cores Ck and Ck−1 are
equal if and only if uk = vk−1. By Lemma 3.4 we have an initial occurrence of Ck if and
only if uk �= vk−1.

The next lemma validates our claim that ck ∈ Ck.

LEMMA 3.7. For 1 ≤ k ≤ (n
r

)
we have that ck ∈ Ck.

Proof. Assume first that k = 1, so that by the definition c1 = r. Since Hn,r(1) =
{1 . . . r} we only need to show that r ∈ Hn,r(2). Recall that Hn,r = Hn−1,r(Hrev

n−1,r−1 ⊕ n).
If n = r + 1 then Hn,r(2) = Hr,r−1

(( r
r−1

)) ∪ {r + 1} = {1 . . . (r − 2)r(r + 1)}. If n > r + 1
then Hn,r(2) = Hn−1,r(2) and the result follows inductively.

Now assume that ck−1 ∈ Ck−1 for some k ≥ 2. If vk−1 = uk, we have that ck =
ck−1 ∈ Ck−1 = Ck, by Observation 3.6. If vk−1 �= uk then ck = vk−1 and Hn,r(k) = Ck ∪
{vk−1} = Ck ∪ {uk}. Thus ck = vk−1 ∈ Ck. �

Using the calculations from Example 3.2, we give a description of the temporary
memory at each of the ten stages for H5,3. In Figure 1, for k = 1, . . . , 9, the k-th line
gives the temporary memory at stage k after B has computed H5,3(k) and uk, vk where
defined.

Note that B+ has the same output as B at this point. For k = 1, . . . ,
(n

r

) − 1, by
Theorem 3.5 there exists a constant c, independent of n, r and k, such that B requires
at most time c to go from the k-th stage to the (k + 1)-th stage. Once B determines
uk, vk, the further steps involved in determining the temporary storage for the k-th
stage involve copying (uk, vk) into memory, and both computing and copying the new
value of ck. This last operation only involves a comparison of two n-tuples and can
be done in O(n) time. Finally, before proceeding to the next stage, (uk, vk) is shifted
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H5,3(k) (uk−1, vk−1)(uk, vk) (ck)
123 ( , ) (2, 4) (3)
134 (2, 4)(1, 2) (4)
234 (1, 2)(3, 1) (2)
124 (3, 1)(2, 5) (1)
145 (2, 5)(1, 2) (5)
245 (1, 2)(2, 3) (5)
345 (2, 3)(4, 1) (3)
135 (4, 1)(1, 2) (3)
235 (1, 2)(3, 1) (2)
125 (3, 1)( , ) ( )

Figure 1. Temporary memory of B+ for H5,3 at each stage

to the left and the information in the right-most 2n-tuple is erased. The temporary
memory storage is given as B+ adjusts the memory in preparation for the computation
of H5,3(k + 1) has the form:

(H5,3(k))(uk, vk)( , )(ck).

We can accomplish all of these steps in time bounded by dn, where d is some
constant independent of n, r and k. We summarize the discussion in this paragraph in
the next proposition.

PROPOSITION 3.8. For positive integers n and r with 1 < r < n there is associated with
B+ a constant d, such that for all k = 1, . . . ,

(n
r

) − 1, the time needed to proceed from
the k-th stage to the (k + 1)-st stage is bounded above by dn. Further, d is independent of
n, r and k.

The temporary memory that B+ provides will enable us to determine and output
a weight-r partition πk in constant time, independent of n, r and k, such that πk is an
orthogonal label for the edge Hn,r(k)Hn,r(k + 1), and π1, . . . , π(n

r)−1 are distinct. We also

define π(n
r) in such a way that it is an orthogonal label for the edge Hn,r

((n
r

))
Hn,r(1). This

labeling procedure will coincide with that of algorithm A of Theorem 1.4, but without
the backtracking. We now complete the proof of Theorem 1.5. Recall that the algorithm
A used in the proof of Theorem 1.4 for labeling an edge AkAk+1 of a Hamiltonian cycle
involves determining whether the core Ak ∩ Ak+1 = C is repeated or not. If C is not
repeated, then the edge is labeled θC . If C is repeated, with its previous occurrence being
Ai ∩ Ai+1 (where i < k), then after determining {u} = Ai − C and the least element c
in C, we label the edge AkAk+1 with δC,c,u = {u, c}|Xn − C ∪ {u}|singletons. To prove
Theorem 1.5 we apply the labeling procedure of A to Hn−1,r using B+ to produce Hn−1,r

together with the associated temporary memory.

