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The model-implied instrumental variable (MIIV) estimator is an equation-by-equation estimator of
structural equation models that is more robust to structural misspecifications than full information estima-
tors. Previous studies have concentrated on endogenous variables that are all continuous (MIIV-2SLS) or
all ordinal . We develop a unified MIIV approach that applies to a mixture of binary, ordinal, censored,
or continuous endogenous observed variables. We include estimates of factor loadings, regression coeffi-
cients, variances, and covariances along with their asymptotic standard errors. In addition, we create new
goodness of fit tests of the model and overidentification tests of single equations. Our simulation study
shows that the proposed MIIV approach is more robust to structural misspecifications than diagonally
weighted least squares (DWLS) and that both the goodness of fit model tests and the overidentification
equations tests can detect structural misspecifications. We also find that the bias in asymptotic standard
errors for theMIIV estimators of factor loadings and regression coefficients are often lower than the DWLS
ones, though the differences are small in large samples. Our analysis shows that scaling indicators with
low reliability can adversely affect the MIIV estimators. Also, using a small subset of MIIVs reduces small
sample bias of coefficient estimates, but can lower the power of overidentification tests of equations.
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1. Introduction

Structural equation modeling (SEM) is widely used in social and behavior sciences. Endoge-
nous observed variables (e.g., indicators) in a SEM model can be continuous, binary, ordinal, or
censored. When all endogenous observed variables are continuous, systemwide maximum like-
lihood (ML) is the dominant estimator. When binary or ordinal observed endogenous variables
are present, researchers frequently use unweighted least squares (ULS, Muthén, 1978) and diag-
onally weighted least squares (DWLS, Muthén et al., 1997). Typically, these estimators require
the estimation of a polychoric correlation matrix as a first stage. In the second stage, they use
the polychoric correlation matrix as input and apply systemwide estimators such as ML, ULS,
and DWLS. They are systemwide in the sense that all parameter estimates for all equations in the
whole structural equation model are estimated simultaneously. Despite their popularity, various
studies (e.g., Bollen, 1996; Jin et al., 2016; Nestler, 2013; Yang-Wallentin et al., 2010) have shown
that the systemwide estimators can spread the bias due tomodel misspecifications such as nonzero
coefficients (“omitted variables") or covariances of errors mistakenly set to zero. Our focus is on
these types of misspecifications.
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To reduce the impacts of such model misspecifications, Bollen (1996) proposed a two-stage
least squares (2SLS) approach using model-implied instrumental variables (MIIVs) when all
endogenous observed variables are continuous. Bollen and Maydeu-Olivares (2007) extend this
approach to models with observed ordinal endogenous variables and called it the polychoric
instrumental variable (PIV) estimator. The MIIVs for the 2SLS and PIV estimators are easily
found from the pool of variables in the SEM model by the algorithm described in Bollen (1996,
page 114) and implemented in SAS by Bollen and Bauer (2004), in Stata by Bauldry (2014), and
in R by Fisher et al. (2017). The instrumental variables from this approach are model-implied
instrumental variables; in that according to the structure of the model, these MIIVs should be
uncorrelated with the error of the equation to be estimated. 2SLS with MIIVs is denoted by
MIIV-2SLS to distinguish it from the 2SLS with auxiliary, external instrumental variables that
are not part of the original model. In practice, auxiliary instruments (Bollen, 2012) are more
common than MIIVs so it is important to distinguish between them. Both MIIV-2SLS and PIV
approaches estimate the parameters in an equation-by-equation manner, in which each indicator
equationwith its factor loadings and each latent variable equationwith its regression coefficients is
estimated separately from each other. Furthermore, the estimator is non-interative (Bollen, 1996),
which eliminates the non-convergence issue that can occur with the systemwide estimators. The
simulation study of Bollen et al. (2007) showed that the MIIV-2SLS estimator has accuracy
comparable to the traditional ML estimator if the model is correctly specified and is often more
robust if the model is misspecified. Similarly, Jin et al. (2016) and Nestler (2013) showed that the
PIV estimator is as accurate as the ULS and DWLS estimators in the correctly specified model
and is more accurate in the structurally misspecified model. The reader is directed to Bollen et
al. (2018a) and Bollen (2020) for conditions under which the MIIV-2SLS and PIV approaches
remain robust to structural misspecifications. Recently, the principle of MIIV-2SLS and PIV has
been generalized by Bollen et al. (2014) to SEMwith generalized method of moments estimators,
by Fisher et al. (2019) to dynamic time-series models, by Nestler (2014) to handle equality
constraints, by Nestler (2015a) to nonlinear SEMmodels, and by Nestler (2015b) to growth curve
models, just to name a few.

Another advantage of the MIIV-2SLS and PIV method is the local, equation-specific test of
model specification. The most common method to improve model fit and search for model mis-
specification with systemwide estimators is to sequentially apply the modification index (Sörbom,
1989). However, the modification index can lead to severe errors (MacCallum, 1986; MacCallum
et al., 1992). Bollen (1996, pages 117-118) and Kirby and Bollen (2009) recommend the Sargan
(Sargan, 1958) test for equation-by-equation overidentification tests of misspecification. Jin and
Cao (2018) showed that these tests are not suitable for ordinal endogenous variables and proposed
alternative overidentification tests for such variables.

The cited studies focused on situationswhere all endogenous variableswere either continuous
(MIIV-2SLS) or all were ordinal (PIV). To our knowledge, the only exception is a parallel study
by Fisher and Bollen (2020), which also considered inference using MIIV with different types of
observed variables. The main purpose of our study is to unify theMIIV-2SLS and PIV approaches
and propose an approach for a SEM model with different variable types, such as continuous,
ordinal, binary, or a mixture of different types. Hereafter, the unified approach is termed theMIIV
approach. We will present the MIIV point estimators, which is in line with the estimator in Fisher
and Bollen (2020). Two sets of standard errors are proposed. One set of standard errors matches
those in Bollen (1996) for observed continuous variables in finite sample and is asymptotically
equivalent to those in Bollen and Maydeu-Olivares (2007) for observed ordinal variables. The
other is asymptotically equivalent to Bollen (1996) but equivalent to Bollen andMaydeu-Olivares
(2007) in finite samples. Fisher and Bollen (2020) only focused on point estimation and standard
error estimation. In contrast, we will also develop goodness-of-fit tests for the whole model and
overidentification tests for individual equations. Similarly to the standard error estimators, one set
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of overidentification tests for equations matches Kirby and Bollen (2009) for observed continuous
variables and the other set matches Jin and Cao (2018) for observed ordinal variables.

The rest of the paper is organized as follows. We first briefly present the SEM model and
the MIIV idea. Then, we develop the estimation of SEMs with the unified MIIV approach. Next,
we provide model goodness-of-fit tests and overidentification tests of equations. We conduct a
Monte Carlo simulation to investigate the small sample properties of the proposed approach. An
empirical example illustrates our approach. A discussion and conclusion section ends the paper.

2. Structural Equation Modeling and Instrumental Variable

2.1. SEM Model

Consider the SEM model

y∗ = �η + ε, (1)

η = Bη + ζ , (2)

where y∗ is the vector of continuous variables,� is the matrix of factor loadings, η is the vector of
latent variables, B is thematrix of latent regression coefficient, and ε and ζ are disturbances.With-
out loss of generality, we assume that y∗ has a zeromean.We can justify the zeromean assumption
by formingmean deviation variables for the observed continuous variables and for observed binary
and ordinal variables researchers commonly assume that their underlying variables have means of
zero. We also assume that η and ε are independent and that ζ and ε are independent. The η vector
consists of endogenous and exogenous latent variables with the exogenous variables independent
of the errors in ζ that correspond to the endogenous variables. Furthermore, the disturbances ε

and ζ are homoscedastic, where var(ε) = � and var(ζ ) = �.
The observed vector is denoted by y, which is not necessarily the same as y∗. If y j , the

j th entry in y, is continuous, then y j = y∗
j , where y∗

j is the j th entry in y∗. If y j is binary or
ordinal, then it is obtained by categorizing the underlying continuous variable y∗

j according to the
threshold values. If y j is censored, then it is obtained by censoring y∗

j at a boundary. If y
∗ only

contains observed continuous variables, we only need it to have finite moments up to the fourth
order. If y∗ contains any observed binary, ordinal, or censored variables, we assume η, ε, and ζ

follow a multivariate normal distribution.
Let � be the population covariance matrix of y∗. If some entries in y∗ are discrete, the

corresponding variances are fixed to 1 for identification. Estimation of S, the sample counterpart
of �, depends on the types of indicators. For example, using Olsson (1979), we can estimate the
polychoric correlation for two ordinal variables, and using Olsson et al. (1982), we can estimate
the polyserial correlation for one ordinal indicator and one continuous indicator. Throughout the
paper, we assume that S is a consistent estimator of � and that

√
n (s − σ )

d→ N (0,ϒ) ,

where n is the sample size, s is the vector of nonredundant free entries in S, σ is the vector of
corresponding free entries in �, and ϒ is the asymptotic covariance matrix.

Our SEM model implies that � equals the implied covariance matrix of

� (θ) = � (I − B)−1 � (I − B)−T �T + �, (3)
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where θ is the vector of all model parameters (i.e., free parameters in �, B, �, and �) and
(·)−T takes the transpose of the inverse of the enclosed matrix. The diagonal entries of � that
correspond to binary and ordinal indicators are not free parameters, but are restricted so that the
corresponding entries in � (θ) are 1 for identification. The traditional systemwide approaches
estimate θ by minimizing the fit function

T (θ) = (s − σ (θ))T Ŵ (s − σ (θ)) , (4)

where σ (θ) is the vector of free entries in� (θ) and the weight matrix Ŵ is a consistent estimator
of W . Different weight matrices yield different estimators, e.g., W = I in unweighted least
squares (ULS; Muthén, 1978),W is the inverse of diagonal elements ofϒ in diagonally weighted
least squares (DWLS; Muthén et al., 1997), and W = ϒ−1 in weighted least squares (WLS;
Browne, 1984).