Proof of Theorem 1.5. Recall that if k is a positive integer with 1 < k <
(n

r

)
then at

the k-th stage of B+, having computed Hn,r(k) but before Hn,r(k + 1) is output, in the
memory we have Hn,r(k)(uk−1, vk−1)(uk, vk)(ck).

Using A for 1 < k <
(n

r

)
, we compute πk, a weight-r partition of Xn which is

orthogonal to Hn,r(k) and Hn,r(k + 1). If uk �= vk−1 then by Observation 3.6, we
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H5,3(k) (uk−1, vk−1), (uk, vk) (ck) π(k) Output (= H5,3(k)πk)
123 ( , ) (2, 4) (3) θ13 (11100(01011 )
134 (2, 4)(1, 2) (4) θ34 (10110)(11001 )
234 (1, 2)(3, 1) (2) θ24 (01110)(10101 )
124 (3, 1)(2, 5) (1) θ14 (11010)(01101 )
145 (2, 5)(1, 2) (5) θ45 (10011)(11100 )
245 (1, 2)(2, 3) (5) δ45,5,1 (01011)(10001 )(01100 )
345 (2, 3)(4, 1) (3) θ35 (00111)(11010 )
135 (4, 1)(1, 2) (3) δ35,3,4 (10101)(00110 )(11000 )
235 (1, 2)(3, 1) (2) θ25 (01101)(10110 )
125 (3, 1)( , ) ( ) θ12 (11001)(00111 )

Figure 2. Temporary memory of B+ for H5,3 with A-determined
partition and output at each stage

have that Ck−1 �= Ck and we have an initial occurrence of Ck. So we label the edge
Hn,r(k)Hn,r(k + 1) with θCk .

If uk = vk−1 then by Observation 3.6 the core Ck is repeated and equals Ck−1.
Observe that Hn,r(k − 1) − Hn,r(k) = {uk−1}, which is contained in the memory of B+ at
the k-th stage. By Lemma 3.7, we have that ck ∈ Ck. We label the edge Hn,r(k)Hn,r(k + 1)
with the partition δCk,ck,uk−1 . When we come to the last set Hn,r

((n
r

))
, algorithm B

is programmed to output Hn,r
((n

r

))
and terminate. Algorithm B+ outputs the pair

Hn,r
((n

r

))
θ1...(r−1). It follows we have orthogonally labeled Hn,r.

The time involved in computing πk is bounded above by cn, where c is independent
of n, r and k. Because of the un-complicated nature of the two types of partition we
use, we can calculate each of the labeling partitions of Xn in time independent of n, r
and k, as we now describe. For k = 1, . . . ,

(n
r

) − 1, if πk = θCk , we write, in an n-tuple,
the unique non-singleton class (which consists of the complement C′

k of the core Ck).
To do so, we consult Hn,r(k) and uk and switch appropriate 0’s to 1’s, and vice versa.
We then output Hn,r(k)C′

k. On the other hand, if πk = δCk,ck,uk−1 , we output {ck, uk−1}
and C′

k − {uk−1} as n-tuples. At the last step, we output the pair Hn,r
((n

r

))
θ1...(r−1). We

note that the labeling of Hn,r
((n

r

))
Hn,r(1) coincides with the labeling of A, since the core

Hn,r
((n

r

)) ∩ Hn,r(1) = {1 . . . (r − 1)}, and by Lemma 3.4, the core {1 . . . (r − 1)} occurs
exactly once, as the core of the edge Hn,r

((n
r

))
Hn,r(1).

Since B (which only outputs Hn,r) can be implemented in cn
(n

r

)
time, for some

constant c independent of n, it follows that the computation time required to output
the orthogonally labeled cycle Hn,r is dn

(n
r

)
, where d is independent of n and r. �

Figure 2 indicates how the algorithm operates for the orthogonal labeling of H5,3.
The information to the left of the triple boundary lines is used to determine πk, which
is provided to the right of the boundary. The output at the k-th stage is indicated in
the next box to the right, with the partition italicized.

REMARK 3.9. In Theorem 1.5, the computation of πk is very quick, requiring only
a constant number of comparisons of n-tuples. A weight r-partition π requires nr time
to output since π consists of r distinct subsets of Xn. But each partition produced by A
requires no more than 3n time. As a result, the output of the theorem is compact. The
orthogonal labeling requires dn

(n
r

)
time. Also, it requires only space linear in n and r.

In fact, it only requires tn space, where t is a constant independent of n and r.
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4. Distance two labeling partitions (Theorem 1.6). The next lemma is a list of
easily proved and well known facts concerning the lattice Part(n) of partitions of Xn.