2.2. Latent to Observed Variable (L2O) Transformation

Each latent variable must be given a scale or metric. To set the scale of η, the most common
approach is to choose one indicator per latent variable and to set its factor loading to one so that
it becomes the scaling indicator. When possible, we should choose the scaling indicator to have
factor complexity of one and a high R2. Suppose that we partition y∗ into ( y∗T

1 , y∗T
2 )T and ε

into (εT1 , εT2 )T such that y∗
1 = η + ε1 is for the scaling indicators and y∗

2 = �2η + ε2 contains
unknown factor loadings for the nonscaling indicators. Following Bollen and Maydeu-Olivares
(2007), the SEM model is equivalent to

(
y∗
2
y∗
1

)
=

(
�2
B

)
y∗
1 +

(
ε2 − �2ε1

ζ + (I − B) ε1

)
, (5)

which is simply a multivariate regression system with “observed” variables. This is referred to
as the Latent-to-Observed (L2O) variable transformation (Bollen, 2019), because the original
equation system with latent variables is transformed to one without latent variables. When we
have noncontinuous endogenous observed variables, the L2O transformation results in underlying
scaling variables rather than observed ones. Regardless, in most cases, this leads the regressors
to be correlated with one or more parts of the composite error terms. We can use MIIVs to
consistently estimate the regression coefficients in B and �2.

Equation (5) indicates that we can partition θ into two vectors: θ1 (free parameters in �2 and
B) and θ2 (the nonredundant free parameters in � and �). To estimate θ1, Bollen (1996) and
Bollen andMaydeu-Olivares (2007) proposed to consider the equation system (5) in a row-by-row
manner. Suppose that the j th row of the system (5) is

y∗
j = z∗Tj θ

( j)
1 + e j , (6)

where z∗j is the right-hand side explanatory variable vector, and θ
( j)
1 is the vector of parameters.

We assume that there exists a non-empty subset of z∗j that is correlated with the error e j . As the
names implies, the MIIVs, denoted by v∗

j , are selected from the variables y∗, excluding y∗
j and

the elements in z∗j that have nonzero correlations with e j . The valid MIIVs v∗
j must be correlated

with the endogenous variable z∗j as well as uncorrelated with the error term e j , and the number
of v∗

j must be no lower than the number of z∗j . We can find the pool of all valid MIIVs for a given
equation by using the algorithms proposed by Bollen (1996). Due to space limitation, we direct

Downloaded from https://www.cambridge.org/core. 12 Jan 2025 at 10:06:09, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


S. JIN ET AL.

the readers to Bollen (2019) for examples of Eq. (6) and the algorithm of selecting valid IVs. It
is worth mentioning that the choice of the scaling indicator will affect the choice of MIIVs and
the estimates. Though the estimator remains consistent, its asymptotic variance could differ. As
mentioned earlier, it is preferable to choose as scaling indicators those indicators that are thought
to be most closely related to the latent variable that they measure.

Bollen (1996; 2001), Bollen et al. (2007), and Kirby and Bollen (2009) have investigated the
case where y is continuous. In contrast, Bollen and Maydeu-Olivares (2007), Jin et al. (2016),
Jin and Cao (2018), and Nestler (2013) have investigated the case where y is ordinal. Fisher and
Bollen (2020) is the only study we know of that considered indicators of different types.

3. Estimation by the MIIV Approach

In this section, we propose a unified approach for estimating and testing models with continu-
ous, binary, or ordinal endogenous observed variables. The approach applies as long as the sample
moment matrix is a consistent estimator of the population moment matrix, with an estimate of
the asymptotic covariance matrix of the elements of such matrices.

3.1. Point Estimator of θ1

If Eq. (6) is correctly specified and the MIIVs are valid, then θ
( j)
1 = γ j (σ ), where

γ j (σ ) =
(
�T

vz, j�
−1
vv, j�vz, j

)−1
�T

vz, j�
−1
vv, j�vy, j ,

with�vz, j being the covariance matrix between v∗
j and z∗j , and�vv, j being the covariance matrix

of v∗
j , and �vy, j being the covariance matrix between v∗

j and y∗
j . The MIIV estimator is

θ̂
( j)
1 = γ j (s) =

(
STvz, j S

−1
vv, j Svz, j

)−1
STvz, j S

−1
vv, j Svy, j , (7)

where S··, j is the sample counterpart of �··, j . The same estimator was proposed by Bollen and
Maydeu-Olivares (2007) and Fisher and Bollen (2020). If all observed variables are continuous,
the MIIV estimator (7) is equivalent to the estimator in Bollen (1996)

θ̂
( j)
1 =

[
ZT

j V j

(
V T

j V j

)−1
V T

j Z j

]−1

ZT
j V j

(
V T

j V j

)−1
V T

j y j ,

where y j , Z j , and V j are the demeaned data matrices of y∗
j , z

∗
j , and v∗

j , respectively. Similar to

MIIV-2SLS and PIV, the MIIV estimator is a consistent estimator of θ
( j)
1 , as long as Eq. (6) is

correctly specified, the inverses in Eq. (7) exist, and the MIIVs are valid. This implies that we can

maintain consistency of θ̂
( j)
1 in a misspecified SEM model under certain conditions (e.g., Bollen,

2001; Bollen et al., 2018b; Bollen, 2020). In contrast, the systemwide estimators sometimes spread
the bias from a poorly specified equation in one part of the model to a correctly specified equation
in another part.
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3.2. Standard Error of θ̂1

If we collect θ̂
( j)
1 for all j , the MIIV estimator of θ1 is θ̂1 = γ (s), where γ (σ ) is the vector

that stacks all γ j (σ ) on top of the other. The delta method indicates that

√
n

(
θ̂1 − θ∗

1

)
= K (σ )

√
n (s − σ ) + oP (1) , (8)

where θ∗
1 is the asymptotic limit of θ̂1 and K (σ ) = ∂γ (σ ) /∂σ T . Then, we obtain

√
n

(
θ̂

( j)
1 − θ

( j)∗
1

)
d→ N

(
0, K j (σ )ϒK T

j (σ )
)

, (9)

where θ
( j)∗
1 is the asymptotic limit of θ̂

( j)
1 and K j (σ ) = ∂γ j (σ ) /∂σ T . The asymptotic distri-

bution (9) holds even when the MIIVs are invalid and θ
( j)∗
1 is not the same as θ

( j)
1 . To compute

K j (σ ), the chain rule yields

∂γ j (σ )

∂σi
=

(
�T

vz, j�
−1
vv, j�vz, j

)−1 ∂�T
vz, j�

−1
vv, j

∂σi

[
�vy, j − �vz, jγ j (σ )

]

+
(
�T

vz, j�
−1
vv, j�vz, j

)−1
�T

vz, j�
−1
vv, j

[
∂�vy, j

∂σi
− ∂�vz, j

∂σi
γ j (σ )

]
, (10)

where σi is the i th entry in σ .
To obtain the estimator of the standard error, K j (σ ) is estimated by K j (s) and estimation

of ϒ depends on the distributional assumption. In general, we can estimate ϒ using the approach
in Muthén (1984). If all observed variables are ordinal, we can estimate ϒ from Jöreskog (1994).
If all observed variables are continuous, we estimate ϒ using the fourth-order moments as in
the asymptotic distribution-free approach (Browne, 1984). If all observed variables are normally
distributed, we can estimate ϒ by 2D+ (S ⊗ S) D+T , where D is a duplication matrix and

D+ = (
DT D

)−1
DT (Browne, 1987).

3.3. Equivalence of Standard Errors of θ̂1

The asymptotic distribution attained by Bollen and Maydeu-Olivares (2007) when all
observed variables are ordinal is the same as the asymptotic distribution (9). The same distri-
bution is also used by Fisher and Bollen (2020). As mentioned above, this asymptotic distribution
is applicable regardless of the validity of the MIIVs. If Eq. (6) is correctly specified and all MIIVs
are valid, �vy, j = �vz, jθ

( j)
1 and γ j (σ ) = θ

( j)
1 , then the first term in equation (10) vanishes and

K j (σ )ϒK T
j (σ ) reduces to

(
�T

vz, j�
−1
vv, j�vz, j

)−1
�T

vz, j�
−1
vv, j j�

−1
vv, j�vz, j

(
�T

vz, j�
−1
vv, j�vz, j

)−1
, (11)

where g j (σ ) = �vy, j − �vz, jθ
( j)
1 and

 j =
(

∂ g j (σ )

∂σ T

)
ϒ

(
∂ g j (σ )

∂σ T

)T

.

Downloaded from https://www.cambridge.org/core. 12 Jan 2025 at 10:06:09, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


S. JIN ET AL.

The covariance matrix (11) can be estimated by

(
STvz, j S

−1
vv, j Svz, j

)−1
STvz, j S

−1
vv, j ̂ j S

−1
vv, j Svz, j

(
STvz, j S

−1
vv, j Svz, j

)−1
, (12)

where ̂ j is the estimator of  with � evaluated at S and ϒ evaluated at some estimator ϒ̂.
If all observed variables are continuous and all MIIVs are valid, Bollen (1996) showed that

√
n

(
θ̂

( j)
1 − θ

( j)
1

)
d→N

(
0, ϕ2

j�
−1
ẑ ẑ, j

)
, (13)

where � ẑ ẑ, j = �T
vz, j�

−1
vv, j�vz, j is the asymptotic covariance matrix of the predicted right-hand

side endogenous variable of Eq. (6) andϕ2
j = �yy, j−2θ ( j)T�zy, j+θ ( j)T�zz, jθ

( j) is the variance

of the error term e j . We expect the asymptotic covariance matrix ϕ2
j�

−1
ẑ ẑ, j to be equivalent to (11)

when all observed variables are continuous and all MIIVs are valid, since both are asymptotic

covariance matrices of θ̂
( j)
1 . It is worth emphasizing that we need all MIIVs to be valid in order

for (11) and (13) to be valid, but neither the observed continuous variables nor the disturbances
need to be normally distributed (Greene, 2002, page 77). We estimate the asymptotic covariance

matrix ϕ2
j�

−1
ẑ ẑ, j by ϕ̂2

j

(
STvz, j S

−1
vv, j Svz, j

)−1
, where ϕ̂2

j = Syy, j − 2θ̂
( j)T
1 Szy, j + θ̂

( j)T
1 Szz, j θ̂

( j)
1 .

Despite the equivalence of ϕ2
j�

−1
ẑ ẑ, j and equation (11), their finite sample estimators may still

differ, as revealed in the following proposition. For ease of presentation, all proofs are placed in
the appendix.

Proposition 1. Suppose that all observed variables are continuous and ϒ is estimated by
2D+ (S ⊗ S) D+T . Then,

̂ j = ϕ̂2
j Svv, j +

(
Svy, j − Svz, j θ̂

( j)
1

) (
Svy, j − Svz, j θ̂

( j)
1

)T
,

and the estimator (12) is the same as ϕ̂2
j

(
STvz, j S

−1
vv, j Svz, j

)−1
.

Proposition 1 shows that the estimator 2D+ (S ⊗ S) D+T equates the estimator (12) and
the standard error in Bollen (1996) in finite samples. Such an estimator is a consistent estimator
of ϒ under the normality assumption. In contrast, if the normality assumption is relaxed and ϒ

is estimated from the sample fourth-order moments, the estimator (12) is not necessarily equal

to ϕ̂2
j

(
STvz, j S

−1
vv, j Svz, j

)−1
. For Proposition 1 to hold, we do not even need the MIIVs to be

valid. Regardless of the validity of MIIVs, we always have STvz, j S
−1
vv, j

(
Svy, j − Svz, j θ̂

( j)
1

)
= 0,

which makes the estimator (12) the same as ϕ̂2
j

(
STvz, j S

−1
vv, j Svz, j

)−1
. As revealed in the following

proposition, if we relax the assumption thatϒ is estimated by 2D+ (S ⊗ S) D+T but assume that
all MIIVs are valid, the finite sample equivalence still holds.

Proposition 2. Suppose that all observed variables are continuous with finite fourth-order
moments, Eq. (6) is correctly specified, and all MIIVs are valid. Then,  j = ϕ2

j�vv, j .

Proposition 2 implies that we can estimate  j by ϕ̂2
j Svv, j to attain the finite sample equiv-

alence of (12) and ϕ̂2
j

(
STvz, j S

−1
vv, j Svz, j

)−1
. It is also worth mentioning that Proposition 2 does

not require the observed continuous variables to be normally distributed.
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3.4. Point Estimator of θ2

To estimate θ2 given θ̂1, we minimize the least-squares fit function T
(
θ̂1, θ2

)
, where T (θ)

is given by (4). The weight matrices commonly used for systemwide estimators can naturally be
used here. Bollen andMaydeu-Olivares (2007) and Fisher and Bollen (2020) usedULS. It is worth
mentioning that the estimator of θ2 is not robust against model misspecification, since we use
the systemwide estimation here [see Bollen and Maydeu-Olivares (2007) page 321 and Nestler
(2015b)]. It is also worth mentioning that non-convergence is not an issue when estimating θ1,

since it is based on the closed-form estimator (7). However, when T
(
θ̂1, θ2

)
is minimized to

estimate θ2, non-convergence becomes a potential issue for the MIIV approach as well. However,
we can always estimate θ̂1 even if non-convergence prevents us from estimating θ2

3.5. Standard Error of θ̂2

Bollen and Maydeu-Olivares (2007) derived the asymptotic distribution of the PIV estimator
θ̂2 under the ULS fit function. Their equation (31) was taken by Fisher and Bollen (2020) in
equation (33). Under certain conditions, it is shown in the appendix that

√
n

(
θ̂2 − θ2

)
= C (θ , σ )

√
n (s − σ ) + oP (1) , (14)

where C (θ , σ ) = H (θ) [I − J1 (θ) K (σ )] with H (θ) = [
JT
2 (θ)W J2 (θ)

]−1
JT
2 (θ)W ,

J1 (θ) = ∂σ (θ) /∂θT1 and J2 (θ) = ∂σ (θ) /∂θT2 . Expansion of (14) implies

√
n

(
θ̂2 − θ2

)
d→ N

(
0, C (θ , σ )ϒCT (θ, σ )

)
. (15)

We estimate the standard errors from distribution (15) by evaluating θ , σ , and ϒ at θ̂ , s, and
ϒ̂, respectively. Our H matrix is more general than the H matrix in equation (33) of Fisher
and Bollen (2020) because we allow the use of a more general weight matrix W to develop the
standard errors whereas they assume W = I as is true for ULS. 1

4. MIIV Tests

4.1. Goodness-of-fit Tests for Model

Bollen and Maydeu-Olivares (2007) propose goodness-of-fit tests for the model as a whole
for PIV. We develop similar model test statistics for the MIIV approach here. We show in the
appendix that, if themodel is correctly specified, nT (θ) evaluated at theMIIV estimates converges
in distribution to a weighted sum of independent Chi-square random variables with 1 degree of
freedom, where the weights are the eigenvalues of

M = ϒ1/2
[
I − J (θ)

(
K (σ )

C (θ , σ )

)]T

W
[
I − J (θ)

(
K (σ )

C (θ , σ )

)]
ϒ1/2, (16)

1Below their eq. (31), Fisher and Bollen (2020) list the weight matrix as equal to the inverse of the asymptotic
covariance matrix of the polychoric covariance matrix. This is a typographical error and the weight matrix should be
W = I , making it the ULS estimator (private communication with authors).
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with J (θ) = ∂σ (θ) /∂θT . Hence, we can apply the Satorra and Bentler (1994) adjustments to
assess the overall goodness of fit of the model. In particular, the mean-scaled statistic and the
mean-variance adjusted statistic are

Tm = nr

tr
{
M̂

}T (
θ̂
)

and Tmv =
ntr

{
M̂

}

tr
{
M̂

2
} T

(
θ̂
)

,

respectively, where r is the difference between the number of nonredundant free entries in �

and the number of free parameters. The mean-scaled statistic is approximated by a Chi-square
distribution with r degrees of freedom and the mean-variance adjusted statistic is approximated

by a Chi-square distribution with
[
tr

{
M̂

}]2
/tr

{
M̂

2
}
degrees of freedom.

4.2. Overidentification Test for Equations

Wementioned earlier that an advantage of the MIIV approach is that we have an overidentifi-
cation tests for every overidentified equation in the system (5). This provides a test of the validity
of the MIIVs and the validity of the model specification. The reader is directed to Bollen (2019)
for the implications of such a test. In this section, we present the asymptotic Chi-square distributed
overidentification test that is applicable to continuous, ordinal, and binary endogenous observed
variables. The derivation by and large follows the derivation in Jin and Cao (2018).

If equation (6) is correctly specified and the MIIVs are valid, g j (σ ) = 0. Then the delta
method indicates that

√
n

(
Svy, j − Svz, jθ

( j)
1

)
= √

n
(
g j (s) − g j (σ )

) d→ N (0,) . (17)

It is easy to show that

Q j = I − 
−1/2
j �vz, j

(
�T

vz, j�
−1
vv, j�vz, j

)−1
�T

vz, j�
−1
vv, j

1/2
j .

is an idempotentmatrix, but not necessarily symmetric. Let Q̂ j be an estimator of Q j by replacing

� with S and θ
( j)
1 with θ̂

( j)
1 . Together with Eq. (7), it can be shown that

√
n̂

−1/2
j

(
Svy, j − Svz, j θ̂

( j)
1

)
=√

n Q̂ j ̂
−1/2
j Svy, j = √

n Q̂ j ̂
−1/2
j

(
Svy, j − Svz, jθ

( j)
1

)
,

(18)

where the second equality holds since
√
n Q̂ j ̂

−1/2
j Svz = 0. However, the asymptotic variance

of (18) is Q j Q
T
j , which is not of full rank. Let G j and Ĝ j be the Moore–Penrose inverses of

Q j Q
T
j and Q̂ j Q̂

T
j , respectively. The following theorem shows that

F = n
(
Svy, j − Svz, j θ̂

( j)
1

)T
̂

−1/2
j Ĝ j ̂

−1/2
j

(
Svy, j − Svz, j θ̂

( j)
1

)
(19)

is asymptotically Chi-square distributed.
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Theorem 1. As n → ∞, F converges in distribution to a Chi-square distribution with L j − K j

degrees of freedom, provided that Eq. (6) is correctly specified and all MIIVs are valid, where L j

is the number of MIIVs, K j is the number of explanatory variables in z̃ j , and L j − K j > 0.

The expression of F is the same as the equation (9) in Jin and Cao (2018) for observed ordinal
variables. We have shown in Theorem 1 that it is also valid for a mixture of different types of
variables. We can interpret the test statistic F as the generalizedWald statistic of Andrews (1987).

4.3. Connection with Sargan’s Chi-Square

The test statistic (19) is asymptotically Chi-square in general, including the case where all
observed variables are continuous. The Sargan’s Chi-square statistic

FSargan =
eTj V j

(
V T

j V j

)−1
V T

j e j

eTj e j/n
,

applies when all observed variables are continuous, where e j = y j − Z j θ̂
( j)
1 is the residual vector

from Eq. (6). Equivalently,

FSargan = n
(
Svy, j − Svz, j θ̂

( j)
1

)T S−1
vv, j

ϕ̂2
j

(
Svy, j − Svz, j θ̂

( j)
1

)
. (20)

The asymptotic distribution of FSargan is derived by Sargan (1958). It is not surprising that F and
FSargan are asymptotically equivalent, if all observed variables are continuous. The asymptotic

distributions of F and FSargan essentially depend on the distribution of
√
n

(
Svy, j − Svz, jθ

( j)
1

)
.