LEMMA 4.1. Let α and β be weight r partitions in Part(n). Then the following are
equivalent :

1. αβ is an edge in Partn,r;
2. α ∨ β covers α 1;
3. α and β have exactly r − 2 partition classes in common.

We modify slightly the orthogonal labeling algorithmA of Theorem 1.4 to produce
an orthogonal labeling of Hn,r in which successive partitions are adjacent in Partn,r.

Proof of Theorem 1.6. Let C1 . . . C(n
r) be the core sequence associated with Hn,r. In

algorithmA, if we have an initial occurrence of Ck then we label the corresponding edge
with θCk . Otherwise Ck is a repeated core, so by Lemma 3.4 we have that Ck = Ck−1.
Thus there exists a unique element uk−1 ∈ Hn,r(k − 1) − Ck. For the first core C �= Ck

that follows Ck in the core sequence, since C ∩ Ck is an (r − 2)-set, there exists a unique
element wk ∈ Ck − C. We orthogonally label the corresponding edge with the partition
δCk,wk,uk−1 . Thus we have specified a sequence of partitions π1π2 . . . π(n

r) which, by the
proof of Theorem 1.4, constitutes an orthogonal labeling of Hn,r.

Given any core Ci = Hn,r(i)Hn,r(i + 1), an element x of Ci and an element w /∈
Hn,r(i) ∪ Hn,r(i + 1), note that in the lattice Part(n), the weight-(r − 1) partition θCi−{x}
covers both θCi and δCi,x,w.

We will show that for any two successive partitions πk and πk+1 in the sequence
π1π2 . . . π(n

r), there exists a partition of the form θCk−{x} which covers both πk and πk+1

in Part(n). As above, let wk be the unique element of Ck that does not belong to the
first successor C of Ck distinct from Ck in the core sequence. Then πkθCk−{wk}πk+1

is the desired two-path. Indeed, either πk = θCk or πk = δCk,wk,uk−1 , so θCk−{wk} covers
πk. If Ck �= Ck+1 then πk = θCk+1 with Ck − {wk} ⊂ Ck+1. If Ck = Ck+1 then by our
construction above, πk+1 = δCk+1,wk+1,uk = δCk,wk,uk , so θCk−{wk} covers πk+1. �

REMARK 4.2. Because a repeated core in Hn,r can repeat no more than n − r − 1
times, using on the order of n2 temporary memory space, standard arguments can
be used to show that the time used by the above modification of A is O

(
n2

(n
r

))
.

Specifically, on input (n, r), we can output in time O
(
n2

(n
r

))
an orthogonally labeled

Hamiltonian cycle in Partn,r satisfying the closeness-of-partitions condition described
in Theorem 1.6.

5. An application to minimal generating sets for finite semigroups. In this section
we elucidate connections between orthogonally labeled Hamiltonian cycles and
generating sets of certain finite semigroups. For concepts of semigroup theory see,
for example, [11]. A subset U of a semigroup S is a generating set for S if every element
of S may be written as a finite product of elements of U ; in this case we write S = 〈U〉.
If 〈U〉 = S and no proper subset of U generates S, then U is called a minimal generating
set for S. The rank of S is the size of a minimal generating set.

An element e of S is said to be idempotent if e2 = e. If S has a generating set
consisting of idempotents, then S is said to be idempotent-generated. The idempotent

1Note that because Part(n) is upper semi-modular [1], the fact that α ∨ β covers α is equivalent to α covers
α ∧ β.
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rank of an idempotent-generated semigroup is the size of a minimal generating set
consisting of idempotents. Of course, the idempotent rank of S is at least as large
as the rank of S. Idempotents are extremely important in the structure theory of
semigroups, both finite and infinite. They help classify different types of semigroups,
locate subgroups, locate (local) inverse elements, determine left or right ideals, and
describe the general structure of a given semigroup. Our interest in idempotents stems
from their role in sets of generators for a given semigroup.

Much of the work involving idempotent-generated semigroups arises in the context
of the singular (non-invertible) endomorphisms of a structured set. J. A. Erdos [6]
proved that the semigroup of singular endomorphisms of a finite dimensional vector
space is idempotent-generated. J. B. Fountain and A. Lewin [8] proved that the
semigroup of singular order-preserving endomorphisms of an independence algebra
of finite rank is idempotent-generated, while A. Oliveira [15] proved a similar result for
order-independence algebras. There are analogous results for other important classes
of semigroups.