If all observed variables are continuous and all MIIVs are valid,

√
n

(
Svy, j − Svz, jθ

( j)
1

)
=√

n

(
1

n
V T

j y j − 1

n
V T

j Z jθ
( j)
1

)
d→ N

(
0, ϕ2

j�vv, j

)
.

Otherwise, the distribution (17) applies.
Despite of the asymptotic equivalence, F and FSargan are not necessarily the same due to the

finite sample estimator of  j . A properly chosen estimator of 
−1/2
j G j

−1/2
j is needed to yield

the established test statistics in the literature. By Proposition 2, if  j is estimated by ϕ̂2
j Svv, j ,

then F = FSargan at any sample size. Alternatively,  j can be estimated by

̃ j = ̂ j −
(
Svy, j − Svz, j θ̂

( j)
1

) (
Svy, j − Svz, j θ̂

( j)
1

)T
.

Consequently,

F̃ = n
(
Svy, j − Svz, j θ̂

( j)
1

)T
̃

−1/2
j G̃ j ̃

−1/2
j

(
Svy, j − Svz, j θ̂

( j)
1

)
(21)
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is asymptotically the same as F , where G̃ j is the Moore–Penrose inverse of Q̃ j Q̃
T
j with

Q̃ j =I − ̃
−1/2
j Svz, j

(
STvz, j S

−1
vv, j Svz, j

)−1
STvz, j S

−1
vv, j ̃

1/2
j . (22)

If all variables are normal and ϒ̂ = 2D+ (S ⊗ S) D+T , then ̃ j reduces to ϕ̂2
j Svv, j (Proposition1)

and F̃ is exactly the same as FSargan at any sample size.

4.4. Satorra-Bentler Adjusted Overidentification Tests of Equations

Besides the Chi-square distributed test statistic, Jin and Cao (2018) proposed alternative test
statistics in the spirit of Satorra and Bentler (1994) and showed that the Satorra–Bentler-based
statistics tend to have better small sample properties than the Chi-square distributed test statistic.
In this section, the test statistic in Jin and Cao (2018) is extended to the mixture of different types
of variables as well.

We can express the Sargan’s Chi-square statistic FSargan as

FSargan =
n

(
Svy, j − Svz, j θ̂

( j)
1

)T
S−1

vv, j

(
Svy, j − Svz, j θ̂

( j)
1

)

Syy, j − θ̂
( j)T
1 Szy, j − STzy, j θ̂

( j)
1 + θ̂

( j)T
1 Szz, j θ̂

( j)
1

. (23)

Jin and Cao (2018) termed (23) as “Naive Sargan’s Chi-square statistic” and showed that its
asymptotic distribution is a weighted sum of independent Chi-square random variables with 1
degrees of freedom, if all observed variables are ordinal. The next theorem generalizes their
results.

Theorem 2. The asymptotic distribution of FSargan is a weighted sum of independent Chi-square
random variables with 1 degrees of freedom, if allMIIVs are valid. Theweights are the eigenvalues
of �, where

� j = ϕ−2
j 

1/2
j

[
�−1

vv, j − �−1
vv, j�vz, j

(
�T

vz, j�
−1
vv, j�vz, j

)−1
�T

vz, j�
−1
vv, j

]


1/2
j .

Theorem 2 implies that we can apply the Satorra–Bentler-type adjustments to FSargan. In
particular, the mean-scaled statistic and and the mean-variance adjusted statistic are

Fm = L j − K j

tr
{
�̂ j

} FSargan and Fmv =
tr

{
�̂ j

}

tr
{
�̂

2
j

} FSargan,

respectively, where �̂ j is the estimator of � j , replacing � by S and θ
( j)
1 by θ̂

( j)
1 . We can

approximate the mean-scaled statistic by a Chi-square distribution with L j − K j degrees of
freedom and approximate the mean-variance adjusted statistic by a Chi-square distribution with[
tr

{
�̂ j

}]2
/tr

{
�̂

2
j

}
degrees of freedom.
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If the observed variables are ordinal, the mean-scaled and mean-variance adjusted statistics
derived by Jin and Cao (2018) are

L j − K j

tr
(
�̂ j

) FSargan and
tr

{
�̂ j

}

tr
{
�̂

2
j

} FSargan, (24)

respectively, where �̂ j is an estimator of

� j = 1

1 − �yz, jθ
( j)
1 − θ

( j)T
1 �T

yz, j + θ
( j)T
1 �zz, jθ

( j)
1

�
−1/2
vv, j

(
∂h j (σ )

∂σ T

)
ϒ

(
∂h j (σ )

∂σ T

)T

�
−1/2
vv, j

with h j (σ ) = �vy, j − �vz, jγ j (σ ). Despite that � j is not necessarily the same as � j , the
following corollary shows their connections.

Corollary 1. tr
{
� j

} = tr
{
� j

}
and tr

{
�2

j

}
= tr

{
�2

j

}
provided that observed variables are

ordinal and all MIIVs are valid. However, their finite sample estimators differ by a function of
h j (s).

Corollary 1 indicates that Fm and Fmv are asymptotically the same as the statistics developed
by Jin and Cao (2018), if only ordinal variables are observed and all MIIVs are valid. If all
observed variables are continuous and all MIIVs are valid, � j = Q j , and Fm, Fmv, and FSargan
are asymptotically the same. The implication is that Fm and Fmv can always be computed as test
statistics and be approximated by their corresponding Chi-square distributions. Similarly to the
Chi-square distributed test statistic, the consistent estimator ̃ j needs to be used to ensure small
sample equivalence of Fm, Fmv, and FSargan under the assumptions in Proposition 1, whereas
̂ j only ensures asymptotic equivalence. Hereafter, the mean-scaled statistic and mean-variance
adjusted statistic using ̃ j are denoted by F̃m and F̃mv, respectively.

5. Monte Carlo Simulation

In this section a simulation study is conducted to investigate the finite sample properties of
the proposed MIIV approach. The simulation is performed in R (R Core Team, 2020) and is
built on the packages lavaan (Rosseel, 2012) and MIIVsem (Fisher et al., 2017). 2 Due to space
limitation, we present only limited results in the subsequent section.

5.1. Simulation Design

To explore some of our proposed statistics, we use the SEM model in Li (2016) with two
exogenous and three endogenous latent variables. The latent regression of the true data generating
process with standardized coefficients is shown in Fig. 1. Every latent variable is measured by
three indicators. The indicators of η1, η3, and η5 are continuous, whereas the indicators of η2 and
η4 are ordinal with five categories. The response probabilities are 0.04, 0.05, 0.21, 0.46, and 0.24,
which is the slightly asymmetric condition in Li (2016). Each ordinal variable has an underlying
continuous variable, and we set the error variances of the latter so that their total variances equal

2The R package can be found in the online supporting documents. It will also be integrated to the MIIVsem package
in the future.
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one. For simplicity, we also let the variances of continuous indicators equal one, but the error
variances of continuous indicators are freely estimated. The factor loadings are set to 0.8, 0.65,
and 0.5 with corresponding R2 of indicators being 0.64, 0.42, and 0.25.

Given the scaling indicator, MIIVs are automatically generated from the hypothesized model
using the package MIIVsem. Previous studies (e.g., Bollen et al., 2007; Jin and Cao, 2018)
suggested that when the sample size is small, using fewer IVs results in less bias than using
all IVs. Hence, we consider three estimators in the simulation study, i.e., MIIV with one more
IV than the number of endogenous variables (denoted by MIIV1), MIIV with all possible IVs
(denoted by MIIVall), and DWLS. We use the same set of MIIVs for estimation and in the model
goodness-of-fit tests and the equation overidentification tests.

Since the MIIV approach uses the scaling indicators to set the scale of η, we explore two
choices of the scaling indicator, i.e., the indicators with standardized factor loadings 0.8 and the
indicators with standardized factor loadings 0.5. The former sets the scale of η using the indicator
with the highest R2, whereas the latter uses the indicator with the lowest R2. We also use the same
MIIV scaling indicators for DWLS, so that we can compare the effects of scaling on different
estimators. Fisher and Bollen (2020) have shown that the scaling indicator with a higher Shea
(1997)’s R2 contributes to lower biases in the MIIV approach. The R2 of the scaling indicator
measures the reliability of that indicator, whereas the Shea (1997)’s R2 is a diagnostic for “weak"
instrumental variables. Choosing the scaling indicator as the one with the lowest reliability or
lowest Shea (1997)’s R2 weakens the instrument compared to choosing the scaling indicator with
the higher values. MIIVall uses all MIIVs in estimation. MIIV1 uses one more than the minimum
number of MIIVs and these are chosen to maximize the Shea (1997)’s R2. Figure 2 illustrates
the values of Shea (1997)’s R2 for the data generating process. There are ten equations for factor
loadings and three equations for latent regression coefficients in our model. Figure 2 shows that
the maximum Shea (1997)’s R2 never exceeds 0.5 and the highest values occur when the scaling
indicator has the highest R2 value. The Shea (1997)’s R2 is considerably lower for the scaling
indicators with the lowest R2s. Indeed for two of these equations, the Shea (1997)’s R2 value is
lower than 0.1. Although the high R2 scaling indicator condition generally exceeds the low R2

scaling indicator condition, the last two equations for the latent variable model have values of 0.1
or less. Hence, the simulation allows us to examine how very weak instrumental variables affect
the estimates.

We fit both correctly specified and misspecified models. The hypothesized model is correctly
specified, if it includes all paths in Figure 1. The misspecified model omits the dashed path b43.
For each model, six sample sizes are considered, namely, n = 200, 400, 800, 1200, 2000, and
3200. The number of replication is 10, 000, for each combination of the hypothesized model,
sample size and choice of scaling indicator.

5.2. Outcome Measures

If only the coefficients and factor loadings of θ1 are of interest, MIIV always converges.
Non-convergence is only a potential problem for MIIV when θ2 is estimated, but it is always a
potential problem for DWLS. In the current study, θ2 is estimated using the DWLS fit function,
given the MIIV estimator of θ1. Even for the converged estimates, the covariance matrices of
error terms and factors are possibly non-positive definite. Both non-convergence and non-positive
definite solutions are regarded as improper and are discarded in the current study.

To investigate the accuracy of the MIIV estimator, we compute the relative bias 100 ×
median of

{
θ−1

(
θ̂r − θ

)
, r = 1, ..., R

}
, where θ̂r is the estimate of θ in the r th replication and

R is the number of proper replications. We use the median instead of the mean to prevent outliers
from affecting the central tendency estimate in the smaller sample sizes. We focus on relative
bias greater than 5 percent bias. The relative bias is also used to investigate the accuracy of the
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Figure 1.
Path diagram of the latent regression part of the SEMmodel in the simulation study. The dashed line is present in the true
model but is omitted in the misspecified model. The population values are the standardized coefficients.

Figure 2.
Shea (1997)’s R2 for each equation in the population model.

standard error estimates. However, we do not know the true value of the standard error. Hence, we
use the sample standard deviation of the estimates as the pseudo-true value. Due to the presence
of outliers, we use the interquartile range to trim the estimates, where the interquartile range is
calculated by the third empirical quartile minus the first empirical quartile. Any estimate of a
parameter is trimmed if the estimate is less than the first empirical quartile minus 3 times the
interquartile range or larger than the third empirical quartile plus the 3 times the interquartile
range. Since the converged replications with negative definite covariance matrices also reflect
sampling fluctuation, the standard deviation of the converged estimates after trimming is treated
as robust estimate of the standard error.

Concerning the goodness-of-fit test for the model as a whole, both the mean scaled test Tm
and the mean-variance adjusted test Tmv are investigated. For DWLS, only the mean-scaled test is
used. The goodness-of-fit tests of models are only computed for proper solutions. Regarding the
overidentification tests for equations, the Chi-square tests ((19) and (21)), the mean scaled tests
(Fm and F̃m), and the mean-variance adjusted tests (Fmv and F̃mv) are investigated. We will only
focus on the overidentification equation tests for the misspecified model, since it contains both
correctly and incorrectly specified equations when estimating θ1. Because the overidentification
equation tests does not require estimation of θ2, we compute them for all converged solutions,
including the solutions with negative covariance matrices. We use the empirical percentage of test
statistics that exceed the χ2 critical value at the significance level 0.05 for all test statistics.
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Table 1.
Percentage of converged solutions with positive definite covariance matrices.

Model R2 Method Sample size
200 400 800 1200 2000

Correctly specified High DWLS 99.15 100.00 100.00 100.00 100.00
MIIV1 96.49 99.84 100.00 100.00 100.00
MIIVall 98.56 99.97 100.00 100.00 100.00

Low DWLS 99.20 99.99 100.00 100.00 100.00
MIIV1 87.70 98.22 99.96 99.97 100.00
MIIVall 89.45 98.29 99.96 100.00 100.00

Misspecified High DWLS 98.46 99.97 100.00 100.00 100.00
MIIV1 96.23 99.84 100.00 100.00 100.00
MIIVall 98.74 99.99 100.00 100.00 100.00

Low DWLS 98.44 99.99 100.00 100.00 100.00
MIIV1 87.55 97.77 99.86 100.00 100.00
MIIVall 91.00 98.47 99.94 100.00 100.00

5.3. Percentage of Proper Solutions

Table 1 shows that MIIV and DWLS generally have similar percentages of proper solutions
when the R2 of the scaling indicator is high. If the R2 is low and n is low, MIIV can yield more
improper solutions thanDWLS. Recall thatMIIV always converges if only θ1 is estimated. Hence,
the improper solutions for MIIV originates from estimating θ2.

5.4. Correctly Specified Model

When the model is correctly specified, all estimators are consistent estimators. We report the
average of the absolute value of the relative bias for each of the four parameter sets (�, B, �, and
�). Figure 3 shows that the biases of all estimators converges toward zero as sample size grows.
Under the high R2 condition, the average absolute value of the relative bias of the parameter
estimates is low for DWLS, MIIVall and MIIV1. In contrast, when both the R2 and sample size
are low, DWLS maintains low bias, while MIIVall and MIIV1 exhibit more bias that diminishes
as the sample size increases. It is also clear that MIIV1 tends to be less biased than MIIVall,
especially when the scaling indicator has a low R2. When the R2 is low, MIIVall has the highest
average absolute value of the relative bias for the latent variable equation error variances (�).

Figure 4 reveals the averaged absolute value of relative bias of the standard error estimates for
each parameter set. We found some extreme outliers at the smaller sample sizes, so we trimmed
values that were greater than three times the interquartile range above the third quartile or below
the first quartile. This resulted in no more than 1.3% of cases trimmed which occurred when
n = 200. The percentage trimmed rapidly decreased toward zero as n increased. For MIIV, both
standard errors from (9) and (12) are expected to be accurate in the correctly specified model.
If the R2 of the scaling indicator is high, all standard errors are accurate. The only exception is
that the relative bias of the standard errors is larger for the latent variable regression coefficients
(B) for DWLS at the smaller sample size. If the R2 is low, the pattern is more complex. Under
these conditions, the relative bias of the standard errors of the factor loadings and latent variable
regression coefficients are lowest for MIIV1 (Eq. 9), MIIV1 (Eq. 12), and MIIVall (Eq. 12). The
bias is greatest for MIIVall (equation 9) and DWLS, though these biases diminish as sample size
increases. Continuing with the low R2 results, the bias of the standard errors of the variance
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Figure 3.
Averaged absolute value of the relative bias of the parameter estimators when the model is correctly specified. Dashed
lines at 0 and 5 percent relative bias.

Figure 4.
Averaged absolute value of the relative bias of the standard error estimators when the model is correctly specified. Note:
TheMIIV standard errors of �̂ and B̂ are computed from Eq. 9 or 12. TheMIIV standard errors of �̂ and �̂ are computed
from Eq. 15, hence MIIV Eq. 9 is the same as MIIV Eq. 12.

parameter estimates are highest for MIIVall followed by MIIV1 and DWLS. These too diminish
as the sample size increases. When MIIV1 is used, the standard error estimator (12) tends to be
similar to (9). However, the standard error estimator (9) tends to be more biased than (12) for
MIIVall.

Given that the model is correctly specified, we can explore the empirical size of the goodness-
of-fit tests for models by computing the percentage of test statistics that exceed the critical value
of a Chi-square with significance level 0.05. Figure 5 shows that using different number of IVs
does not have strong effects on the empirical size. The mean-variance adjusted statistics for MIIV
are the closest to the nominal level of all of the model test statistic (Jin et al., 2016). The size of
the mean-scaled statistic for DWLS tends to be too high at about the same magnitude for the high
and low R2 scaling indicators. The mean-scaled statistics for MIIV are the least accurate, tending
to be somewhat higher under the high R2 condition and much higher under the low R2 condition.
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Figure 5.
Percentages of rejection of the goodness-of-fit tests when the model is correctly specified. The significance level is 0.05
(dashed line).

5.5. Misspecified Model

In the misspecified model, b43 is mistakenly fixed to 0, indicating that the latent regression
with η4 as the dependent variable ( j = 12) is misspecified. Bollen (2001) and Bollen et al. (2018a)
give the conditions under which the MIIV-2SLS and PIV estimator of coefficients will be robust
under structural misspecifications such as in this model. Using their results, we know that MIIV
factor loading (�) estimates are identical under the correct and incorrect specifications and hence
will have identical properties. Similarly, the MIIV estimates of the coefficients of b51, b52, b53
and b54 from the η5 equation are robust to the structural misspecification. In contrast, the MIIV
estimates of b41 and b42 from the latent regression for η4 are not robust due to the omission of η3
from the η4 equation. In addition, the MIIV estimates of b31 and b32 from the latent regression for
η3 (with j = 11) are not robust. The reason is that in themisspecifiedmodel, it mistakenly appears
that y10, y11, and y12, the indicators of η4, are suitable MIIVs because the path from ζ3 to these
indicators is cutoff by setting b43 to zero. Hence, we expect MIIVall to be consistent for �, b51,
b52, b43 and b54, but inconsistent for b31, b32, b41, and b42. In contrast, MIIV1 can be consistent
for b31 and b32 as long as y10, y11, and y12 are excluded. These robustness conditions describe the
status of the factor loadings and latent variable coefficients, but there are no analogous analytic
conditions for the variance parameters.

MIIV1 and MIIVall versions of MIIV are robust in the estimation of the factor loadings (�).
Therefore, the results of estimating the factor loadings for MIIV1 andMIIVall should be the same
in the misspecified as they were in the correctly specified model, since the misspecification in the
latent regression model does not affect the MIIVs for the measurement model. Figure 6 confirms
this. Both MIIV1 and MIIVall yield consistent estimators of � regardless of the R2 of the scaling
indicator. DWLS does not seem to spread the bias to the measurement model and in the smaller
samples the bias is even lower than that of MIIV1 and MIIVall, though the differences are slight
in the bigger samples. In contrast, DWLS spreads the bias over all regression coefficients from
the entire latent regression part. The DWLS average of absolute bias ranges from a low of 6 to 8
percentage bias for b31 and b32 to 50 percent bias for b51, b52, b53 and b54 and 70 percent bias
for b41 and b42. The MIIV1 and MIIVall estimators of b51, b52, b53 and b54 have large small
sample biases, but decrease toward zero as n increases. The MIIV1 estimates of b31 and b32 have
low biases, whereas the MIIVall estimator has a large bias if the scaling indicator has a large
R2. It is however interesting to see that the small sample bias of MIIVall is low if the scaling
indicator has a low R2. Hence, the MIIVall estimator of b31 and b32 can be inconsistent, but the
asymptotic bias can still be low.When it comes to the effect of the scaling indicator, using a strong
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Figure 6.
Averaged absolute value of the relative bias of the parameter estimators when the model is misspecified.

scaling indicator generally yields a lower bias than using a weak one for all parameters that can
be consistently estimated.