Our application is to the particular subsemigroup K(n, r) of Tn. Here Tn is the full
transformation semigroup on the set Xn, namely the set of all maps α : Xn → Xn under
the operation of composition. Each element α ∈ Tn has an image im(α) = {xα : x ∈
Tn} and a kernel ker(α) = {(x, y) ∈ X2

n : xα = yα}. We shall write α = [x1x2 . . . xn] to
indicate that α maps 1 to x1, 2 to x2 . . . and n to xn. When im(α) is an r-set of Xn then
ker(α) is a weight-r partition of Xn. For 1 ≤ r ≤ n, we set K(n, r) = {α ∈ Tn : |im(α)| ≤
r}. The singular part of Tn is K(n, n − 1). In [7], A. E. Evseev and N. E. Podran proved
that K(n, r) is generated by its idempotents whose images have r elements. In [12], John
M. Howie and the second author proved the following theorem.

THEOREM 5.1. The idempotent rank of K(n, r) is S(n, r), the Stirling number of the
second kind.

This last result is an existence theorem, proved by induction on n and r. To
establish it, the authors showed the existence of disjoint sets U1 and U2 of idempotents
in K(n, r) such that 〈U1 ∪ U2〉 = K(n, r). Each idempotent ε in Tn is the identity on
im(ε), which is orthogonal to ker(ε). Each pair consisting of an r-set A and a weight-r
partition π orthogonal to A uniquely determines an idempotent εAπ : Xn → Xn such
that im(εAπ ) = A and ker(eAπ ) = π . The set U1 was chosen as {εA1π1εA2π2 . . . εA(n

r)π(n
r)
}

where A1π1A2π2 . . . A(n
r)π(n

r) satisfy the conditions of Theorem 1.3. The set U2 need

only be selected so that each of the remaining S(n, r) − (n
r

)
partitions of Xn appears

exactly once as the kernel of an element of U2.
We will utilize our results from Sections 1, 2 and 3 to produce algorithmically

a set U1 as described above as part of a generating set for K(n, r). A second set
U2 needed to complete the generating set may be chosen at will to represent the
remaining weight-r partitions of Xn. Let A1π1A2π2 . . . A(n

r)π(n
r) be an orthogonally

labeled Hamiltonian cycle in Gn,r as described in Theorem 1.6. Then this Theorem
implies that the associated sequence of idempotents εA1π1εA2π2 . . . εA(n

r)π(n
r)

differ in a
prescribed minimal way: successive images differ minimally by intersecting in (r − 1)-
sets, and successive kernels differ minimally by being distance-two in Partn,r.

Given an r-set A and a weight-r partition π orthogonal to A, the idempotent
εAπ : Xn → Xn is defined as follows: each class of π is mapped by εAπ is mapped to the
unique element of A which belongs to that class.
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H5,3(k)πk εH5,3(k)πk
(11100(01011 ) [12322]
(10110)(11001 ) [11341]
(01110)(10101 ) [32343]
(11010)(01101 ) [12242]
(10011)(11100 ) [11145]
(01011)(10001 )(01100 ) [52245]
(00111)(11010 ) [44345]
(10101)(00110 )(11000 ) [11335]
(01101)(10110 ) [32335]
(11001)(00111 ) [12555]

Figure 3. The set U1 of idempotents determined by H5,3(k)πk

One possible choice of the set U2 that represents each of the remaining S(5, 3) −(5
3

) = 25 − 10 = 15 partitions of X5 exactly once is: {[11344], [11343], [12144],
[12142], [12125], [12313], [12312], [12215], [12331], [12321], [12244], [12323], [12332]}.
Then 〈U1 ∪ U2〉 = K(5, 3), a semigroup consisting of 1805 elements. (See Figure 3.)

The result [12] identifying the idempotent rank of K(n, r) leads to the following
definition and an open problem. Observe that K(n, r)/K(n, r − 1) is a completely 0-
simple idempotent-generated semigroup with idempotent rank S(n, r). Its maximal D
class has S(n, r) distinct R-classes and

(n
r

)
distinct L-classes. For a finite completely

0-simple semigroup S, let RS and LS denote respectively the number ofR andL-classes
of the maximal D-class of S. Observe that the rank and idempotent rank of S are both
at least max{RS, LS}.

DEFINITION 5.2. Let S be a finite idempotent-generated completely 0-simple
semigroup. We say that S is extremally-generated if its idempotent rank is max{RS, LS}.

For example, since RK(n,r) = S(n, r) ≥ (n
r

) = LK(n,r), Theorem 5.1 shows that K(n, r)
is extremally generated. Moreover, if τ is a weight-r partition type, and S(τ ) is the
subsemigroup of K(n, r) generated by all the transformations α with ker(α) of type τ , it
was shown in [13] that S(τ ) is extremally generated. This leads to the following natural
problem.

PROBLEM 3. Characterize extremally-generated completely 0-simple semigroups.
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