If the model is misspecified, we still expect the standard errors from Eq. (9) to correctly
quantify the variation of θ̂1, even though b̂31, b̂32, b̂41, and b̂42 are not consistent estimators of
the true population value. However, the standard errors from (12) can be biased for these same
coefficients, since it needs the MIIVs to be valid. From Eq. 10, if Svy, j − Svz, jγ j (s) is far away
from 0, the bias is large. Otherwise the bias is small. It is seen from Figure 7 that all MIIV standard
errors have low biases as n increases, regardless of the R2. In contrast, the DWLS standard errors
tend to be biased for the estimates of B. It is interesting to see that the standard error (12) also
yields a low bias when the MIIVs are invalid. Nevertheless, we still prefer standard errors from
Eq. 9, as it is theoretically valid. The bias of estimated standard errors is often higher if the R2 of
the scaling indicator is low. To produce Fig. 7, the percentage of trimmed replications is generally
small (e.g., no more than 1.7% are trimmed when n = 200 and no more than 0.3% are trimmed
when n = 400).

The empirical powers of the goodness-of-fit tests for the fullmodel are in Fig. 8. Recall that the
mean and variance adjusted test statistics (Tmv) forMIIV1 andMIIVall had themost accurate Type
I error probabilities in the correctly specified model under both the high and low R2 conditions.
The Tm test statistic from MIIV1 and MIIVall and the DWLS test statistic rejected too frequently
with the correct model. For the misspecified model, using a strong scaling indicator tends to
yield higher power than using a weak scaling indicator for all MIIV and DWLS test statistics.
Nevertheless as n increases, the power of all tests tends to increase. Under the high R2 condition,
MIIV1 (Tm) has the highest power with the test statistics MIIV1 (Tmv), DWLS, and MIIVall (Tm)
the next highest. MIIVall (Tmv) has the lowest power. Under the low R2 condition, MIIV1 (Tm),
MIIVall (Tm), and DWLS have the highest power followed by MIIV1 (Tmv) and MIIVall (Tmv).
If we want the best combination of accurate Type I error and high statistical power under the high
R2 condition, then MIIV1 (Tmv) is the best choice. The situation is more ambiguous for the low
R2 condition.

The MIIV estimators also provide overidentification tests for equations, one for each overi-
dentified equation. Due to space limitaion, we only present the overidentification tests for the η3
( j = 11), η4 ( j = 12), and η5 ( j = 13) equations in the latent variable model. As discussed
previously, we expect the empirical percentage rejection to approach 1 as n grows for equations
η3 ( j = 11) and η4 ( j = 12) for MIIVall and to approach the nominal level 0.05 for η5 ( j = 13)
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(a)

(b)

Figure 7.
Averaged absolute value of the relative bias of the standard error estimators when the model is misspecified and the R2

of the scaling indicator is high. Note: The MIIV standard errors of �̂ and B̂ are computed from equation (9) or (12). The
MIIV standard errors of �̂ and �̂ are computed from Eq. 15, hence MIIVEq. 9 is the same as MIIV(Eq. 12).

Figure 8.
Percentages of rejection of the goodness-of-fit tests when the model is misspecified. The significance level is 0.05.
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(a)

(b)

(c)

Figure 9.
Overidentification test for the η3 ( j = 11), η4 ( j = 12), and η5 ( j = 13) equations in the latent variable model at the
significance level 0.05.

. Figure 9 illustrates that the sizes of all proposed overidentification tests become closer to the
significance level 0.05 for the correctly specified η5 equation with the rate of convergence more
rapid if the R2 of the scaling indicator is high. The power of the MIIVall tests for the η3 ( j = 11)
and η4 ( j = 12) equations increase as n increases. However, the power of the MIIV1 tests is
still far from 1, which is in line with the results in Jin and Cao (2018). It is also seen that the
MIIV1 tests of F , Fm, and Fmv perform almost the same and that the MIIV1 tests of F̃ , F̃m, and
F̃mv perform almost the same. Hence, they are almost visually indistinguishable in the figure.
For MIIVall, using a strong scaling indicator yields a higher power than using a weak scaling
indicator.

6. Empirical Example

To demonstrate the use of our MIIV estimator, we consider the Reisenzein (1986) dataset
with 138 observations that is available in theMIIVsem package. It is hypothesized that the effect
of Controllability (perceived controllability over a situation) on Help (decision to help another
person) is mediated by Sympathy and Anger, shown in Fig. 10. Each factor is measured by
three indicators. Every observed variable of Controllability and Anger has nine categories and
are treated as continuous. The observed variables of Sympathy and Help are measured by either
the five-point or nine-point Likert scales. They are converted to five-point Likert scales and are
treated as categorical.
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Figure 10.
Path diagonal of the the Reisenzein (1986) dataset.

Table 2.
Goodness-of-fit tests of the Reisenzein (1986) data set.

Test statistic MIIV1 MIIVall DWLS
Value df p value Value df p value Value df p value

Without the cross loading (s∗3 on Help)
Mean 146.72 50.00 <0.0001 140.53 50.00 <0.0001 164.26 50.00 <0.0001

Mean-Var 39.45 13.44 <0.0001 42.78 15.22 <0.0001 51.09 15.55 <0.0001
With the cross loading (s∗3 on Help)

Mean 36.54 49.00 0.91 48.48 49.00 0.49 44.09 49.00 0.67
Mean-Var 10.39 13.93 0.73 14.00 14.15 0.46 16.17 17.97 0.58

Mean Mean-scaled test, Mean-Var Mean-variance adjusted test.

We first use MIIV1, MIIVall and DWLS to estimate the model in Fig. 10 without the cross-
loading s∗

3 on Help. For both MIIV1 and MIIVall, there exists eight indicator equations with
factor loadings (with left-hand side variables c2, c3, s∗

2 , s
∗
3 , a2, a

∗
3 , h

∗
2, h

∗
3) and three latent variable

equations with regression coefficients (with left-hand side variables Sympathy, Anger, and Help).
It is seen from the top panel of Table 2 that all goodness-of-fit tests reject the null hypothesis
that the model fits the data well. However, the robust CFI, TLI, and RMSEA with DWLS are
0.996, 0.995, and 0.053, indicating a reasonable fit. In contrast, Table 3 shows that the MIIVall
specification tests are highly significant when used to test the equations for s∗

3 and Help. Here,
the Bonferroni correction is used for simplicity to adjust the effect of multiple testing. Hence, the
equations can be misspecified leading to invalid MIIVs. If we add the cross-loading s∗

3 on Help,
all goodness-of-fit tests become insignificant (bottom panel of Table 2). It is seen from Table 4
that MIIV and DWLS yield similar point estimates and standard errors when the revised model
is fitted.

7. Discussion and Conclusion

We proposed a unified MIIV approach that handles a mixture of continuous, ordinal, or
binary observed endogenous variables in SEM. Our method only requires a consistent estimator
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Table 3.
Overidentification tests of the Reisenzein (1986) data set without the cross-loading s∗3 on Help. The significant tests after
the Bonferroni correction is boldfaced.

Test Content Left-hand side variable in each equation
c2 c3 s∗2 s∗3 a2 a3 h∗

2 h∗
3 Sympathy Anger Help

F Value 17.48 6.83 12.56 55.68 9.79 15.03 8.33 15.27 10.34 14.43 19.91
df 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 4.00 4.00 5.00

p_Value 0.04 0.65 0.18 0.00 0.37 0.09 0.50 0.08 0.04 0.01 0.00
F̃ Value 20.02 7.19 13.82 93.34 10.54 16.87 8.86 17.18 11.18 16.12 23.26

df 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 4.00 4.00 5.00
p_Value 0.02 0.62 0.13 0.00 0.31 0.05 0.45 0.05 0.02 0.00 0.00

Fm Value 12.51 11.32 15.49 29.25 3.43 15.50 10.74 9.78 9.64 11.37 18.24
df 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 4.00 4.00 5.00

p_Value 0.19 0.25 0.08 0.00 0.94 0.08 0.29 0.37 0.05 0.02 0.00
F̃m Value 12.64 11.42 15.69 29.96 3.44 15.70 10.84 9.86 9.81 11.61 18.73

df 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 4.00 4.00 5.00
p_Value 0.18 0.25 0.07 0.00 0.94 0.07 0.29 0.36 0.04 0.02 0.00

Fmv Value 9.33 8.00 12.86 20.63 2.19 9.74 8.22 8.06 8.76 10.24 16.50
df 6.71 6.36 7.47 6.35 5.75 5.66 6.89 7.42 3.63 3.60 4.53

p_Value 0.21 0.27 0.09 0.00 0.88 0.12 0.30 0.37 0.05 0.03 0.00
F̃mv Value 9.36 8.13 13.08 20.55 2.19 9.82 8.31 8.06 8.87 10.37 16.91

df 6.67 6.41 7.50 6.17 5.73 5.63 6.90 7.36 3.62 3.57 4.51
p_Value 0.20 0.26 0.09 0.00 0.88 0.11 0.30 0.36 0.05 0.03 0.00

of the covariance matrix and an asymptotic covariance matrix of its elements. We provide point
estimators of all parameters and their asymptotic standard errors. Furthermore, we provide model
goodness of fit test statistics and local tests of overidentified equations. The latter of which
correspond to the classic Sargan’s Chi-square test and the tests in Jin and Cao (2018). In addition,
we give Satorra–Bentler-type modifications to these test statistics. The simulation study shows
that the small sample properties of the proposed MIIV approach is generally in line with the
theoretical results. That is, the MIIV estimators are more robust to structural misspecifications
than are the systemwide estimators; the overidentification equation tests provide useful local tests
of fit, and the model goodness of fit tests provide useful diagnostics on global fit. The performance
of these MIIV tests is best with strong MIIVs and deteriorates if the MIIVs are weak.

The MIIV procedure is applicable to a large class of latent variable models, as long as they
can be expressed as (1) and (2). Among these are the confirmatory factor analysis model (Jin
et al., 2016; Jin and Cao, 2018; Nestler, 2013), the latent growth model (Nestler, 2015b), and
specification tests for nonlinear terms in the latent variable model (Nestler, 2015a). The MIIV
estimation essentially depends on S, which can be interpreted as a method of moment. Various
latent variable models such as the item response theory models are expressed from the likelihood
perspective. When using the probit link, some connections between the MIIV estimates and item
response theory parameters are possible (Takane and de Leeuw, 1987). But for item response-type
models in general the connections to a MIIV approach are less clear.

The finite sample equivalence among various test statistics depend on the estimator of .
The estimators ̂ and ̃ are asymptotically the same but differ by a consistent estimator of 0 if all
MIIVs are valid. If some MIIVs are not valid, ̂ and ̃ are not always asymptotically the same.
In other words, the established equivalence is only for the null distribution. A rigorous power
analysis and extensive simulation studies to investigate the distributions of the test statistics under
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Table 4.
Point estimates and the standard errors of the Reisenzein (1986) dataset with the cross-loading s∗3 on Help. For MIIV, the

standard error of θ̂1 are computed from (9).

Parameter DWLS MIIV1 MIIVall
Est. SE Est. SE Est. SE

Parameters in θ1
Controllability→ c2 1.089 0.193 1.088 0.154 1.042 0.153
Controllability→ c3 1.275 0.262 1.169 0.188 1.149 0.188
Sympathy→ s∗2 0.761 0.060 0.756 0.054 0.734 0.056
Sympathy→ s∗3 0.603 0.058 0.603 0.077 0.555 0.076
Anger→ a2 0.933 0.154 0.909 0.128 0.906 0.134
Anger→ a3 0.885 0.130 0.881 0.101 0.882 0.116
Help→ h∗

2 0.951 0.031 0.953 0.032 0.955 0.033
Help→ h∗

3 0.806 0.040 0.819 0.040 0.829 0.038
Help→ s∗3 0.339 0.054 0.338 0.064 0.361 0.065

Controllability→Sympathy −0.278 0.053 −0.267 0.044 −0.279 0.045
Controllability→Anger 0.651 0.149 0.652 0.133 0.636 0.132

Sympathy→Help 0.265 0.081 0.340 0.096 0.360 0.104
Anger→Help −0.243 0.050 −0.212 0.048 −0.199 0.048

Parameters in θ2
var (ζC ) 4.965 1.699 5.132 1.534 5.206 1.599
var (ζS) 0.610 0.102 0.601 0.083 0.590 0.086
var (ζA) 1.981 0.596 2.144 0.621 2.293 0.650
var (ζH ) 0.524 0.071 0.507 0.075 0.500 0.075

var
(
ε
(C)
1

)
2.103 0.579 1.935 0.350 1.861 0.315

var
(
ε
(C)
2

)
2.104 0.734 1.918 0.402 2.333 0.424

var
(
ε
(C)
3

)
0.824 0.858 1.881 0.346 2.021 0.484

var
(
ε
(A)
1

)
1.442 0.402 1.201 0.326 1.129 0.328

var
(
ε
(A)
2

)
1.730 0.389 1.717 0.276 1.678 0.269

var
(
ε
(A)
3

)
1.739 0.385 1.582 0.309 1.520 0.330

Est. Estimate, SE Standard error.

the alternative hypothesis and the effects of using different  estimators in order to make further
recommendations.

We also explored weak instruments in our simulation. An IV is commonly viewed as weak if
its correlation with the endogenous variable is small. With the presence of weak IVs, it is known
in the econometrics literature that the 2SLS estimator is biased, and the overidentification test
has the wrong size when even a small correlation between instruments and equation errors exist
(e.g., Bound et al., 1995; Hahn and Hausman, 2003; 2005). In our simulation, we considered both
MIIV1 andMIIVall. Theweak IVs are not excluded fromMIIVall, butMIIV1only incorporates the
strongest IVs for the given data set.We found that scaling indicators with low R2s were associated
with weak instruments. A number of authors have proposed diagnostics for weak instruments
including Hahn and Hausman (2002), Kleibergen and Paap (2006), Olea and Pflueger (2013),
Shea (1997), and Stock and Yogo (2005). Fisher and Bollen (2020) showed that the accuracy of
estimation is negatively related with the Shea’s partial R2. Further studies are needed to provide
guidelines on what to do when all IVs are weak or when some IVs are strong but others are
weak. Finally, we recognize the limits of any simulation study and encourage other simulation
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studies that explore a wider variety of conditions to determine the degree to which our findings
generalize.

Appendix: Mathematical Proof

Proof of Proposition 1. Let σvz be an element in �vz, j , σvv be an element in �vv, j , and σvy be
an element in �vy, j . Then

∂ g j (σ )

∂σvz
= −∂�vz, j

∂σvz
θ

( j)
1 ,

∂ g j (σ )

∂σvv

= 0,
∂ g j (σ )

∂σvy
= ∂�vy, j

∂σvy
.

For any other σ that does not belong to�vz, j ,�vv, j , nor�vy, j , ∂ g j (σ ) /∂σ = 0. In matrix form,
the nonzero part in ∂ g j (σ ) /∂σ T is essentially

(
I −θ

( j)T
1 ⊗ I

)
,

subject to a permutationof columns,where⊗ is theKronecker product. If ϒ̂ = 2D+ (S ⊗ S) D+T ,
the estimator of ϒ that corresponds to the nonzero part in ∂ g j (s) /∂σ T is

(
Syy, j Svv, j STzy, j ⊗ Svv, j

Szy, j ⊗ Svv, j Szz, j ⊗ Svv, j

)
+

(
Svy, j STvy, j Svz, j ⊗ STvy, j

STvz, j ⊗ Svu, j Â j

)
,

where Â j is a block matrix such that the (i, k)th block is Svzk , j S
T
vzi , j . Some algebra shows that

∂ g j (s)

∂σ T
ϒ̂

(
∂ g j (s)

∂σ T

)T

=
(
Syy, j − 2θ̂

( j)T
1 Szy, j + θ̂

( j)T
1 Szz, j θ̂

( j)
1

)
Svv, j + Svy, j STvy, j

−
(
Svz, j θ̂

( j)
1

)
⊗ STvy, j −

(
θ̂

( j)T
1 STvz, j

)
⊗ Svy, j

+
(
θ̂

( j)T
1 ⊗ I

)
Â j

(
θ̂

( j)
1 ⊗ I

)

=ϕ̂2
j Svv, j +

(
Svy, j − Svz, j θ̂

( j)
1

) (
Svy, j − Svz, j θ̂

( j)
1

)T
,

where the last equality holds because of

(
θ̂

( j)T
1 ⊗ I

)
Â j

(
θ̂

( j)
1 ⊗ I

)
= Svz, j θ̂

( j)
1 θ̂

( j)T
1 STvz, j

by expanding the elements in the Kronecker product. Then, the proposition holds because

STvz, j S
−1
vv, j

(
Svy, j − Svz, j θ̂

( j)
1

)
=0.

��
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Proof of Proposition 2. From the proof of Proposition 1, the nonzero part in ∂ g j (σ ) /∂σ T is
essentially

(
I −θ

( j)T
1 ⊗ I

)
,

subject to a permutation of columns. If all observed variables are continuous, the submatrix in ϒ

corresponding to �vy, j and �vz, j is of the form

⎛
⎝ E

(
y∗2
j v∗

jv
∗T
j

)
− E

(
y∗
j v

∗
j

)
E

(
y∗
j v

∗T
j

)
E

[(
y∗
j z

∗T
j

)
⊗

(
v∗
jv

∗T
j

)]
− E

(
y∗
j ⊗ v∗

j

)
E

(
z∗Tj ⊗ v∗T

j

)
E

[(
y∗
j z

∗
j

)
⊗

(
v∗
jv

∗T
j

)]
− E

(
z∗j ⊗ v∗

j

)
E

(
y∗
j ⊗ v∗T

j

)
E

[(
z∗j z∗Tj

)
⊗

(
v∗
jv

∗T
j

)]
− E

(
z∗j ⊗ v∗

j

)
E

(
z∗Tj ⊗ v∗T

j

)
⎞
⎠ .

Some algebra shows that

∂ g j (σ )

∂σ T
ϒ

(
∂ g j (σ )

∂σ T

)T

= E
(
y∗2
j v∗

jv
∗T
j

)
− 2E

[
y∗
j

(
z∗Tj θ

( j)
1

) (
v∗
jv

∗T
j

)]

+E

[(
z∗Tj θ

( j)
1

)2 (
v∗
jv

∗T
j

)]

−
(
�vy, j − �vz, jθ

( j)
1

) (
�vy, j − �vz, jθ

( j)
1

)T

= E
(
v∗
jv

∗T
j e2j

)
−

(
�vy, j − �vz, jθ

( j)
1

) (
�vy, j − �vz, jθ

( j)
1

)T
.

If the model is correctly specified and all MIIVs are valid, then E
(
e2jv

∗
jv

∗T
j

)
= ϕ2

j�vv, j and

�vy, j − �vz, jθ
( j)
1 = 0, which completes the proof. ��

Proof of Equation (14). The assumptions that we need include (1) θ̂
p→ θ , (2) s − σ

(
θ̂
)

p→ 0,

(3) ∂3T (θ) /∂θ2, j∂θ2∂θT2 is bounded in probability in an open setO that contains θ2 for any θ2, j ,
the j th entry in θ2, and (4) ∂2σ (θ) /∂θ2∂θT is also bounded in O. Assumptions (1) and (2) hold
if the model is correctly specified and all MIIVs are valid. Assumptions (3) and (4) hold since
T (θ) and σ (θ) have continuous higher-order partial derivatives given by our SEM model.

Since σ (θ) has continuous third-order partial derivatives with respect to θ , the standard
Taylor expansion yields

0 =
∂T

(
θ̂1, θ̂2

)
∂θ2, j

=
∂T

(
θ̂1, θ2

)
∂θ2, j

+
∂2T

(
θ̂1, θ2

)
∂θ2, j∂θT2

(
θ̂2 − θ2

)

+1

2

(
θ̂2 − θ2

)T ∂3T
(
θ̂1, θ̃2

)
∂θ2, j∂θ2∂θT2

(
θ̂2 − θ2

)
, (25)
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where θ2, j is the j th entry of θ2 and θ̃2 lies between θ̂2 and θ2. Similarly, the standard Taylor
expansion yields

∂T
(
θ̂1, θ2

)
∂θ2, j

= ∂T (θ)

∂θ2, j
+ ∂2T (θ)

∂θ2, j∂θT1

(
θ̂1 − θ1

)

+1

2

(
θ̂1 − θ1

)T ∂3T
(
θ̃1, θ2

)
∂θ2, j∂θ1∂θT1

(
θ̂1 − θ1

)
, (26)

and

∂2T
(
θ̂1, θ2

)
∂θ2, j∂θ2

= ∂2T (θ)

∂θ2, j∂θ2
+

∂3T
(
θ̌1, θ2

)
∂θ2, j∂θ1∂θT2

(
θ̂1 − θ1

)
, (27)

where both θ̃1 and θ̌1 lie between θ̂1 and θ1. Then, after plugging (26) and (27) into (25), we
obtain

√
n

⎡
⎣ ∂2T (θ)

∂θ2, j∂θT2
+

(
θ̂1 − θ1

)T ∂3T
(
θ̌1, θ2

)
∂θ2, j∂θ1∂θT2

+ 1

2

(
θ̂2 − θ2

)T ∂3T
(
θ̂1, θ̃2

)
∂θ2, j∂θ2∂θT2

⎤
⎦(

θ̂2 − θ2

)

= −√
n
∂T (θ)

∂θ2, j
− ∂2T (θ)

∂θ2, j∂θT1

√
n

(
θ̂1 − θ1

)
− 1

2

√
n

(
θ̂1 − θ1

)T ∂3T
(
θ̃1, θ2

)
∂θ2, j∂θ1∂θT1

(
θ̂1 − θ1

)
.

By the assumptions mentioned in the beginning of the proof and Ŵ
p→ W , we obtain

(
θ̂1 − θ1

)T ∂3T
(
θ̌1, θ2

)
∂θ2, j∂θ1∂θT2

p→ 0,

(
θ̂2 − θ2

)T ∂3T
(
θ̂1, θ̃2

)
∂θ2, j∂θ2∂θT2

p→ 0,

(
θ̂1 − θ1

)T ∂3T
(
θ̃1, θ2

)
∂θ2, j∂θ1∂θT1

(
θ̂1 − θ1

)
p→ 0.

Hence,

∂2T (θ)

∂θ2, j∂θT2

√
n

(
θ̂2 − θ2

)
= −√

n
∂T (θ)

∂θ2, j
− ∂2T (θ)

∂θ2, j∂θT1

√
n

(
θ̂1 − θ1

)
+ oP (1) .

By collecting all entries in θ2, we obtain

∂2T (θ)

∂θ2∂θT2

√
n

(
θ̂2 − θ2

)
= −√

n
∂T (θ)

∂θ2
− ∂2T (θ)

∂θ2∂θT1

√
n

(
θ̂1 − θ1

)
+ oP (1) .
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By equation (8), we further obtain

∂2T (θ)

∂θ2∂θT2

√
n

(
θ̂2 − θ2

)
= −√

n
∂T (θ)

∂θ2
− ∂2T (θ)

∂θ2∂θT1
K (σ )

√
n (s − σ ) + oP (1) . (28)

Note that the partial derivatives in (28) are

∂T (θ)

∂θ2
= −2JT

2 (θ) Ŵ (s − σ (θ)) ,

∂2T (θ)

∂θ2∂θT1
= 2JT

2 (θ) Ŵ J1 (θ) − 2
∂2σ (θ)

∂θ2∂θT1

{
I ⊗

[
Ŵ (s − σ (θ))

]}
,

∂2T (θ)

∂θ2∂θT2
= 2JT

2 (θ) Ŵ J2 (θ) − 2
∂2σ (θ)

∂θ2∂θT2

{
I ⊗

[
Ŵ (s − σ (θ))

]}
,

where s − σ
(
θ̂
)

p→ 0 under our assumption. Then we get the expansion (14). ��

Proof of the distribution of nT
(
θ̂
)
. If the model is correctly specified, expansions (8) and (14)

imply

√
n

(
θ̂ − θ

)
=

(
K (σ )

C (θ , σ )

)√
n (s − σ ) + oP (1) .

The delta method implies

√
n

(
σ

(
θ̂
)

− σ
)

= J (θ)

(
K (σ )

C (θ, σ )

) √
n (s − σ ) + oP (1) ,

where J (θ) = ∂σ (θ) /∂θT . Hence,

√
n

(
s − σ

(
θ̂
))

= √
n (s − σ ) − √

n
(
σ

(
θ̂
)

− σ
)

=
[
I − J (θ)

(
K (σ )

C (θ , σ )

)] √
n (s − σ ) + oP (1) .

Then, nT
(
θ̂
)
converges in distribution to a weighted sum of independent Chi-square random

variables with 1 degree of freedom, where the weights are the eigenvalues of (16). ��
Proof of Theorem 1. Theorem 2 in Styan (1970) indicates that the quadratic form is Chi-square
distributed if and only if

(
QQT

)
G

(
QQT

)
G

(
QQT

)
=

(
QQT

)
G

(
QQT

)
, (29)

and rank
{(

QQT
)
G

(
QQT

)}
= tr

{
G

(
QQT

)}
, (30)
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where rank {} and tr {} denote the rank and the trace of the enclosed matrix, respectively. Since G
is the Moore–Penrose inverse of QQT , condition (29) is naturally satisfied. Hence, it suffices to
show condition (30). It can be easily shown that G

(
QQT )

is an idempotent matrix when G is a
Moore–Penrose inverse. Hence,

tr
{
G

(
QQT

)}
= rank

{
G

(
QQT

)}
= rank

{
QQT

}
,

where the second equality holds because of Corollary 9.3.8 in Harville (1997). Note that, as the
Moore–Penrose inverse,

rank
{(

QQT
)
G

(
QQT

)}
=rank

{
QQT

}
.

Hence, condition (30) is also satisfied. Further, as a gram matrix,

rank
{
QQT

}
= rank {Q} .

Recall that Q is idempotent, then the degrees of freedom can be simplified to

tr
{
G

(
QQT

)}
=tr {Q} = L j − K j .

That is, F is asymptotically Chi-square distributed with L j − K j degrees of freedom. ��
Proof of Theorem 2. Equation (18) indicates that

√
nϕ̂−1

j S−1/2
vv, j

(
Svu, j − Svz, j θ̂

( j)) =√
nϕ̂−1

j S−1/2
vv, j ̂

1/2
Q̂̂

−1/2 (
Svy, j − Svz, jθ

( j)
)

.

Hence, the quadratic form becomes

n
(
Svy, j − Svz, j θ̂

( j))T (
ϕ̂−2
j S−1

vv, j

) (
Svy, j − Svz, j θ̂

( j))

= n
[
̂

−1/2 (
Svy, j − Svz, jθ

( j)
)]T (

ϕ̂−2
j Q̂

T
̂

1/2
S−1

vv, j ̂
1/2

Q̂
) [

̂
−1/2 (

Svy, j − Svz, jθ
( j)

)]
,

and its weight matrix is symmetric. Hence, the distribution (17) indicates that it converges in
distribution to a weighted sum of independent Chi-square random variables with 1 degrees of
freedom each and the weights are the eigenvalues of ϕ−2

j QT1/2�−1
vv, j

1/2Q. Finally, plugging
in the expression of Q into the weights yields the expression of � in the theorem. ��
Proof of Corollary 1. For any σ values, the expression of � j directly indicates

ϕ2
j tr

{
� j

} = tr
{
�−1

vv, j P j (σ ) j

}
and ϕ4

j tr
{
�2

j

}
= tr

{(
�−1

vv, j P j (σ )  j

)2}
,
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where P j (σ ) = I − �vz, j

(
�T

vz, j�
−1
vv, j�vz, j

)−1
�T

vz, j�
−1
vv, j . The chain rule yields

∂h j (σ )

∂σi
= P j (σ )

[
∂�vy, j

∂σi
− ∂�vz, j

∂σi
γ j (σ )

]

−�vz, j

(
�T

vz, j�
−1
vv, j�vz, j

)−1 ∂�T
vz, j�

−1
vv, j

∂σi
h j (σ ) , (31)

where σi is the i th entry in σ . If the model is correctly specified and all MIIVs are valid, then
γ j (σ ) = θ

( j)
1 and h j (σ ) = 0. Hence, we obtain

∂h j (σ )

∂σ T
= P j (σ )

∂ g (σ )

∂σ T
.

Consequently,

ϕ2
j tr

{
� j

} = tr
{
�−1

vv, j P j (σ ) j PT
j (σ )

}

= tr
{
�−1

vv, j P j (σ ) j

}
,

ϕ4
j tr

{
�2

j

}
= tr

{
�−1

vv, j P j (σ ) j PT
j (σ ) �−1

vv, j P j (σ )  j PT
j (σ )

}

= tr
{
�−1

vv, j P j (σ ) j�
−1
vv, j P j (σ ) j

}
,

where the last equality holds since PT
j (σ ) �−1

vv, j P j (σ ) = �−1
vv, j P j (σ ). Therefore, tr

{
� j

} =
tr

{
� j

}
and tr

{
�2

j

}
= tr

{
�2

j

}
.

On the other hand, if the population � is estimated by S and θ
( j)
1 by θ̂

( j)
1 , then h j (s) is not

necessarily 0. From equation 31, the difference between tr
{
�̂

}
and tr

{
�̂

}
and the difference

between tr
{
�̂

2}
and tr

{
�̂

2
}
depends on h j (s). ��
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